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Abstract

We construct a new mimetic tensor artificial viscosity on general polygonal meshes.
The tensor viscosity is designed as a mimetic discretization of the differential opera-
tor div (µ∇u). This discretization includes the case of a full tensor coefficient µ. We
prove that the new tensor viscosity preserves symmetry on special meshes. We demon-
strate performance of the new viscosity for the Noh implosion, Sedov explosion and
Saltzman piston problems on a set of various polygonal meshes in both Cartesian and
axisymmetric coordinate systems.

1 Introduction

We are developing advanced mimetic discretizations methods for Lagrangian gasdynamics
on general polygonal meshes in both Cartesian (x, y) and axisymmetric (r, z) coordinate
systems. Our particular interest is in modeling complex high-speed flows with shocks. Mod-
eling of such flows requires introduction of an artificial numerical viscosity [12]. This paper
is mainly devoted to development of a new mimetic artificial viscosity on general polygonal
meshes.

For a brief historical overview and basic requirements for design of artificial viscosity
methods, we refer the interested reader to [12] and focus our attention on a special class
of viscosity methods. The tensor artificial viscosity was proposed in [11]. This viscosity
is designed as a discretization of the differential operator div (µ∇u). In [11], the authors
considered only the case of a scalar coefficient µ and a computational mesh consisting of
convex polygonal cells.

In the recent paper [21], the authors derived a high-order discretization for the tensor
viscosity using a finite-element approach. This approach is applicable only to non-degenerate
quadrilateral meshes in two-dimensions and non-degenerate hexahedral meshes in three-
dimensions. Again, only a scalar µ was considered in [21]. Still, the numerical results
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presented in [11, 21] clearly demonstrate superiority of the tensor artificial viscosity over
other known forms of the artificial viscosity.

In a real computation, one can easily encounter meshes produced by an adaptive mesh
refinement (AMR), where angles between edges sharing a vertex can be equal to π, as well as
meshes with non-convex cells. The methods proposed in [11, 21] are not designed to work for
such meshes. What is even more important, is that the discrete formulas derived in [11, 21]
have a singularity when the angle between two edges sharing a vertex approaches π, which
may lead to computational instabilities. Therefore, our first objective is to develop a robust
discretization of the differential operator div (µ∇u) that works on general polygonal meshes
with degenerate and non-convex cells.

One of the important features of the tensor viscosity is its ability to catch direction of the
shock propagation. This is achieved because ∇u is the true tensor. Directional properties
of the tensor artificial viscosity also allows to introduce special limiters, which turn viscosity
off for adiabatic compression. This may be very important for implosion problems [12].

There are still a few open problems related to definition of coefficient µ. One of them
is selection of a characteristic length, especially for highly stretched cells, which controls
thickness of the discrete shock. In this respect, a full fourth-order tensor coefficient µ has
enormous potential, provided that a discretization can handle such a tensor. Therefore, our
second objective is to develop a discretization of the differential operator div (µ∇u) with the
tensor coefficient µ.

In first part of this paper, we develop a new mimetic discretization of the operator
div (µ∇u) in the Cartesian (x, y) coordinate system. The coefficient µ can be a full fourth-
order symmetric positive semi-definite tensor. The new discretization is based on ideas
developed over the last decade in the framework of mimetic finite difference (MFD) methods
[19, 18, 16, 24, 17, 10, 3].

In the traditional MFD method, one first discretizes the first-order operators ∇, div
(see, for example, [11, 10]) and then forms a discrete analog of the second-order operator
div (µ∇u). In context of constructing a tensor artificial viscosity, we do not need the discrete
first-order operators per se, we only need a discretization of the second-order operator,
because it is the one who provides artificial viscosity forces in the momentum equation.

The main new idea is the direct discretization of the second-order operator div (µ∇u).
This is done by specifying an inner product in a space of tensors on its subspace. This
subspace consists of tensors that are gradients of the vectors. This construction can be
considered as an extension of ideas presented in [3] for the scalar Laplacian to the case of
tensors. It also makes important contribution to the theory of the discrete vector and tensor
calculus which we are developing [19, 18, 15, 4, 5, 22, 16, 24, 17, 10, 23].

In the second part of the paper, we describe how to incorporate the tensor artificial
viscosity into the discrete Lagrangian hydrodynamics. In this part, we use only a scalar
coefficient µ. Construction of a tensor coefficient µ, in the context of Lagrangian hydro-
dynamics, will be a topic of a future paper. To construct a conservative discretization of
Lagrangian equations, we use the compatible discretization technique from [13].

We start with the two-dimensional Cartesian geometry. In this case, we use directly the
artificial viscosity constructed in the first part of this paper. For the axisymmetric geometry,
we use the ”area-weighted” approach (see, for example, [13, 2]). In this approach, forces in
the right-hand side of the momentum equation are discretized exactly as in the Cartesian
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geometry; however, a special procedure is required to approximate density in the left-hand
side. We stress once more that the same discretization of the operator div (µ∇u) is used in
both coordinate systems.

One of the desired properties for the discrete equations is preservation of symmetry on
special meshes. We develop a methodology based on a reference element, which allows us
to analyze and to prove symmetry on special meshes without explicit form of the discrete
equations. Using this methodology, we prove that our discretization preserves cylindrical
symmetry in the Cartesian geometry and spherical symmetry in the axisymmetric geometry
on equiangular polar meshes, subject to appropriate initial and boundary conditions.

The new tensor artificial viscosity has been implemented in the code FLAG [7, 8, 9]. Our
test suite includes the Noh implosion problem [25], the Sedov blast wave problem [20, 27, 28],
and the Saltzman piston problem [26, 14]. Noh’s and Sedov’s problems are tested on several
meshes: polar meshes with uniform and non-uniform angular steps; square and rectangular
meshes; a polar mesh with adaptive mesh refinement; and a general polygonal mesh. Results
of numerical tests demonstrate accuracy and robustness of the new tensor artificial viscosity.
They also confirm that the new method preserves cylindrical and spherical symmetry on
polar equiangular meshes and show how symmetry is violated on other meshes.

The paper outline is as follows. In Section 2, we set the stage by describing how con-
tinuous analog of the tensor artificial viscosity enters equations of Lagrangian gasdynamics.
Semi-discrete equations in the Cartesian geometry are described in Section 3. It includes a
brief description of the compatible staggered discretization. Main part of this section is de-
voted to derivation of the new tensor artificial viscosity. In Section 4, we describe briefly the
area-weighted discretization for the axisymmetric geometry. Analysis of symmetry preser-
vation is performed in Section 5. Numerical investigation of approximation properties of
the mimetic discretization of operator div (µ∇u) is done in Section 6. Finally, results of
numerical experiments are presented in Section 7.

2 Continuous equations of Lagrangian gasdynamics

Let us consider a system of hydrodynamics equations in Lagrangian coordinates describing
motion of a compressible gas [29]. The first equation comes from the conservation law for
mass:

1

ρ

Dρ

Dt
= −div u,

where ρ is a gas density, u is the gas velocity, and D/Dt denotes the material derivative.
The second equation comes from the conservation low for momentum:

ρ
Du

Dt
= −∇p,

where p is the gas pressure. The third equation comes from the conservation law for the
total energy. The equation for the internal energy density ε reads:

ρ
Dε

Dt
= −p div u.
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The system of three equations with four unknowns is closed by an equation of state:

p = p(ε, ρ).

The ideal gas law is used in our numerical experiments.

2.1 Artificial viscosity

For shock calculations, an artificial numerical viscosity has to be added to the discrete
momentum equation. Being artificial, the discrete viscosity stress tensor does not need to
be symmetric. Following [11, 21], we define the artificial viscosity as an approximation of
the elliptic operator:

f̃vis = div (µ∇u),

where, contrary to [11, 21], we allow µ be a fourth-order tensor. The continuous form of the
modified momentum equation (3.2) becomes

ρ
Du

Dt
= −∇p + div (µ∇u),

or

ρ
Du

Dt
= f̃prs + f̃vis, f̃prs = −∇p, f̃vis = div (µ∇u),

where f̃prs and f̃vis are viscous forces due to pressure and artificial viscosity, respectively.
The continuous form of equation for the internal energy which includes work done by the

artificial viscosity is

ρ
Dε

Dt
= −p div u + µ∇u : ∇u .

3 Semi-discrete equations of Lagrangian gasdynamics

Let us consider a polygonal partition Ωh of a computational domain Ω into non-overlapping
zones z. We allow Ωh to contain non-convex and degenerate (a vertex lies on a line connecting
two other vertexes) zones. However, we assume that this partition is conformal in the
following sense. Intersection of two different zones is either a few mesh points, or a few mesh
edges (two adjacent zones may share more than one edge), or empty.

3.1 The x− y coordinate system

Let Az be the area of zone z and Le be the length of edge e. We denote by nz be the exterior
normal vector to boundary ∂z and by nez its restriction to edge e. We shall frequently write
ne instead of nez whenever it will not be ambiguous. Let xz be the centroid of zone z and xe
be the center of edge e.

We consider a staggered discretization. The discrete velocity unknowns up are defined
at mesh nodes p. Let U the the vector of degrees of freedom up. The size of this vector is
twice the number of mesh points.
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For a given vector U, we may reconstruct a continuous discrete function uh, uh = L(U).
We assume that uh is linear on every edge e and uh(p) = up at every mesh point p. We do
not specify the value of uh inside zone z, because, as we will see later, it is not needed in
our method. In general, the reconstruction operator L in not unique.

Furthermore, we assume that the reconstruction operator L is exact for piecewise linear
functions in the following sense. Let uL be a velocity function linear in each zone z and UL

be the vector of degrees of freedom. Then, we require that uL = L(UL).
The discrete pressure unknowns pz, density unknowns ρz and internal energy unknowns

εz are defined at centers of zones z. These unknowns define in a natural way piecewise
constant mesh functions ph, ρh and εh.

For Lagrangian methods, the mass mz in element z is constant in time and the discrete
equation for conservation of mass is

ρz =
mz

Az
. (3.1)

We use a compatible (mimetic) discretization of the momentum and internal energy equations
[13]. Let mp be the constant mass associated with point p and fpz be a subzonal force acting
from zone z to point p. Then, the semi-discrete equations are:

mp
Dup
Dt

=
∑
z3p

fpz , mz
Dεz
Dt

= −
∑
p∈z

fpz · up. (3.2)

We use the Euler-trapezoidal predictor-corrector method for time integration [13]. To calcu-
late the point masses, we consider a dual mesh Dh obtained by connecting centers of zones
z with mid-points of edges e. This introduces another polygonal partition of the computa-
tional domain Ω into dual zones Ep associated with points p. Then the point mass mp is
defined by integrating piecewise constant function ρh over the dual zone Ep.

Contribution to the subzonal force fpz from the pressure is defined via the Green formula
for dual zone Ep:

−
∫
Ep

∇p dA = −
∮
∂Ep

p nEp dL = −
∑
z∈p

∫
∂Ep∩z

p nEp dL =
∑
z∈p

∫
∂z∩Ep

p nz dL.

In the last step we used the fact that boundaries ∂Ep∩z and ∂z∩Ep make a closed contour.
Replacing p with the discrete function ph, we get contribution of the pressure to the subzonal
point force:

(fprs)pz =

∫
∂z∩Ep

ph nz dL. (3.3)

Contribution (fvis)pz of the artificial viscosity to the subzonal point force is defined in the
next subsection. After that, the scheme is completed by setting

fpz = (fprs)pz + (fvis)pz. (3.4)

3.2 Artificial viscous subzonal force

The major focus of this article is on discretization of the artificial viscous term on arbitrary
polygonal meshes. As it was mentioned in the previous section, the artificial viscosity con-
tributes to the subzonal point force fpz (see (3.4)). Derivation of the subzonal point force
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(fvis)pz requires to discretize the vector elliptic operator div (µ∇ ). The presented method is
based on the principles of mimetic discretization for the scalar Laplacian [3] but differs from
the one in [11]. The novel method can be applied to a larger family of meshes, including
meshes with non-convex and degenerate zones, and full tensor coefficient µ.

In the mimetic methodology the combined operator div µ and the gradient operator ∇
are replaced by compatible discrete mimetic operators DIVµ and GRAD , respectively. A
force due to artificial viscosity is calculated as follows:

Fvis = −MQDIVµ GRAD U, (3.5)

where U is the global vector of velocity degrees of freedom, and the mass matrix MQ is
introduced below. The matrix MQ reflects the fact that the forces are applied to nodal masses
(compare with the differential form of the momentum equation). In the sequel, we will show
how the vector Fvis can be assembled from subzonal point forces (fvis)pz without explicit
calculation of the mimetic operators. However, the basis of the mimetic discretization has
to be introduced first. To simplify exposition, we assume the following boundary conditions
on ∂Ω:

u · n = 0 and (∇u · n) · τ = 0, (3.6)

where n and τ are the unit normal and tangential vectors, respectively.
Let Qh be the space of velocity vectors V. The dimension of this space is twice the

number of mesh nodes. The vector V ∈ Qh is composed of two-dimensional vectors vp
(denoted also as (V)p) where p is a mesh point. The boundary condition (3.6) implies that
(V)p · n = 0 for every boundary point p. The space Qh is equipped with the inner product:

[U, V]Q ≡ (MQU)T V, ∀U,V ∈ Qh, (3.7)

where MQ is a diagonal positive definite matrix. Its diagonal entry corresponding to point
p is equal to VEp , the area of the dual zone Ep.

The second-order tensor T is represented by its tangential components Te = T · τ e on
mesh edges, where τ e is the unit tangential vector to edge e. Let Xh be the space of such
discrete tensors. The dimension of this space is twice the number of mesh edges. For T ∈ Xh,
we write Te for the tangential component on mesh edge e, which is a two-dimensional vector.
The boundary condition (3.6) implies that Te ·ne = 0 for every boundary edge e. The vector
space Xh is equipped with the inner product:

[T, G]X ≡ (MXT)T G, ∀T,G ∈ Xh, (3.8)

where MX is a symmetric positive definite matrix. Construction of this matrix is a non-
trivial task since only tangential components of tensors are known.

Let edge e have end points p and p′, and the tangential vector τ e point from p to p′. The
mimetic gradient on edge e as an approximation of the directional derivative of the velocity:

∇u · τ e ≈
up′ − up
Le

≡ (GRADU)e .

The mimetic divergence operator DIVµ is defined implicitly via the discrete Green formula:

[U, DIVµT]Q = −[GRADU, T]X , ∀U ∈ Qh, T ∈ Xh, (3.9)
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which mimics the continuous formula:∫
Ω

u · div (µT) dA = −
∫

Ω

∇u : (µT) dA.

Note that the boundary conditions (3.6) were chosen to nullify the boundary integral in the
Green formula. The continuous Green formula also implies that the inner product in the
space of tensors is the weighted inner product and the weight is given by tensor µ. Using
(3.7) and (3.8), we get that

DIVµ = −M−1
Q GRAD

T MX .

Since MQ is the diagonal matrix, the divergence operator has a local stencil.
The inner product matrix MX is the heart of the mimetic technology. Because we need

to compute only DIVµ GRAD , the full matrix MX is not needed. Using (3.5) and the
discrete integration by parts formula (3.9), we get

(Fvis)T V = −[DIVµ GRADU, V]Q = [GRADU, GRADV]X

for any vector V. This argument shows that we need to define the inner product matrix
MX only on the space of discrete gradients, which is the subspace of Xh. In other words,
we propose to calculate directly a stiffness matrix M̃X such that

[GRADU, GRADV]X ≡ (M̃XU)T V, ∀U,V ∈ Qh, (3.10)

where
M̃X = GRAD T MX GRAD . (3.11)

Then,
Fvis = M̃X U.

The conventional mimetic approach requires calculation of all terms in (3.11). However,
since only the action of matrix MX on subspace of discrete gradients is required for this, a
faster calculation of M̃X is possible using the ideas described in [3].

For vector V ∈ Xh, we denote its restriction to zone z by Vz. The latter is composed of
two dimensional vectors vp (denoted also as (V)pz), where p ∈ z. Formula (3.10) represents
the following integral:

(M̃XU)T V =

∫
Ω

µ∇uh : ∇vh dA,

where uh = L(U) and vh = L(V). The additivity of integration implies that the calculation
can be done zone-by-zone:

(M̃XU)TV =
∑
z∈Ωh

(M̃zUz)
TVz, (M̃zUz)

TVz =

∫
z

µz∇uh : ∇vh dA, (3.12)

where µz is a constant tensor approximating µ in zone z. This reduces calculation of the
global matrix M̃X to calculation of smaller zonal matrices M̃z. Still, the direct calculation
of the integral in the right-hand side is not possible because value of the mesh functions
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inside zone z depends on the reconstruction operators L which is not unique. We calculate
the zonal matrix M̃z using general properties of the reconstruction operator rather than its
precise form.

Let us formulate a few matrix equations for M̃z that mimics the Gauss-Green formulas.
Consider a linear vector-function uL and the corresponding vector of degrees of freedom
UL. By the property of the reconstruction operator, uL = L(UL). Using the integration by
parts, the reconstruction property stating that vh is linear of mesh edges, and the trapezoidal
quadrature rule for edge integrals, we get∫

z

µz∇uL : ∇vh dA = −
∫
z

div (µz∇uL) · vh dA+

∫
∂z

(µz∇uL · nz) · vh dL

=

∫
∂z

(µz∇uL · nz) · vh dL =
∑
e∈∂z

(µz∇uL · nez) · (vp + vp′)
Le
2
,

where p and p′ denote end points of edge e and are different in every term. The last sum
can be rewritten as a dot product of a computable vector RL,z and vector Vz. Components
of vector RL,z depend of course on function uL and tensor µz. Let e and e′ be two edges of
z meeting at point p. Then,

(RL,z)
p = (µz∇uL · nez)

Le
2

+ (µz∇uL · ne
′

z )
Le′

2
= µz∇uL ·

(
nez

Le
2

+ ne
′

z

Le′

2

)
. (3.13)

Let UL,z be the restriction of UL to zone z. Combining the last three formulas, we get

(M̃zUL,z)
T Vz = RT

L,z Vz, (3.14)

where Vz is an arbitrary vector. Now, we formulate the following problem: Find a symmetric
matrix M̃z such that formula (3.14) is the identity for all linear functions uL. There are
six linearly independent vector functions uL that we denote by bi (they form a basis in the
space of linear vector functions):

b1 =

[
x
0

]
, b2 =

[
y
0

]
, b3 =

[
0
x

]
, b4 =

[
0
y

]
, b5 =

[
1
0

]
, b6 =

[
0
1

]
.

Let Ri,z and Bi,z be the vectors from the right-hand and left-hand sides of (3.14), corre-
sponding to vectors RL,z and UL,z, respectively. Note that R5,z and R6,z are zero vectors,
because the gradients of constant vectors b5 and b6 are zero tensors. Thus, we get four
matrix equations:

M̃z Bi,z = Ri,z, i = 1, 2, 3, 4. (3.15)

To solve (3.15), we first calculate dot products

αij = RT
i,z Bj,z =

∫
z

µz∇bi : ∇bj dA = (µz∇bi : ∇bj)Az.

Let α = {αij}4
i,j=1 be the square matrix of size four. This is the positive definite matrix for

any positive definite tensor µz. Using definition of α−1, we may verify that the matrix

M̃(0)
z =

4∑
i,j=1

(α−1)ij Ri,z RT
j,z
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satisfies equations (3.15). This is a semi-positive definite matrix. If we use these matrices to

assemble the global matrix M̃X , we get a semi-positive definite matrix with a huge null space.
This matrix does not approximate the elliptic operator. Moreover, no artificial viscosity is
added to the system when the velocity field lies in the null space. Thus, the zonal matrices
must be corrected such that the assembled matrix becomes an approximation of the elliptic
operator. More precisely, the null space of matrix M̃z may contain only constant vectors.

Let us define a subspace Uz of vectors orthogonal to six vectors Bi,z. To correct the zonal

matrix M̃
(0)
z , we add the orthogonal projector Pz onto Uz:

M̃z = M̃(0)
z + trace(µ) Pz, (3.16)

where
P2
z = Pz = PT

z , Pz Bi,z = 0, i = 1, . . . , 6. (3.17)

By construction, the resulting matrix satisfies equations (3.15). Calculation of the orthogonal
projector is a well studied linear algebra problem. Let us form a matrix Bz with six columns
Bi,z. Then, the orthogonal projector is given by

Pz = Iz −Bz (BT
z Bz)

−1 BT
z ,

where Iz is the identity matrix of the same size as Pz. This completes the derivation of
the local stiffness matrix. The calculation of vector Fvis reduces now to calculation of local
matrix-vector products Fvis

z = M̃z Uz. The two-dimensional vector (Fvis
z )p is the subzonal

viscous point force (fvis)pz needed in (3.4).

3.3 A case of scalar viscosity coefficient

The tensor form of the viscosity coefficient µ opens doors for building various methods that
will be studied in a separate paper. Here we focus on a simpler model where µ is a scalar. In
this case, the matrix α is diagonal with equal diagonal entries, α = µz Az I. Formula (3.16)
reduces to

M̃z =
1

µz Az

4∑
i=1

Ri,z RT
i,z + µz Pz. (3.18)

To study this matrix in more detail, we split it into four square matrices. We collect the first
components of two-dimensional vectors (Ri,z)

p into one group and the other components
into the second group. To simplify notation, the vectors with reordered components are still
denoted by Ri,z. We perform the same reordering of components for vectors Bi,z:

Ri,z =

[
R

(x)
i,z

R
(y)
i,z

]
, Bi,z =

[
B

(x)
i,z

B
(y)
i,z

]
.

Definition (3.13) implies that

R
(y)
1,z = R

(y)
2,z = R

(y)
5,z = 0 and R

(x)
3,z = R

(x)
4,z = R

(x)
6,z = 0.
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Similar identities hold for subvectors B
(x)
i,z and B

(y)
i,z . Using these identities in (3.18) and

(3.17), we conclude that both the matrix M̃z and the projector Pz are block-diagonal ma-
trices with two blocks corresponding to two velocity components:

M̃z =

[
M̃

(x)
z 0

0 M̃
(y)
z

]
, Pz =

[
P

(x)
z 0

0 P
(y)
z

]
, (3.19)

where matrices M̃
(x)
z and M̃

(y)
z can be written in the form similar to (3.18). For instance,

M̃(x)
z =

1

µz Az

2∑
i=1

R
(x)
i,z (R

(x)
i,z )T + µz P(x)

z , (3.20)

where P
(x)
z is the orthogonal projector such that

(P(x)
z )2 = P(x)

z , P(x)
z B

(x)
i,z = 0, i = 1, 2, 5. (3.21)

Let us form a matrix B
(x)
z with three columns B

(x)
i,z , i = 1, 2, 5. Then, the orthogonal projector

is given by (compare with the formula for Pz):

P(x)
z = I(x)

z −B(x)
z

(
(B(x)

z )T B(x)
z

)−1
(B(x)

z )T .

Observe that additional relationships hold by construction:

R
(x)
1,z = R

(y)
3,z , R

(x)
2,z = R

(y)
4,z and R

(x)
5,z = R

(y)
6,z .

Similar relationships hold for subvectors B
(x)
i,z and B

(y)
i,z . This implies that both blocks in

(3.19) are identical. The global matrix M̃X is assembled from zonal matrices M̃z; therefore,
it remains block-diagonal with two equal blocks that are approximations of the scalar elliptic
operator −div (µ∇ ).

3.4 Viscosity coefficient

In this paper, we use expression for the viscosity coefficient described in [30]:

µz = ψz ρz Lz

cQγ − 1

4
|∆u|+

√
c2
Q

(
γ − 1

4

)2

|∆u|2 + c2
Ls

2
z

 ,

where sz is the zonal sound speed, cL and cQ are positive non-dimensional constants, Lz is
the characteristic length, ∆u is the measure of compressibility (a scalar, for instance, the
velocity jump across the shock), and ψz is a binary switch.

The binary switch ensures that the heating due to artificial viscosity occurs only for
zones under compression. In numerical experiments, we set ψz = 1 when ∆u > 0 and ψz = 0
otherwise. The measure of compression is defined as follows:

∆u =
Lz
Az

∫
∂z

uh · nz dL.
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In the numerical experiments, we set cL = cQ = 1. We use two simple estimates for the char-
acteristic length Lz. The first estimate uses Lz = Laz , where Laz =

√
Az, and is appropriate

for meshes with mild variation in areas of neighboring zones. The second estimate defines
Lz = Luz , where Luz is the zone size in the direction of average momentum. To reduce vari-
ations of Luz on unstructured meshes, we smooth the calculated characteristic length using
2-3 Jacoby iterations:

Lu,k+1
z =

1

2
Lu,kz +

1

2Kz

∑
z′

Lu,kz′ , k ≥ 0,

where Kz is the number of closest neighbors z′ of zone z. Development of robust models for
the viscosity coefficient on unstructured meshes is the topic of active research but beyond
the scope of this article.

4 The r − z coordinate system

In the r-z coordinate system, a continuous non-conservative form of the momentum equation
divided by r looks exactly as the momentum equation in the x-y coordinate system [2].
Essentially all discrete symmetry preserving methods in r − z exploit this fact and use the
Cartesian form of the momentum equation:

〈ρhA〉p
Dup
Dt

=
∑
z3p

fpz , m̃z
Dεz
Dt

= −
∑
p∈z

rp fpz · up, (4.22)

where m̃z is the true zonal mass and 〈ρhA〉p is a specially defined ’Cartesian’ mass of point
p. Let Vz be the volume of zone z and mp

z be a subzonal mass associated with point p of
zone z. The subzonal mass is independent of time. The detailed analysis presented in [2]
gives

m̃z =
∑
p∈z

m̃p
z, m̃p =

∑
z3p

m̃p
z, m̃p

z = rp ρ
p
z A

p
z,

and
〈ρhA〉p =

∑
z3p

ρpz A
p
z,

Here Apz are nothing else but positive quadrature weights in the formula for volume,

Vz =

∫
z

r dr dz =
∑
p∈z

rpA
p
z,

and ρpz is the subzonal density that is calculated from the formula for the subzonal mass
m̃z
p when rp 6= 0. For points lying on the z-axis, the subzonal densities have to be defined

from other principles. One of the principles used in Section 5 is the symmetry preservation
on ’polar’ meshes. The authors of [2] suggest to take values for such ρpz from the closest
p′ ∈ z with rp′ 6= 0. On a general polygonal mesh, where two neighboring points satisfy this
criterion, the point with the smallest rp′ is chosen. Note that the quadrature weights Apz are
not unique but must comply with the symmetry preservation principle.
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Figure 1: Left picture: A quadrilateral zone z. Right picture: Solid lines show four quadri-
lateral zones sharing a common point p. Dashed lines mark the dual zone Ep.

5 Symmetry analysis

In this section, we analyze how the staggered discretization preserves the cylindrical sym-
metry in the x-y coordinate system and spherical symmetry in the r-z coordinate system
on meshes obtained by connecting points of true polar meshes by straight lines. One of
the resulting quadrilateral elements is shown in Fig. 1. We assume that the polar mesh is
uniform in the angular direction, ∆θ = constant.

Here we focus only on symmetry of operators and forces assuming implicitly that the
boundary and initial conditions, and the viscosity model for µz respect the symmetry.

5.1 Cylindrical symmetry of pressure forces

Cylindrical symmetry requires the pressure and the internal energy be functions of only
radius r =

√
x2 + y2 and the velocity vector be oriented along the radius vector:

p = p(r), ε = ε(r), u = u(r) (sin θ, cos θ)T , (5.1)

where θ is the polar angle. We assume that θ = 0 corresponds to the direction of the y-axis.
For discrete functions, relaxed symmetry requirements are more appropriate:

ph = ph(r,∆θ), εh = εh(r,∆θ), uh = uh(r,∆θ) (sin θ, cos θ)T . (5.2)

We shall also highlight special cases when the discrete functions do not depend on ∆θ.
Let us consider the quadrilateral zone z shown in Fig. 1. Let (rp, θp) be the polar

coordinates of point p. As shown in this figure, p1 = p.
The analysis of symmetry is focused on a ’polar’ layer with the interior radius rp and

the exterior radius rp + ∆r. Note that ∆r is considered as a function of rp. The pressure,
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density, internal energy, and the viscosity coefficient µ are assumed to be constant in this
layer. The velocity field is assumed to have constant amplitude on the interior and exterior
boundaries. Our goal is to show that the subzonal forces in (3.2) preserve this symmetry.
We shall use superscript ’ref’ for vectors and matrices that depend only on rp and ∆θ.

Let us introduce the matrix Rθ,

Rθ =

[
cos θ sin θ

− sin θ cos θ

]
,

which describes clockwise rotation in the x-y plane on angle θ. It will be convenient to use
two superscripts to represent edge length Lijz and the corresponding normal vector nijz . Then,

n24
z = Rθp+∆θ/2

[
0

1

]
, n12

z = Rθp+∆θ/2

[
− cos(∆θ/2)

− sin(∆θ/2)

]
, n34

z = Rθp+∆θ/2

[
cos(∆θ/2)

− sin(∆θ/2)

]
,

and n13
z = −n24

z . We also need the following formulas:

Az = (rp + ∆r/2) ∆r sin ∆θ, L13
z = 2 rp sin(∆θ/2), L12

z = ∆r. (5.3)

Definition of the subzonal pressure point force (3.3) gives

(fprs)pz =
pz
2

(
n13
z L

13
z + n12

z L
12
z

)
.

Four subzonal forces will contribute to the force acting at point p (see the right picture
in Fig. 1). This summation of subzonal forces can be done in pairs that belong to the same
’polar’ layer. Let us consider the pair z and z′ shown on the right picture in Fig. 1. By
assumption pz = pz′ . From geometry, we conclude that L13

z = L13
z′ and n12

z = −n34
z′ . Thus,

(fprs)pz + (fprs)pz′ =
pz
2
L13
z

(
n13
z + n13

z′

)
= −pz rp sin(∆θ)Rθp

[
0
1

]
.

The right-hand is the clockwise rotation of a reference force vector by angle θp. A similar
argument can be applied to the other pair of zones around point p. Summation of these
forces will give the pressure point force:

(fprs)p = Rθp (fprsref )p, (fprsref )p = −(pz − pz′′) rp sin(∆θ)

[
0
1

]
. (5.4)

Remark 5.1 Comparing (5.4) with the formula (5.3) for area Az, we observe the same
dependence on the polar angle ∆θ. Since the point mass mp is proportional to Az, the
discrete momentum equation (3.2), in absence of artificial viscous forces, becomes the one-
dimensional equation.

Analysis of energy equation requires to write subzonal forces in a form similar to (5.4):

(fprs)pz = Rθp (fprsref )pz. (5.5)
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Direct calculations give

(fprsref )p1z =
pz
2

[
−2 rp1 sin2(∆θ/2)−∆r

−rp1 sin(∆θ)

]
, (fprsref )p2z =

pz
2

[
2 rp2 sin2(∆θ/2)−∆r

rp2 sin(∆θ)

]
(5.6)

for points p1 and p2, and

(fprsref )p3z =
pz
2

[
2 rp3 sin2(∆θ/2) + ∆r
−rp3 sin(∆θ)

]
, (fprsref )p4z =

pz
2

[
−2 rp4 sin2(∆θ/2) + ∆r

rp4 sin(∆θ)

]
. (5.7)

for points p3 and p4. Recall that ∆r is the function of rp1 .

5.2 Cylindrical symmetry of artificial viscous forces

Let us show that the artificial viscous force also preserves cylindrical symmetry on the ’polar’
mesh. The analysis is focused again on one ’polar’ layer. Recall that the vector of subzonal
forces is Fvis

z = M̃zUz and subzonal point force is (Fvis
z )p. We omit superscript ’vis’ for the

rest of this subsection.
The block-diagonal structure of M̃z allows us to analyze each velocity component in-

dependently; however, analysis becomes shorter when applied simultaneously to subvectors
U

(x)
z and U

(y)
z . For the quadrilateral element z shown on the left picture in Fig. 1, these

subvectors have four components.
In a finite element method, the integral in (3.12) is invariant with respect to rotation and

gives the same stiffness matrix for each zone in the ’polar’ layer. This simplifies the analysis
of symmetry. In the MFD method, construction of the stiffness matrix is pure algebraic.
To follow the finite element path, additional non-trivial properties of the lifting operator
must be proved including also its existence. Therefore, we employ another technique for the
symmetry analysis.

Using the local ordering of vertexes shown in Fig. 1, we define two subspaces of <4:

S+ = {V = (a, b, a, b)T , a, b ∈ <1}, S− = {V = (a, b, −a, −b)T , a, b ∈ <1}.

The following result is proved immediately by observing that spaces S+ and S− are orthog-
onal to each other.

Lemma 5.1 For any number of vectors V1, . . . ,Vk from space S = S+∪S− and the matrix
H =

∑k
i=1 ViV

T
i , we get the following inclusions:

H W ∈ S+ (resp., S−) when W ∈ S+ (resp., S−).

Let us show that matrix M̃z has the form needed for the above lemma. We start with
writing the first term of (3.20) as the product of two 4× 2 matrices:

2∑
i=1

R
(x)
i,z (R

(x)
i,z )T =

[
R

(x)
1,z ; R

(x)
2,z

] [
R

(x)
1,z ; R

(x)
2,z

]T
,
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where [a; b] denotes a matrix with two columns a and b. To simplify notation, we define
c = cos(∆θ/2) and s = sin(∆θ/2). Using formula (3.13) and formulas for normal vectors,
we get

[
R

(x)
1,z ; R

(x)
2,z

]
=
µz
2


L12
z (n12

z )T + L13
z (n13

z )T

L24
z (n24

z )T + L12
z (n12

z )T

L13
z (n13

z )T + L34
z (n34

z )T

L34
z (n34

z )T + L24
z (n24

z )T

 =
µz
2


−cL12

z −sL12
z − L13

z

−cL12
z −sL12

z + L24
z

cL34
z −sL34

z − L13
z

cL34
z −sL34

z + L24
z

RT
θp+∆θ/2.

Both columns in the last matrix depend only on r, ∆r, and ∆θ. Thus,[
R

(x)
1,z ; R

(x)
2,z

]
=
[
R

(x),ref
1,z ; R

(x),ref
2,z

]
RT
θp+∆θ/2, R

(x),ref
1,z ∈ S−, R

(x),ref
2,z ∈ S+.

Since RT
θRθ is the identity matrix for any angle θ, we conclude that the first term in zonal

matrix M̃z depends only on the cylindrical radius rp and ∆θ.
Straightforward calculations show that the following matrix is the orthogonal projector

satisfying properties (3.21):

Pz =
1

‖N(x)
z ‖2

N(x)
z (N(x)

z )T , N(x)
z = (r + ∆r; −r; −r −∆r; r)T ∈ S−.

This implies that the second term in the zonal matrix M̃z depends only on r and ∆θ.
Therefore, we can add superscript ’ref’ to it, M̃z = M̃ref

z . Moreover, the matrix M̃ref
z has

the form required for applying Lemma 5.1.
Assumption of the cylindrical symmetry (5.1) for the velocity vector gives

up = Rθp(uref )p, (uref )p =

[
0

u(rp)

]
. (5.8)

Applying this formula to four vertices of zone z, we get

U(x)
z =


u(rp) sin θp

u(rp + ∆r) sin θp

u(rp) sin(θp + ∆θ)

u(rp + ∆r) sin(θp + ∆θ)

 , U(y)
z =


u(rp) cos θp

u(rp + ∆r) cos θp

u(rp) cos(θp + ∆θ)

u(rp + ∆r) cos(θp + ∆θ)

 .
The argument is not changed if we consider assumptions (5.2). Selecting the part indepen-
dent of θ, we get

[U(x)
z ; U(y)

z ] = [U(x),ref
z ; U(y),ref

z ]RT
θp+∆θ/2, U(x),ref

z ∈ S−, U(y),ref
z ∈ S+.

Summarizing, for every cylindrical layer, the matrix [F(x); F(y)] is the product of a reference
stiffness matrix, the reference 4 × 2 matrix and the rotation matrix. The Lemma 5.1 gives
that

[F(x)
z ; F(y)

z ] = [F(x),ref
z ; F(y),ref

z ]RT
θp+∆θ/2, F(x),ref

z ∈ S−, F(y),ref
z ∈ S+. (5.9)
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Every row of the reference 4 × 2 matrix is the subzonal viscous point force. Definition of
spaces S+ and S− implies that the reference subzonal force at point p1 (see the left picture
in Fig. 2) is the mirror image of the references subzonal force at point p3 with respect to the
y-axis. The same is true for the other pair of points.

Formula (5.9) states that the actual force is obtained by rotation of the reference force
by angle θp + ∆θ/2. The right picture in Fig. 2 is the geometric proof of the fact that the
sum of two subzonal viscous forces at point p acts along the diagonal of the parallelogram
attached to point p. Since these forces are equal and mirror images of one another with
respect to line passing through the origin and point p, this direction is radial.

x

∆θ

(fvisref )
3
z(fvisref )

1
z

x

y

(fvis)pz

(fvis)pz′

z

z′

p

p4

p3

p2

p1

O O

y

Figure 2: Left picture: subzonal forces for a reference zone. Right picture: summation of
subzonal forces at point p

Repeating the above argument for the other pair of zones around point p, we conclude,
that the total viscous point force can be written as follows:

(fvis)p = Rθp (fvisref )p, (fvisref )p =

[
0

(f visref )p

]
, (5.10)

where (rp, θp) are the polar coordinates of point p, and the reference force (f visref )p depends
only on rp and ∆θ.

Remark 5.2 Detailed formula for (f visref )
p shows non-trivial dependence on ∆θ and the one-

dimensional momentum equations are obtained only in the limit ∆θ → 0. Allowing µz to be
the full tensor could be a possible way for eliminating dependence on ∆θ.

Analysis of energy equation requires to write subzonal forces in a form similar to (5.10):

(fvis)pz = Rθp (fvisref )pz. (5.11)
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The reference subzonal forces (fvisref )pz follow from rotation of reference forces in (5.9) by angle
±∆θ/2. For instance, taking the first and the third rows in the reference matrix to form
two-dimensional vectors (Fref

z )p1 and (Fref
z )p3 , respectively, and noting that RθRθ′ = Rθ+θ′ ,

we get
(fvisref )p1z = R−∆θ/2(Fref

z )p1 , (fvisref )p3z = R∆θ/2(Fref
z )p3 (5.12)

for points p1 and p3.

5.2.1 Triangles at the origin

At the origin, quadrilateral zones become triangular zones. On a triangular zone, the MFD
method reduces to the linear finite element method. Indeed, the orthogonal projector P

(x)
z

should be a 3× 3 matrix satisfying conditions (3.21). Since vectors B
(x)
1,z , B

(x)
2,z and B

(x)
5,z are

linearly independent, this is possible only when the projector is the zero matrix; therefore,
the stiffness matrix (3.20) is fully defined by two functions x and y.

The mesh function uh is always linear on a triangle; therefore, the integral representation
(3.12) can be used for analysis of symmetry. This integral is independent with respect to
rotation of triangle z. It is easy to verify that on the reference triangle (the dashed triangle
O p1 p3 on the left picture in Fig. 2), two subzonal point forces (at points other than the
origin) will be mirror images of one another.

5.2.2 Subzonal forces for boundary points

The impermeable boundary condition, u·n = 0, allows us to reflect the mesh and the velocity
field about radial boundaries (θ = const). After that, the boundary point can be treated as
an internal point and the above arguments can be applied.

More efficient implementation is based of the observation that the mass of a boundary
point is twice less than the mass of an internal point with the same radius. Thus, the
equivalent approach is to split the point force fp into normal to boundary and tangential
components and set the latter to zero.

5.3 Spherical symmetry of subzonal forces

Spherical symmetry requires pressure and internal energy be functions of only radius R =√
r2 + z2 and the velocity vector be oriented along the radius vector, i.e. they have again the

form (5.1). For mesh calculations, relaxed assumptions of the spherical symmetry, similar
to (5.2), are more appropriate.

In the r-z coordinate system, analysis of the right-hand side of the momentum equation
(4.22) proceeds as is Section 5.1. Let (Rp, θp) be the polar coordinate of point p. We assume
that the pressure, density, internal energy, and the viscosity coefficient µ are constant in each
’polar’ layer. We also assume that the velocity field has constant amplitude on the interior
and exterior boundaries of this layer. The goal is to show that the subzonal forces in (4.22)
preserve this symmetry.

A novel step in the analysis is to show that 〈ρhA〉p in the left-hand side is independent of
θ. This is true when the quadrature weights Apz are independent of θ. To apply arguments
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from subsection 5.2.2, we need to distribute these weights symmetrically (see Fig. 1):

Ap1z = Ap3z and Ap2z = Ap4z .

For the ’polar’ mesh considered in this section, a solution proposed in [2] gives:

Ap1z = sin(∆θ) ∆R (Rp1 +
1

3
∆R) and Ap2z = sin(∆θ) ∆R (Rp2 +

2

3
∆R).

Note that this solution is not unique. Comparing with formula (5.3), we observe that angular
dependence of 〈ρhA〉p is in the same form. This implies that in absence of artificial viscosity
forces sin(∆θ) will cancel out in the momentum equation giving the one-dimensional discrete
equations. Otherwise, we have the spherically symmetric solution that depends on R and
∆θ.

5.4 Analysis of energy equation

We begin with analysis of the cylindrical symmetry in the x-y coordinate system. Let us
consider again the cells z shown in Fig. 1 and the second equation in (3.2). Since the
force vectors (5.5) and (5.11), and the velocity vectors (5.8) are obtained by rotation of the
reference vectors, we get

mz
Dεz
Dt

= −
∑
p∈z

fpz · up = −
∑
p∈z

[
(fprsref )pz · (uref )p + (fvisref )

p
z · (uref )p

]
. (5.13)

Since mz is constant in a considered layer, the discrete internal energy preserves the cylin-
drical symmetry; however, it depends on ∆θ. In the absence of artificial viscous forces, a
stronger result can be shown. According to (5.3), the zonal mass has factor sin(∆θ). Using
formulas (5.6),(5.7) and (5.8), we get∑

p∈z

(fprsref )pz · (uref )p = pz sin(∆θ) (rp2 u(rp2)− rp1 u(rp1)).

Thus, the factor sin(∆θ) is canceled in both sides of the energy equation giving the one-
dimensional equations.

We continue with analysis of the spherical symmetry in the r-z coordinate system. Ap-
plying the above argument to the second equation in (4.22), it can be rewritten as follows:

m̃z
Dεz
Dt

= −
∑
p∈z

rp fpz · up = −
∑
p∈z

rp
(
(fprsref )pz · (uref )p + (fvisref )pz · (uref )p

)
. (5.14)

Using first formulas (5.6), (5.7) and (5.8) (with Rp in place of rp), and then inserting r-
coordinates of points, we obtain∑
p∈z

rp (fprsref )pz · (uref )p =
pz
2

sin(∆θ) [u(Rp2)Rp2 (rp2 + rp4)− u(Rp1)Rp1 (rp1 + rp3)]

= pz sin(∆θ) sin(θp1 + ∆θ/2) cos(∆θ/2)
[
u(Rp2)R

2
p2
− u(Rp1)R

2
p1

]
.
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Definition of the zonal mass in the r-z coordinate system gives

m̃z = ρz Vz = ρz

(
R2
p1

∆R +Rp1(∆R)2 +
(∆R)3

3

)
sin(∆θ) cos(∆θ/2) sin(θp1 + ∆θ/2).

Comparing the last two formulas, we observe that three factors depending on θp1 and ∆θ
are canceled out giving the one-dimensional energy equations in absence of artificial viscous
forces.

Symmetry analysis for viscous forces is more involved. We break the sum over points
into two pieces. Using formulas (5.12) and the mirror symmetry of reference vectors (Fref

z )p1

and (Fref
z )p3 with respect to y-axis, we get the following references forces:

(fvisref )
p1
z =

[
a

b

]
, (fvisref )

p3
z =

[
−a
b

]
,

where a and b are some numbers depending on Rp1 and ∆θ. Using formula (5.8), we get∑
i=1,3

rpi
(fvisref )

pi
z · (uref )pi = b u(Rp1)Rp1(sin θp1 + sin(θp3))

= 2 b u(Rp1)Rp1 sin(θp1 + ∆θ/2) cos(∆θ/2).

A similar formula (with different b and Rp2 in place of Rp1) is obtained for contribution from
points p2 and p4. Comparing the result with formula for the zonal mass, we conclude that
the factor depending on θp1 is canceled out giving a spherically symmetric method.

6 Approximation properties of DIVµ GRAD operator

We consider three sequences of meshes shown in Fig.3. The first sequence (see Fig. 3a)) is
obtained by applying the smooth mapping

x : = x + 0.1 sin(2πx) sin(2πy)

to a square mesh. The second sequence (see Fig. 3b)) starts with a logically square 8 × 8
mesh and is built via its uniform refinement. The third sequence (see Fig. 3c)) consists of
median meshes that are dual to Delaunay meshes build using points of meshes from the first
sequence.

First, we analyze numerically approximation properties of discrete operatorDIVµ GRAD
with µ = 1. Let us consider a smooth velocity field u(x, y) = (cos(π(x+ y), cos(π(x− y)))T

proposed in [21] and the corresponding discrete vector U. The last three columns in Table 1
show a relative discrete L2-norm of error between the discrete counterpart of f̃vis = div (∇u)
and DIV GRADU. On smooth meshes (sequence number one), the convergence rate for
this error approaches two. For piecewise smooth meshes (sequence number two), the con-
vergence rate is one. For polygonal meshes, that were built using a smooth distribution of
points, the convergence rate approaches 0.5.

In Fig. 4, we plot viscous forces at mesh points on different types of meshes. These
meshes have about the same number of zones; however, the polygonal mesh has twice more
points which results in a denser graphics.
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a) b) c)

Figure 3: Three representative meshes corresponding to the refinement level one.

Figure 4: Form left to right: discrete viscous forces for µ = 1 on smooth, random and
polygonal meshes corresponding to the refinement level two.

Refinement level Smooth Random Polygonal
0 8.12e-2 1.20e-1 1.48e-1
1 3.65e-2 7.86e-2 1.26e-1
2 1.16e-2 3.72e-2 9.61e-2
3 3.16e-3 1.65e-2 7.06e-2
4 8.15e-4 7.42e-3 5.03e-2

rate 1.68 1.03 0.39

Table 1: Relative L2-norm of error between the discrete and analytic forces for µ = 1.

Now we consider the same velocity field but a variable tensor µ:

µ(x, y) = Rπ/6

[
e−(x+y−1)2/ν1 0

0 e−(x−y)2/ν2

]
RT
π/6, ν1 = 1, ν2 = 0.2.

The discrete viscous forces are shown in Fig. 5 for the meshes corresponding to the
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refinement level two. The relative errors are collected in Table 2. We observe the same
tendency in error reduction as for the case of constant µ.

Figure 5: Form left to right: discrete viscous forces for variable µ on smooth, random and
polygonal meshes corresponding to the refinement level two.

Refinement level Smooth Random Polygonal
0 9.21e-2 1.39e-1 1.61e-1
1 3.78e-2 7.85e-2 1.32e-1
2 1.15e-2 3.58e-2 9.34e-2
3 3.08e-3 1.56e-2 6.62e-2
4 7.87e-4 6.89e-3 4.65e-2

rate 1.75 1.10 0.46

Table 2: Relative L2-norm of error between the discrete and analytic forces for variable µ.

Let us note that for µ = 1 and linear u, the error is zero on an arbitrary mesh by
construction. This is no longer true for a variable µ; thus, a non-zero numerical viscosity
can be generated for a flow with uniform compression (linear u). This problem is usually
addressed by introducing an additional limiter as part of the coefficient µz, such that it
reflects smoothness of the velocity field and vanishes for linear velocity field. Development of
robust limiters for unstructured meshes is a challenging problem; therefore, no such limiters
are used in our simulations. Instead, we try to control smoothness of the viscosity coefficient.

7 Numerical Hydro Experiments

The simulations we done using the code described in [7, 8, 9].

7.1 Computational meshes

Seven meshes are used in numerical experiments. All meshes are located in the first quadrant
of the <2 plane. At least two boundaries are attached to the coordinate axes. Symmetry
boundary conditions are used on these boundaries.
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PLU A uniform polar mesh with 50 zones radially and 30 zones angularly. The initial radius
of the mesh is 1.

PLN A polar mesh with the same resolution as PLU but with non-uniform angular mesh
steps. The steps between neighboring cells increase monotonically by 1%. The terminal
zones in each polar layer have roughly 25% difference in the angular size.

SQR A square mesh with 50x50 zones. The initial domain is the unit square.

REC A rectangular mesh with 100x50 zones. The initial domain is the the unit square.

AMR A block structured mesh consisting of two uniform polar meshes with 25 zones radially
both and 8 and 16 zones angularly, respectively. The initial radius of the first mesh is
0.5. The second mesh has initially the interior radius 0.5 and the exterior radius 1.

GEN A shape-regular polygonal mesh with 775 zones with 4 to 6 vertices. The initial radius
of computational domain is 1. The initial mesh has shape-regular zones and roughly
30 zones in the radial direction.

SAL A logically rectangular mesh in domain [0; 0.1] × [0; 1] with 100 zones in the longest
direction and 10 zones in the other direction. The coordinates of mesh points are the
functions of they logical coordinates i, j:

xi,j = (i− 1)∆x+ (11− j) sin
(π(i− 1)

100

)
∆y, yi,j = (j − 1)∆y,

where ∆x = 1/100 and ∆y = 0.1/10.

The visualization was performed using the GMV package [1]. To plot isolines, GMV
interpolates zonal unknowns to points which results in mild smoothing of data. In scattered
plots, the zonal unknowns are assigned to zone centroids.

The developed tensor viscosity does not control hourglass distortion of zones. In some ex-
periments, it is used in conjunction with the temporary triangular subzoning (TTS) method
[6]. We found out that both methods may be required in experiments using all meshes ex-
cept PLU. We tested three selections of the characteristic length summarized in Table 3 (see
Section 3.4 for details). Better results were obtained using the choice shown in the table.
Two Jacobi iterations are used to smooth variations of Luz only for the Noh problem on mesh
GEN in the r-z coordinate system.

PLU PLN SQR REC AMR GEN SAL

Noh min(Laz , L
u
z ) min(Laz , L

u
z ) Laz Laz min(Laz , L

u
z ) Luz —

Sedov Luz Luz Laz Laz Luz Luz —

Saltzman — — — — — — Laz

Table 3: The characteristic length.
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7.2 Noh implosion problem

In the Noh problem [25], an ideal gas with γ = 5/3, density ρ = 1.0, and pressure p = 0 is
given an initial unit inwards radial velocity. A circular shock wave is generated at the origin
and moves with constant speed 1/3. At time t = 0.6, the shock wave has radial coordinate
0.2. The density behind shock is 4d, where d = 2 for the x− y coordinate system and d = 3
in the r − z coordinate system.

Figures 6–8 present results for the Noh problem with cylindrical symmetry. The CFL
number is 0.2 in all experiments. The comparison is organized in pairs. First, two polar
meshes are compared in Fig. 6. Part of mesh ahead of the shock has been removed for
visualization clarity. The left panel verifies that the symmetry is preserved on the uniform
mesh. The right panel shows that even small variation of mesh symmetry is sufficient to
observe essential solution variation in the angular direction.

Second, two Cartesian meshes are compared in Fig. 7. The left panel illustrates preserva-
tion of mirror symmetry (with respect to line x = y). The right panel shows more accurate
solution with smaller oscillations behind the shock due to better space resolution in the
x-direction. Even small aspect ratio of zones in the REC mesh triggers development of
hourglass modes. Therefore, the TTS method is used to damp these modes.

Finally, results for two advanced meshing strategies (AMR and GEN) are shown in
Fig. 8. Lack of smoothness of density profiles is related to selection of the characteristic
length Lz. For the AMR mesh, we observe shock cooling when it hits the interface between
too meshes with sharp change in the size of neighboring zones. However, the solution is
almost symmetric, density variation in the angular direction is in the fifth digit. For the
GEN mesh, we observe cooling effect near boundaries x = 0 and y = 0 due to variation of
the characteristic length. Note that a rigorous analysis of an optimal viscosity coefficient µz
is beyond the scope of this article.

Figures 9–11 present results for the Noh problem with spherical symmetry. The CFL
number is 0.2 in all experiments. We observe bigger relative error in density compared to
the x-y coordinate system. However, the relative oscillations in scattered plots (symmetry
violation) are only slightly worser, except for the simulation on the mesh GEN. We use
two Jacoby iterations to smooth the characteristic length Luz and to reduce strong cooling
effect around the z-axis. The polygonal mesh has roughly 40% lesser number of zones in
the radial direction compared to the other meshes. Thus, all problems related to viscosity
imperfections must be accentuated on this mesh.
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Figure 6: The Noh implosion problem in the x-y coordinate system on PLU (left panel) and
PLN (right panel) meshes. Each panel shows the final mesh (top), density isolines (middle)
and solution as the function of distance (bottom, stars). Part of mesh ahead of shock has
been removed for visualization clarity. No TTS method is used.
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Figure 7: The Noh implosion problem in the x-y coordinate system on SQR (left panel) and
REC (right panel) meshes. Each panel shows the final mesh (top), density isolines (middle)
and solution as the function of distance (bottom, stars). Part of mesh ahead of shock has
been removed for visualization clarity. The TTS method is used on REC mesh.
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Figure 8: The Noh implosion problem in the x-y coordinate system on AMR (left panel)
and GEN (right panel) meshes. Each panel shows the final mesh (top), density isolines
(middle) and solution as the function of distance (bottom, stars). Part of mesh ahead of
shock has been removed for visualization clarity. The TTS method is used on both meshes.
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Figure 9: The Noh implosion problem in the r-z coordinate system on PLU (left panel) and
PLN (right panel) meshes. Each panel shows the final mesh (top), density isolines (middle)
and solution as the function of distance (bottom, stars). Part of mesh ahead of shock has
been removed for visualization clarity. The TTS method is used on PLN mesh.
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Figure 10: The Noh implosion problem in the r-z coordinate system on SQR (left panel) and
REC (right panel) meshes. Each panel shows the final mesh (top), density isolines (middle)
and solution as the function of distance (bottom, stars). Part of mesh ahead of shock has
been removed for visualization clarity. The TTS method is used on the REC mesh.

28



Figure 11: The Noh implosion problem in the r-z coordinate system on AMR (left panel) and
GEN (right panel) meshes. Each panel shows the final mesh (top), density isolines (middle)
and solution as the function of distance (bottom, stars). Part of mesh ahead of shock has
been removed for visualization clarity. The TTS method is used in both experiments.
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7.3 Sedov blast wave problem

The Sedov explosion problem [20, 27, 28] generates a strong diverging shock wave. The
initial density of the gas with γ = 1.4 is one and the initial velocity is zero. At t = 0 , the
total energy E0 is all internal and concentrated at the origin. The analytical solution gives
the expanding shock of radius rd with a peak density of 6,

rd =
(
E0/(αd ρ0)

)1/(2+d)
t2/(2+d),

where d is the geometry parameter, d = 2, 3, α2 = 0.983909 and α3 = 0.850937. The total
energy E0 is defined such that rd = 0.9 at time t = 1. In numerical experiments, a few zones
near the origin are given the constant specific internal energy. We use only one zone for
meshes SQR and GEN. We use two zones for mesh REC that form the square region near
the origin.

Figures 12–14 present results for the Sedov problem with cylindrical symmetry. The CFL
number is 0.2 in all experiments. The comparison is organized in pairs. First, two polar
meshes are compared in Fig. 12. The left panel verifies that the symmetry is preserved on the
uniform mesh. The right panel shows that with help of the TTS method, we get moderate
mesh distortion from the radial structure. Without that method, the hourglass distortion is
developed behind the shock and results in mesh tangling around t = 0.7.

Second, two Cartesian meshes are compared in Fig. 13. The left panel illustrates preser-
vation of mirror symmetry with respect to line x = y. The right panel shows more accurate
solution due to better space resolution in the x-direction.

Finally, results for two advanced meshing strategies are shown in Fig. 14. Minor variations
of density profiles (compare with the Noh problem) are observed in the region of AMR mesh
where the angular resolution is doubled. The polygonal mesh has the smallest number of
zones and still gives accurate solution.

Figures 15–17 present results for the Sedov problem with spherical symmetry. The CFL
number is 0.2 in all experiments. On average, the results are only slightly worser than that
in the x-y coordinate system.
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Figure 12: The Sedov explosion problem in the x-y coordinate system on PLU (left panel)
and PLN (right panel) meshes. Each panel shows the final mesh (top), density isolines
(middle) and solution as the function of distance (bottom, stars). The TTS method is used
on mesh PLN.
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Figure 13: The Sedov explosion problem in the x-y coordinate system on SQR (left panel)
and REC (right panel) meshes. Each panel shows the final mesh (top), density isolines
(middle) and solution as the function of distance (bottom, stars). The TTS method is used
in both simulations.
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Figure 14: The Sedov explosion problem in the x-y coordinate system on AMR (left panel)
and GEN (right panel) meshes. Each panel shows the final mesh (top), density isolines
(middle) and solution as the function of distance (bottom, stars). The TTS method is used
on mesh GEN.
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Figure 15: The Sedov explosion problem in the r-z coordinate system on PLU (left panel)
and PLN (right panel) meshes. Each panel shows the final mesh (top), density isolines
(middle) and solution as the function of distance (bottom, stars). The TTS method is used
on mesh PLN.
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Figure 16: The Sedov explosion problem in the r-z coordinate system on SQR (left panel)
and REC(right panel) meshes. Each panel shows the final mesh (top), density isolines
(middle) and solution as the function of distance (bottom, stars). The TTS method is used
in both simulations.
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Figure 17: The Sedov explosion problem in the r-z coordinate system on AMR (left panel)
and iGEN (right panel) meshes. Each panel shows the final mesh (top), density isolines
(middle) and solution as the function of distance (bottom, stars). The TTS method is used
in both simulations.
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7.4 Saltzman piston problem

In the Saltzman problem, a one-dimensional shock wave propagates through a two-dimensional
mesh [26, 14]. This tests the ability of the method to model shock waves that are oblique to
the mesh. As artificial viscosity is dominant in the shock wave propagation, the Saltzman
piston problem is often used for testing new viscosity methods.

A box is initially filled with the cold ideal gas (γ = 5/3) at density 1. A piston moves
into the box with a constant speed 1.0 and generates a shock wave that reflects from the
opposite fixed end of the box at time t = 0.8 and hits the piston at time t = 0.9. The
simulation time is 0.925 when the shock reflected from the piston has not yet reached the
fixed end. The final density behind the shock is 20 and the density ahead of the shock is 10
in both coordinate systems.

Figure 18 compares results of simulations in the x-y and r-z coordinate systems. We
observe more accurate results in the r-z coordinate system. The final mesh lines are more
straight in this experiment. A common wall heating effect is observed on the top wall of the
box where the symmetry boundary condition is applied.

8 Conclusion

We constructed a new mimetic tensor artificial viscosity on general polygonal meshes. The
tensor viscosity is designed as discretization of the differential operator div (µ∇u), where µ
is the full fourth-order tensor coefficient. We described how the new artificial viscosity can
be incorporated into the staggered discretization of Lagrangian hydrodynamics in both the
Cartesian and axisymmetric geometries. We proved that the new tensor viscosity preserves
symmetry on special meshes. We demonstrated performance of the new viscosity on a set of
test problems.

In future papers, we are planning to construct a tensor coefficient µ, which will reflect
direction of the flow and develop limiters which will identify adiabatic compression and turn
viscosity off for such flows.

Extension of the method to three dimensions will be described in a separate paper.
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Figure 18: The Saltzman piston problem in the x-y (left panel) and r-z (right panel) coordi-
nate systems on the mesh SAL. The z-axis is horizontal. Each panel shows the final mesh
(top), density isolines (middle) and solution as the function of distance (bottom, stars). The
TTS method is used in both experiments.
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