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The goal of this paper is to construct discretizations for the equations of Lagrangian
gas dynamics that preserve plane, cylindrical, and spherical symmetry in the solution
of the original differential equations. The new method uses a curvilinear grid that
is reconstructed from a given logically rectangular distribution of nodes. The sides
of the cells of the reconstructed grid can be segments of straight lines or arcs of
local circles. Our procedure is exact for straight lines and circles; that is, it repro-
duces rectangular and polar grids exactly. We use the method of support operators
to construct a conservative finite-difference method that we demonstrate will pre-
serve spatial symmetries for certain choices of the initial grid. We also introduce a
“curvilinear” version of artificial edge viscosity that also preserves symmetry. We
present numerical examples to demonstrate our theoretical considerations and the
robustness of the new method.

Key Words:curvilinear grids; grid reconstruction; invariant discretizations; preser-
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1. INTRODUCTION

The purpose of this paper is to demonstrate the feasibility of preserving certain physical
symmetries in numerical simulations of fluid flow by using higher-order reconstructions
of the computational grid. In a typical two-dimensional Lagrangian calculation, the nodes
move each cycle with the local fluid velocity, and then the mesh is reconstructed by con-
necting neighboring nodes with straight lines. Our strategy here will be to use higher-order
curves to connect the nodes, so that planar, cylindrical, and spherical symmetries will be
exactly maintained, while the simulation of other symmetries will be enhanced. While
demonstrating feasibility, we recognize that our particular algorithm is derived heuristi-
cally, and that further research may lead to significant improvements. Nevertheless, we
believe that the utility of more general grids is in itself worth illustrating.
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The importance of preserving physical symmetries in Lagrangian simulation is well
recognized. For example, the preservation of spherical symmetry in numerical simulations
of implosion is critically important in the inertial confinement fusion (ICF) program [12,
39, 37]. There small departures from spherical symmetry due to discrete errors may be
amplified by Rayleigh–Taylor instability [1, 13, 14], leading to unacceptably large errors
in problems with strong compressions. Also, uncertainty as to whether a nonsymmetric
result is due to numerical errors or to the physical design inhibits our understanding of the
dynamics of the implosion and so severely limits our predictive capabilities.

Previous work has concentrated on the form of the difference approximations rather
than on the grid. In fact, both the choice of the discrete operators and the method of grid
reconstruction can lead to the loss of symmetry in calculations. Once a grid has been chosen,
it is necessary to construct approximations to spatial operators like divergence, gradient,
and curl. We shall show that the method of support operators provides a general framework
for constructing these operators, once the grid is determined. Furthermore the method of
support operators leads to conservative finite-difference methods.

Reviewing previous work, we can distinguish between those methods that preserve sym-
metry exactly and those that improve the preservation of symmetry. The straightforward
approach to preserving symmetry exactly on a polar grid is to use spherical coordinates
as the primary coordinates and the corresponding components of velocity field in the dis-
crete model [34, 37]. This approach is expensive because it is requires the computation of
trigonometric functions. Moreover, because these methods use the equations of gas dynam-
ics in spherical coordinates, special care has to be taken in discretizing terms containing
1/R, which appear due to the dependence of the basis vectors on position. Also the use of
spherical coordinates is not accurate for systems evolving far from sphericity.

In practice, the most widely used methods that preserve symmetry exactly on polar grids
with equiangular zoning are the “area-weighted” methods [2, 38, 35]. In this approach,
one uses a Cartesian form of the momentum equation in a cylindrical coordinate system.
The term “area-weighted” originates when this approach is used in the framework of finite-
element methods, where integration is not performed with respect to the true volume in
cylindrical coordinates, but rather with respect to area. A drawback of this approach is that
it works only for the equiangular grid. In practice, one finds large errors when the angular
zoning is not uniform, especially near the symmetry axes. For a general discussion, see [3].
In this reference, a generalization termed the modified gradient method [3] is described in
which the forces are modified locally according to the expected symmetry of the flow.

An alternate strategy does not seek to preserve symmetry exactly, but rather to improve
the representation of symmetry over more standard methods. One such strategy is termed
the “mass matrix” approach [25–27]. A standard technique in finite volume algorithms is to
calculate the acceleration as the surface integral of the pressure gradient over a “momentum
control” volume. The acceleration so calculated should be applied to the center of mass
of this volume, which usually does not coincide with the node point. In the “mass matrix”
approach, one distinguishes between the center of mass and the node point and attempts
to compensate for the difference. This can be accomplished explicitly, by correcting the
acceleration of the node using the accelerations at some neighboring nodes, or implicitly,
by introducing the mass matrix and solving a system of linear equations.

Another approach to improve symmetry is based on using a nonconservative form of
the governing equations [33]. There it is shown that a nonconservative form can yield a
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considerable improvement in symmetry when compared with methods based on a conser-
vative form.

Still another approach to constructing Eulerian methods [24, 23] with improved symmetry
on uniform grids is based on analyzing the group symmetry properties of the modified
equations [40]. There are also theoretical papers such as [10], where group properties are
investigated in more detail.

All the methods described above use traditional grids, in which the nodes are connected
by segments of straight lines. One obvious disadvantage of using such grids is that for
domains with curvilinear boundaries, additional errors are introduced that are related to
the approximation of the boundary. For example, in problems with spherical symmetry the
domain of the original differential equations is a sphere, but the computational domain is
a polygon. Also, for such an approximation of the boundary it is not clear how to specify
the boundary conditions; from the statement of the original problem we know bound-
ary conditions only on the curvilinear boundary but not on the boundary of the polygon.
In the context of the equations of Lagrangian gas dynamics, the same uncertainty applies
to interfaces between different materials. For methods that use a staggered data structure,
there is also a problem in specifying the initial conditions because thermodynamic quan-
tities, like pressure, are assigned to the entire “cell” and one has to specify these values.
The simplest choice, which is used in practice, is to compute the value at the “geometric
center” of the cell. However, for general polar grids, the radii of these cell centers are not
equal.

There is at least one (to our knowledge) approach to solve the equations of gas dynamics in
mixed Eulerian–Lagrangian form, where a method of the Godunov type is used on moving
curvilinear grids [15, 32]. This algorithm preserves some spatial symmetries exactly, but
does not appear applicable to finite difference codes.

It is well known from the finite-element method (FEM) literature [8, 16, 41, 42] that
introducing curvilinear grids for domains with curvilinear boundaries increases the accuracy
of simulation. The improvement in accuracy results from the simple fact that one can
approximate a given boundary more accurately using high-order splines than with segments
of straight lines. In this paper we employ curvilinear grids throughout the domain and
construct our difference approximations consistently to achieve a different goal, namely the
preservation of the physical symmetry of the solution.

The paper is organized as follows. In Section 2 we describe an algorithm for reconstructing
the curvilinear grid and then give examples of reconstructed grids. In Section 3 we define
a notation for various elements of the curvilinear grid, and also describe the spaces of
grid functions. In Section 4 we derive discrete analogs of the divergence and gradient
operators on the curvilinear grid and prove their symmetry properties. In Section 5 we
use these operators to construct a finite difference algorithm for Lagrangian gas dynamics.
In Section 6 we define the notion of spatial symmetries for the discrete model and prove
that our algorithms preserve these symmetries. In Section 7 we further prove that the
corresponding algorithm, implemented on the grid with straight lines, does not preserve
spherical symmetry. In Section 8 we present numerical examples, which verify our analysis
and illustrate the robustness of the algorithm.

To make this paper self-contained, in Appendices A and B we provide the necessary
formulas for lengths, areas, and volumes, and describe an edge artificial viscosity for the
curvilinear grid that preserves symmetry.
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2. GRID RECONSTRUCTION

We consider a logically rectangular distribution of points in two spatial dimensions,
representing the nodes of a grid, such that the points can be labeled by two indices,i and j
(as in the case of a rectangular grid). For each nodePi, j the coordinates arexi, j , yi, j . When
the grid points with fixedi ( j ) are connected by segments of straight lines, the grid cells
are general quadrilaterals. The broken line connecting the points can be thought of as the
simplest approximation to some smooth curve that goes through these points.

It is clear that there is no unique way to draw a curve going through these points. In this
section we describe an algorithm for the reconstruction of the curve that is exact when the
points lie on a straight line or on the circumference of a circle. By exact, we mean that
if the points i = const( j = const) lie on a straight line or circle, then our method will
reconstruct this line or circle. Our algorithm is local, by which we mean that the reconstructed
curve between two points is based only on the coordinates of those two points and a few
neighboring points.

A further restriction of our algorithm is that we reconstruct the curves independently for
each family—that is, when we reconstruct the curve corresponding to fixedi ( j ) we use
only information from neighboring points with the same fixedi ( j ). More particularly, to
reconstruct the curve between two points, we use information only from these points, and
the two nearest neighbors in the family. This algorithm is similar to one described in [15].

Our construction is based on a well-known property of central and inscribed angles in a
circle. Let us consider four pointsPi−1, Pi , Pi+1, Pi+2 that lie on the same circle; the index
increases as we move clockwise along the circle, see Fig. 1a. We denote the center of the
circle byO. We also denote the angle6 Pi Pi−1Pi+1 by α, the angle6 Pi+1Pi+2Pi by β, and
the central angle6 Pi O Pi+1 by γ . It is known from elementary geometry that all inscribed
angles based on the same arc are equal to each other and equal to one-half of the central
angle based on the same arc; that is,α=β = γ /2, and thereforeγ =α+β.

Now let us consider an arbitrary set of four points,Pi−1, Pi , Pi+1, Pi+2. We will use the
coordinates of these points to reconstruct the curve between the pointsPi , Pi+1 as a piece of

FIG. 1. (a) Illustration of the relation of the central and inscribed angles of a circle, (b) reconstruction of the
local circle.
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FIG. 2. Different cases of the reconstruction of the local circle.

a circle. This circle has to pass through these two points, which gives us two conditions. To
define a unique circle we specify the central angleγ . In the case of an arbitrarily positioned
set of four points, we compute the anglesα= 6 Pi Pi−1Pi+1 andβ = 6 Pi Pi+2Pi+1, and then
define

γ
def= α + β.

For the angleα, we consider the direction from segmentPi−1Pi+1 to segmentPi−1Pi as
the positive direction. Therefore the angleα will vary from −π to π . A similar convention
is adopted for the angleβ, where the positive direction is fromPi+2Pi to Pi+2Pi+1. The
situation where both angles,α andβ are positive is shown in Fig. 1b. Finally, we define the
curve between pointsPi , Pi+1 as the arc of the circle that goes through these points and has
the central angleγ . This procedure is illustrated in Fig. 1b. We note that the anglesα and
β can become negative when the orientation of the points is changed. This means that the
angleγ also can be negative or zero. Thatγ is negative indicates a different orientation of
arc Pi Pi+1 with respect to the local polar coordinate system (see Fig. 2).

In Fig. 2 we show several different possible situations: (a) the situation where allα, β, and
γ >0; (b) the situation where allα, β, andγ <0; (c) the situation where allα >0, β <0,
but |α|> |β|, that is,γ >0.

Whenγ = 0 we reconstruct the curve between pointsPi Pi+1 as a segment of a straight
line. As a matter of implementation, we connect two points by a straight line whenever
|γ |< 10−12. It is clear that this algorithm will be exact whenever the four points lie on a
straight line, or on the circumference of a circle.

We illustrate our algorithm by presenting examples of grid reconstruction for three logi-
cally rectangular distributions of nodes. First, in Fig. 3a we present the usual grid, where the
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FIG. 3. Smooth logically rectangular distribution of nodes,M = N= 5. (a) Comparison of the usual grid
(nodes connected by segments of straight lines) and the piecewise smooth reconstruction (nodes connected by
arcs of the circles). (b) Polar distribution of nodes. Grid nonuniform in angle and in radius. (c) Random logically
rectangular distribution of nodes.

nodes are connected by segments of straight lines, superimposed on our new reconstruction
using piecewise circles, for points in(x, y)∈ [0 : 1]× [0 : 1], obtained by mapping

x(ξ, η) = ξ + 0.1 ∗ sin(2πξ) ∗ sin(2πη), y(ξ, η) = η + 0.1 ∗ sin(2πξ) ∗ sin(2πη),

from a uniform grid(M = N= 5) in the unit square in(ξ, η)∈ [0 : 1]× [0 : 1]. Second, in
Fig. 3b we present the grids for a polar distribution of nodes—i.e., the coordinates of the
nodes are

xi, j = Rj sinθi , yi, j = Rj cosθi ,

where the angleθ equals 0 at they axis and increases as the angle rotates toward thex axis.
In this case the grid consists of perfect circles and straight lines, whether or not the angular
zones have equal width.

Finally we consider a nonsmooth logically rectangular grid distribution. This distribution
is obtained from a uniform grid by random displacement of each point from its original
position within the limits of a small square whose center is the original position of the point.
The resulting grids are shown in Fig. 3c.

To construct our discretizations, we will need to compute the lengths, areas, and volumes
for the new curvilinear grid. We distinguish between two different cases. In the first case,
we consider 2-D figures in thex− y plane. For these figures we need formulas for the
lengths of the curved sides of a cell and for the areas of the enclosed quadrilateral. These
quantities will be used in the case of 2-D finite-difference schemes in Cartesian geometry.
In the second case we consider 3-D figures, which are obtained by the revolution of our
2-D figures around an axis of symmetry. Here we think of thex− y axes as ther − z axes
of a cylindrical coordinate system. Such figures are used in the calculation of problems
with cylindrical symmetry. For these figures we need the formulas for the areas of surfaces
obtained by revolution of the curved sides (i.e., the faces of the 3-D cell) and for the volume
of the 3-D figure of revolution. In this case all quantities are normalized to 2π . The lengths
of the edges, the areas of the faces, and the volumes of the cells all can be computed exactly.
In Appendix A we provide the necessary formulas.

For simplicity, throughout this paper we will refer to the geometric elements in thex− y
case as if they belong tor − z case.
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3. ELEMENTS OF THE CURVILINEAR GRID

In this section we describe our notation for the elements of the curvilinear grid that we
have constructed in the previous section. We will also introduce some additional geometrical
objects.

The nodes of the grid are denoted by the pair of indices(i, j ). The midpoints of the
sides—i.e., the points that divide the edges into two pieces with equal lengths—are denoted
by one integer index and one half-integer index:(i + 1/2, j ) or (i, j + 1/2). For the sides
themselves, we use the same indices as the midpoints. The midpoint divides the side into
two subsides. These subsides have superscripts that coincide with the index of the corre-
sponding side and subscripts that indicate which vertex is an endpoint. For example, the
area corresponding to the subside of the side connecting nodes(i, j ) and (i, j + 1) and
having node(i, j ) as an endpoint is denoted bySξ i, j + 1/2

i, j . We could writeSi, j + 1/2
i, j instead

of Sξ i, j + 1/2
i, j , but we prefer the latter notation because it is then clearer to which side we

refer. Notations for the other areas are shown in Fig. 4.
Next, we introduce the “median” grid. The edges of the median grid pass through the

midpoints of the edges of the primary grid, and are constructed in exactly the same manner—
i.e., they can be arcs of circles or segments of straight lines, see Fig. 4. The intersection of
the edges of the median grid within a cell defines a point in the cell, which we call the “cell
center,” denoted by the indices(i + 1/2, j + 1/2). Also these two edges subdivide the cell
into four subcells. To designate these subcells, we again use both superscripts and subscripts.
The superscripts correspond to the index of the cell, while the subscripts correspond to the
index of the point that is a vertex of the original grid, which is also a vertex of the subcell.
The volume enclosed by the four subcells surrounding a node is sometimes termed the
“momentum control volume.”

For each side we can define two unit normal vectors; these are the normals to the circle at
the nodes (i.e., the endpoints of the arc). Note that when the side is a segment of a straight
line, the normal vectors are parallel. The designation for these normals is the same as for
subsides, Fig. 4. Note that there will be four unit normal vectors at each node, Fig. 5.

FIG. 4. Notations for the areas of faces and volumes.
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FIG. 5. Notation related to the momentum control volume.

4. DISCRETE OPERATORS ON CURVILINEAR GRIDS

In this section we construct the discrete analogs of the differential operatorsdiv andgrad
on the curvilinear grid. These will be used to construct the finite difference algorithm for
the equations of Lagrangian gas dynamics.

We assume a data structure that is the standard for staggered grid. Here thermodynamic
variables such as pressure,p, which are scalar grid functions, are defined at the cell centers.
We denote the space of such discrete scalar functions asHC. Both components of vector
fields, such as velocityEU , are defined at the nodes of the original grid. We denote the space
of such discrete vector functions asHN .

We define the discrete analog of the operatordiv in a coordinate invariant form

div EW = lim
V→0

∮
∂V (
EW, En) dS

V
. (4.1)

We choose the computational cell of the original grid as the volume of integration,V . Then
the domain and range of our discrete divergence areDIV : HN → HC.

We represent the boundary integral in (4.1) as the sum of boundary integrals over the
individual faces and then subdivide each arc into two subarcs. The boundary integral over
each subarc is approximated by the value of the dot product( EW, En), evaluated at the cor-
responding vertex of the original grid, and then multiplied by the area of the subarc. The
resulting formula is

(DIV EW)i+1/2, j+1/2

= {[(( EWi+1, j , Enξ i+1, j+1/2
i+1, j

)
Sξ i+1, j+1/2

i+1, j +( EWi+1, j+1, Enξ i+1, j+1/2
i+1, j+1

)
Sξ i+1, j+1/2

i+1, j+1

)
− (( EWi, j , Enξ i, j+1/2

i, j

)
Sξ i, j+1/2

i, j +( EWi, j+1, Enξ i, j+1/2
i, j+1

)
Sξ i, j+1/2

i, j+1

)]
+ [(( EWi, j+1, Enηi+1/2, j+1

i, j+1

)
Sηi+1/2, j+1

i, j+1 +( EWi+1, j+1, Enηi+1/2, j+1
i+1, j+1

)
Sηi+1/2, j+1

i+1, j+1

)
− (( EWi, j , Enηi+1/2, j

i, j

)
Sηi+1/2, j

i, j +( EWi+1, j , Eηηi+1/2, j
i+1, j

)
Sηi+1/2, j

i+1, j

)]}/
Vi+1/2, j+1/2. (4.2)
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To construct the discrete analog ofgrad we use the support operator method (SOM),
[30, 29, 31]. In this methodology the discrete gradient,GRAD, is derived from the given
discrete divergence,DIV , by enforcing a discrete analog of the integral identity∫

V
ϕ div EW dV+

∫
V
( EW, gradϕ) dV =

∮
∂V
ϕ( EW, En) dS, (4.3)

which relatesdiv andgrad, whereϕ and EW are an arbitrary scalar and a vector function,
respectively.

We can without loss of generality neglect the boundary term in (4.3) and write a discrete
analog of this integral identity as

∑
cells

ϕi+1/2, j+1/2(DIV EW)i+1/2, j+1/2Vi+1/2, j+1/2+
∑
nodes

( EW,GRAD ϕ)i, j Vi, j = 0, (4.4)

whereVi, j is a volume associated with the node.

Vi, j = Vi+1/2, j+1/2
i, j + Vi−1/2, j+1/2

i, j + Vi−1/2, j−1/2
i, j + Vi+1/2, j−1/2

i, j . (4.5)

To derive the operatorGRAD we consider (4.4) as an identity with respect toEW. Then
by regrouping terms, we find that

(GRAD ϕ)i, j =
{
(ϕi+1/2, j+1/2− ϕi+1/2, j−1/2)Sη

i+1/2, j
i, j Enηi+1/2, j

i, j

+ (ϕi−1/2, j+1/2− ϕi−1/2, j−1/2)Sη
i−1/2, j
i, j Enηi−1/2, j

i, j

+ (ϕi+1/2, j+1/2− ϕi−1/2, j+1/2)Sξ
i, j+1/2
i, j

Enξ i, j−1/2
i, j

+ (ϕi+1/2, j−1/2− ϕi−1/2, j−1/2)Sξ
i, j−1/2
i, j

Enξ i, j−1/2
i, j

}/
Vi, j . (4.6)

This expression has an interpretation in terms of the usual coordinate invariant definition
of grad

gradϕ = lim
V→0

∮
∂V ϕEn dS

V
. (4.7)

Consider the “momentum control volume” associated with a node that is defined by pieces of
the midcircles as shown in Fig. 5. Let us now consider the piece of the boundary integral that
is associated with cell(i+1/2, j+1/2), i.e., with the curves(i+1/2, j )− (i+1/2, j+1/2)
and(i + 1/2, j + 1/2) − (i, j + 1/2). If we assumeϕ is constant within a cell, equal to
ϕi+1/2, j+1/2 (as would be true for discrete pressure), then∫

(i+1/2, j )−(i+1/2, j+1/2)
ϕEn dS+

∫
(i+1/2, j+1/2)−(i, j+1/2)

ϕEn dS

= ϕi+1/2, j+1/2

(∫
(i+1/2, j )−(i+1/2, j+1/2)

En dS+
∫
(i+1/2, j+1/2)−(i, j+1/2)

En dS

)
. (4.8)

Now the integral
∮ En dSover any closed contour is zero; therefore in Cartesian coordinates
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we can write (∫
(i+1/2, j )−(i+1/2, j+1/2)

En dS+
∫
(i+1/2, j+1/2)−(i, j+1/2)

En dS

)
= −

(∫
(i, j+1/2)−(i, j )

En dS+
∫
(i, j )−(i+1/2, j )

En dS

)
. (4.9)

If we approximate each of the integrals in the right-hand side of this equation by taking the
normal in the corresponding vertex of the original grid multiplied by the area of the subside,
we obtain the expression (4.6) forGRAD.

The last step breaks the conservation of momentum in the discrete model. For a general
discussion relating to preservation of symmetry leading to the loss of conservation of
momentum see [3].

5. THE FINITE DIFFERENCE SCHEME

The equations of Lagrangian gas dynamics can be written

dρ

dt
= −ρ div EU , (5.1)

ρ
d EU
dt
= −grad p (5.2)

p
dε

dt
= −p div EU , (5.3)

whereρ is the density,p is the pressure,ε is the specific internal energy, andEU is the
velocity.

In this section we describe the discretization of these equations on the new curvilinear
grid, using the discrete operators derived in the previous section. We consider the case of a
staggered mesh, where the velocity vector is defined on the nodes of the original grid, and
all other variables are defined at the “centers” of the cells.

In Lagrangian gas dynamics the nodes move with the local fluid velocity, and the mass of
a cell is assumed to be constant in time. We will also assume that the masses of the subcells
are constant in time [4]; this implies that the masses of the nodes (i.e., the masses of the
figures shown in Fig. (5)) are also constant in time. The mass of a subcell is

mi+1/2, j+1/2
i, j = ρi+1/2, j+1/2Vi+1/2, j+1/2

i, j . (5.4)

The mass of a cell and the mass of a node are given by

mi+1/2, j+1/2 = ρi+1/2, j+1/2Vi+1/2, j+1/2, (5.5)

mi, j = mi+1/2, j+1/2
i, j +mi−1/2, j+1/2

i, j +mi−1/2, j−1/2
i, j +mi+1/2, j−1/2

i, j . (5.6)

The role of the continuity equation in Lagrangian gas dynamics is played by the diagnostic
equation

ρi+1/2, j+1/2 = mi+1/2, j+1/2

Vi+1/2, j+1/2
, (5.7)
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which relates the density in the cell to the volume. The volume in turn is a known function
of the coordinates of the nodes.

The discretizations of the momentum and energy equations are

mi, j

EUn+1
i, j − EUn

i, j

1t
= −Vi, j (GRAD p)i, j (5.8)

mi+1/2, j+1/2
εn+1

i+1/2, j+1/2− εn
i+1/2, j+1/2

1t

= −pi+1/2, j+1/2Vi+1/2, j+1/2

(
DIV

EUn+1+ EUn

2

)
i+1/2, j+1/2

, (5.9)

where the discrete operatorsGRAD andDIV have been defined in the previous section.
It is convenient to write these equations in a form similar to the differential case,

ρi, j

EUn+1
i, j − EUn

i, j

1t
= −(GRAD p)i, j (5.10)

ρi+1/2, j+1/2
εn+1

i+1/2, j+1/2− εn
i+1/2, j+1/2

1t
= −pi+1/2, j+1/2

(
DIV

EUn+1+ EUn

2

)
i+1/2, j+1/2

,

(5.11)

where the nodal densityρi, j is

ρi, j = mi, j

Vi, j
= {ρi+1/2, j+1/2Vi+1/2, j+1/2

i, j + ρi−1/2, j+1/2Vi−1/2, j+1/2
i, j

+ ρi−1/2, j−1/2Vi−1/2, j−1/2
i, j + ρi+1/2, j−1/2Vi+1/2, j−1/2

i, j

}/{
Vi+1/2, j+1/2

i, j

+Vi−1/2, j+1/2
i, j + Vi−1/2, j−1/2

i, j + Vi+1/2, j−1/2
i, j

}
.

To simulate high-speed flows with shocks, we need to introduce artificial viscosity. In
Appendix B, we describe the modifications to an edge viscosity introduced in [5] on the
new curvilinear grid.

6. PROOF OF SYMMETRY PRESERVATION

6.1. Statement of Symmetry

We will consider the finite difference algorithm in cylindrical coordinates(r, z, φ), when
there is no dependence onφ. Plane, cylindrical, and spherical symmetries can all be con-
sidered in this framework. We will prove the symmetry for the finite difference algorithm
neglecting the viscous terms. The viscous terms can be analyzed in a similar way.

A statement of the initial and boundary conditions for problems with plane symmetry is as
follows. We consider a rectangular domain inr, z coordinates,(0≤ r ≤ rmax)× (zmin≤ z≤
zmax); when rotated about the axis of symmetry, the domain becomes a cylinder in 3-D. The
component of velocityu=Ur is always equal to zero atr = 0 and is set equal to zero at
r = rmax. At z= zmin andz= zmaxwe specify either the pressure or the normal component of
velocity,v=Uz, which do not depend onr but may depend on time. The initial distributions
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of the physical parameters are chosen to depend only onz andUr = 0. For such initial and
boundary conditions, the solution of the equations of gas dynamics will depend only onz
at any later time.

A statement of the initial and boundary conditions for problems with cylindrical symmetry
is as follows. We consider the same computational domain as for plane symmetry. The
component of velocityu=Ur must still equal zero atr = 0; however, atr = rmax, we specify
eitheru=Ur or the pressure, which may depend on time but does not depend onz. At
z= zmin andz= zmax, the normal component of velocity,v=Uz, is set to zero. The initial
distributions of the physical parameters are chosen to depend only onr , andUz= 0. For
such initial and boundary conditions, the solution of the equations of gas dynamics will
depend only onr at any later time.

Finally, a statement of the initial and boundary conditions for problems with spherical
symmetry is as follows. We consider a domain that is one quarter of a circle in ther − z
plane. Then the boundaries of this domain are the straight linesz= 0 andr = 0 and the circle
r 2+ z2= R2

max; after revolution about the axis of symmetry, the domain is a hemisphere in
3-D. At r = 0 the normal component of velocity must be zero,u=Ur = 0, and similarly
at z= 0, we setv=Uz= 0. On the circular boundary we can specify either the pressure,
which must depend only on the spherical radius,R=√r 2+ z2, or we can specify the
normal (spherical) component of the velocity. In either case, the specified function may
vary in time; however, at any particular time, the specified function must be constant on the
circular boundary. The initial distribution of the physical parameters are chosen to depend
only on R. For such initial and boundary conditions, the solution of the equations of gas
dynamics will depend only onR at any later time.

In the discrete case, any spatial symmetry can be preserved exactly only on special types
of grids. For problems with plane or cylindrical symmetry, the special grid is rectangular,
where the nodesPi, j have the coordinates(ri , zj ), Fig. 6a. For problems with spherical
symmetry the special grid is polar, where the nodesPi, j have the coordinates

ri, j = Rj sinθi , zi, j = Rj cosθi ,

and the angleθ equals 0 at thez axis and increases from thez axis to ther axis where it
equalsπ/2. The polar grid is presented in Fig. 6b.

FIG. 6. (a) Grid for plane and cylindrical symmetry, (b) grid for spherical symmetry.
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The statement of the initial and boundary conditions for a discrete problem with plane
symmetry is as follows. We consider the grid that is shown in Fig. 6a. The range of indices is
1≤ i ≤M, 1≤ j ≤ N. The boundary conditions foru areun

1, j = 0, un
M, j = 0. On the top and

bottom boundaries, we can specify the pressure,pn
i+1/2,1= Pbottom(tn), pn

i+1/2,N = Ptop(tn),
or we can specify the normal component of the velocity,vn

i,1= vbottom(tn), vn
i,N = vtop(tn). We

further specify that the initial distribution of physical parameters does not depend oni and
that the radial component of velocity,u, is zero everywhere. That is,ρ0

i+1/2, j+1/2= ρ0
j+1/2,

p0
i+1/2, j+1/2= p0

j+1/2, ε
0
i+1/2, j+1/2= ε0

j+1/2, u
0
i, j = u0

j , v
0
i, j = 0. If for these initial and bound-

ary conditions all the physical fields depend only onj at all later times, then we say that
the finite difference scheme preserves plane symmetry.

The statement of the initial and boundary conditions for a discrete problem with cylin-
drical symmetry is as follows. We again consider the grid that is shown in Fig. 6a. The
boundary conditions for the axial component of velocityv arevn

i,1= 0, vn
i,N = 0. On the left

boundary we setun
1, j = 0. On the right boundary, we can either specify the pressure,

pn
M, j+1/2= Pright(tn), or we can specifyu by un

M, j = vright(tn). We further specify that the
initial distribution of physical parameters does not depend onj and that the velocity com-
ponentv is zero. That is,ρ0

i+1/2, j+1/2= ρ0
i+1/2, p0

i+1/2, j+1/2= p0
i+1/2, ε

0
i+1/2, j+1/2= ε0

i+1/2,

v0
i, j = v0 j, u0

i, j = 0. If for these initial and boundary conditions all the physical fields depend
only oni at all later times, then we say that the finite difference scheme preserves cylindrical
symmetry.

Lastly, the statement of the initial and boundary conditions for a discrete problem with
spherical symmetry is as follows. We consider the grid that is shown in Fig. 6b. The
range of the indices is 1≤ i ≤M, 1≤ j ≤ N. The boundary condition foru on ther axis
is un

1, j = 0. The boundary condition forv on thez axis isvn
M, j = 0. At the origin of co-

ordinates, we setun
1,1= vn

1,1= 0. On the circular boundary we can either specify the pres-
sure,pn

i+1/2,N = Ptop(tn), or we can specify the normal component of velocity,un
i,N sinθi +

vn
i,N cosθi =UR(tn), whereUR(tn) is a given function. We also specify that the initial distri-

butions of density, pressure, and internal energy do not depend oni . That is,ρ0
i+1/2, j+1/2=

ρ0
j+1/2, p0

i+1/2, j+1/2= p0
j+1/2, ε

0
i+1/2, j+1/2= ε0

j+1/2. The initial distribution of velocities is
spherical; that is,u0

i, j = (UR)
0
j sinθi andv0

i, j = (UR)
0
j cosθi . If for these initial and bound-

ary conditions, the density, internal energy, and pressure depend only onj and the velocity
is spherical—that is,un

i, j = (UR)
n
j sinθi andvn

i, j = (UR)
n
j cosθi at all later times—then we

say that the finite difference scheme preserves spherical symmetry.

6.2. Areas and Volumes on Rectangular and Polar Grids

The discrete operators and viscous forces are formulated in terms of the areas of the faces
and the volumes of the cells. To prove that our finite difference scheme preserves plane,
cylindrical, and spherical symmetries, we need to evaluate these formulas for the areas and
volumes of the rectangular and the polar grids described in the previous section. In Fig. 7
we show a cell of the rectangular grid and a cell of the polar grid.

For the rectangular grid, theSξ faces correspond to a fixed value ofr (i.e., a constant
index i ) and theSη faces correspond to a fixed value ofz (i.e., a constant indexj ). The
expressions for the areas of the left and bottom faces in Fig. 7a are

Sξrect = r1(z2− z1), (6.1)

Sηrect = r2+ r1

2
(r2− r1). (6.2)
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FIG. 7. Cells for the rectangular and polar grids.

The volume of the rectangular cell is

Vrect =
(

r 2
2

2
− r 2

1

2

)
(z2− z1) = r2+ r1

2
(r2− r1)(z2− z1). (6.3)

For the polar grid, the facesSξ correspond to a fixed value of the angleθ (i.e., a constant
indexi ), and the facesSη correspond to a fixed value of the spherical radius (i.e., a constant
index j ). The expressions for the areas of the faces and the volume of the cell are

Sξpolar = R2+ R1

2
sinθ1(R2− R1),

Sηpolar = R2
1(cosθ1− cosθ2),

Vpolar =
(

R3
2

3
− R3

1

3

)
(cosθ1− cosθ2)

= R2
2 + R2R1+ R2

1

3
(R2− R1)(cosθ1− cosθ2).

(6.4)



SYMMETRY-PRESERVING DISCRETIZATIONS 403

6.3. The Case of Plane Symmetry

6.3.1. Symmetry Preservation in the Momentum Equation

We begin by considering the momentum equation, (5.10), in the case of plane symmetry.
We first prove that the nodal density depends only onj . We note that the density of the cells
depends only onj and therefore

ρi, j =
{
ρ j+1/2

(
Vi+1/2, j+1/2

i, j +Vi−1/2, j+1/2
i, j

)+ ρ j−1/2
(
Vi−1/2, j−1/2

i, j +Vi+1/2, j−1/2
i, j

)}/
Vi, j .

If we introduce the notation

r i+1/2 = ri+1+ ri

2
, zj+1/2 = zj+1+ zj

2
, (6.5)

then the volumes contained in the expression forρi, j are

Vi+1/2, j+1/2
i, j + Vi−1/2, j+1/2

i, j = ri+1/2+ ri−1/2

2
(ri+1/2− ri−1/2)(zj+1/2− zj ), (6.6)

Vi−1/2, j−1/2
i, j + Vi+1/2, j−1/2

i, j = ri+1/2+ ri−1/2

2
(ri+1/2− ri−1/2)(zj − zj−1/2), (6.7)

Vi, j = ri+1/2+ ri−1/2

2
(ri+1/2− ri−1/2)(zj+1/2− zj−1/2). (6.8)

Therefore

ρi, j = ρ j = [ρ j+1/2(zj+1/2− zj )+ ρ j−1/2(zj − zj−1/2)]/(zj+1/2− zj−1/2), (6.9)

and so the nodal densities also depend only onj .
We next consider the termGRAD p in the right-hand side of the momentum equation

for the “plane symmetric” pressure field,pi+1/2, j+1/2= pj+1/2. In this case,

(GRAD p)i, j = (pj+1/2− pj−1/2)

(
Sηi+1/2, j

i, j Enηi+1/2, j
i, j + Sηi−1/2, j

i, j Enηi−1/2, j
i, j

)
Vi, j

.

Recognizing that

Enηi+1/2, j
i, j = Enηi−1/2, j

i, j = (0, 1), (6.10)

we derive

(GRADr p)i, j = 0,

(GRADz p)i, j = (pj+1/2− pj−1/2)
Sηi+1/2, j

i, j + Sηi−1/2, j
i, j

Vi, j
.

(6.11)

Using expression (6.8) forVi, j and the following formulas for the areas

Sηi+1/2, j
i, j = (ri+1/2+ ri )(ri+1/2− ri ) (6.12)

Sηi−1/2, j
i, j = (ri + ri−1/2)(ri − ri−1/2), (6.13)

Sηi+1/2, j
i, j + Sηi−1/2, j

i, j = ri+1/2+ ri−1/2

2
(ri+1/2− ri−1/2), (6.14)
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we finally derive that

(GRADz p)i, j = (GRADz p) j = pj+1/2− pj−1/2

zj+1/2− zj−1/2
. (6.15)

That is, the pressure gradient term in the momentum equation is plane symmetric. Thus,
when the initial velocity is plane symmetric, the momentum equation produces a plane
symmetric velocity field on the next time step.

6.3.2. The Energy Equation

We now consider howDIV acts on a plane symmetric velocity field,EUi, j = (0, v j ).
Taking into account that one component of velocity is zero, that the normals are parallel to
the coordinate axis, and thatSηi+1/2, j

i, j = Sηi+1/2
i , we can show that

(DIV EU )i+1/2, j+1/2 = (v j+1− v j )
Sηi+1/2

i + Sηi+1/2
i+1

Vi+1/2, j+1/2

= (v j+1− v j )
0.5(ri+1+ ri )(ri+1− ri )

0.5(ri+1+ ri )(ri+1− ri )(zj+1− zj )
= v j+1− v j

zj+1− zj
.

(6.16)

That is,(DIV EU )i+1/2, j+1/2= (DIV EU ) j+1/2 and so the energy equation also will maintain
the plane symmetry of the internal energy.

6.4. The Case of Cylindrical Symmetry

6.4.1. The Momentum Equation

In the case of cylindrical symmetry,pi+1/2, j+1/2= pi+1/2, and so considerations similar
to the case of plane symmetry yield the formulas

(GRADz p)i, j = 0, (6.17)

(GRADr p)i, j = (pi+1/2− pi−1/2)
Sξ i, j+1/2

i, j + Sξ i, j−1/2
i, j

Vi, j
. (6.18)

Taking into account that

Sξ i, j+1/2
i, j = ri

zj+1− zj

2
, Sξ i, j−1/2

i, j = ri
zj − zj−1

2
, (6.19)

we derive

(GRADz p)i, j = 0,

(GRADr p)i, j = (GRADr p)i = ri

0.5(ri+1/2+ ri−1/2)

pi+1/2− pi−1/2

ri+1/2− ri−1/2
.

(6.20)

We note that this is an approximation for∂p/∂r , because the ratiori /(0.5(ri+1/2+ ri−1/2))

tends to unity as we refine the grid.
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6.4.2. The Energy Equation

In the case of cylindrical symmetry,EUi, j = (ui , 0). Simple algebraic manipulation gives

(DIV EU )i+1/2, j+1/2 = (DIV EU )i+1/2 = 1

ri+1/2

ri+1ui+1− ri ui

r i+1− ri
, (6.21)

which approximates the expression1
r
∂(ru)
∂r for the divergence of a cylindrically symmetric

vector(u, 0) in the continuous case.

6.5. The Case of Spherical Symmetry

6.5.1. The Momentum Equation

We now consider the polar grid. In case of spherical symmetry,pi+1/2, j+1/2= pj+1/2,
and also

Enηi+1/2, j
i, j = Enηi−1/2, j

i, j = (sinθi , cosθi ). (6.22)

Thus we have

(GRADr p)i, j = (pj+1/2− pj−1/2)
Sηi+1/2, j

i, j + Sηi−1/2, j
i, j

Vi, j
sinθi , (6.23)

(GRADz p)i, j = (pj+1/2− pj−1/2)
Sηi+1/2, j

i, j + Sηi−1/2, j
i, j

Vi, j
cosθi . (6.24)

If we introduce the notation

Rj+1/2 = Rj+1+ Rj

2
, θi+1/2 = θi+1+ θi

2
(6.25)

then

Sηi+1/2, j
i, j + Sηi−1/2, j

i, j = R2
j (cosθi−1/2− cosθi+1/2)

Vi, j =
(

R3
j+1/2

3
− R3

j−1/2

3

)
(cosθi−1/2− cosθi+1/2),

(6.26)

and the expressions for the components ofGRAD are

(GRADr p)i, j =
R2

j(
R2

j+1/2+ Rj+1/2Rj−1/2+ R2
j−1/2

)/
3
· pj+1/2− pj−1/2

0.5(Rj+1− Rj−1)
sinθi ,

(6.27)

(GRADz p)i, j =
R2

j(
R2

j+1/2+ Rj+1/2Rj−1/2+ R2
j−1/2

)/
3
· pj+1/2− pj−1/2

0.5(Rj+1− Rj−1)
cosθi .

(6.28)

It is clear that the gradient is radial in direction and has a magnitude equal to

R2
j(

R2
j+1/2+ Rj+1/2Rj−1/2+ R2

j−1/2

)/
3
· pj+1/2− pj−1/2

0.5(Rj+1− Rj−1)
(6.29)
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which does not depend oni . This expression approximates theR-component of the gradient
in a spherical coordinate system,∂p/∂R; in the similar fashion to the case of cylindrical
symmetry, the factorR2

j /((R
2
j+1/2+ Rj+1/2Rj−1/2+ R2

j−1/2)/3) tends to one as we refine
the grid.

6.5.2. The Energy Equation

In the case of spherical symmetry, the velocity vector has the formEUi, j = (U R
j sinθi ,

U R
j cosθi ), whereU R is the magnitude of the spherical velocity. Taking into account that

the velocity vector is orthogonal to theEnξ vector at every node, and is parallel to theEnη
vector, we have

(DIV EU )i+1/2, j+1/2 =
U R

j+1

(
Sηi, j+1

i+1/2, j+1+ Sηi+1, j+1
i+1/2, j+1

)−U R
j

(
Sηi, j

i+1/2, j + Sηi+1, j
i+1/2, j

)
Vi+1/2, j+1/2

.

(6.30)

Using the formulas for areas and volumes, we derive

(DIV EU )i+1/2, j+1/2 = (DIV EU ) j+1/2 = 1(
R2

j+1+ Rj+1Rj + R2
j

)/
3

R2
j+1U

R
j+1− R2

j U
R
j

Rj+1− Rj
,

(6.31)

which approximates the divergence of a spherically symmetric vector field−(1/R2)

(∂(R2U R)/∂R).

7. VIOLATION OF SPHERICAL SYMMETRY FOR THE CONVENTIONAL SCHEME

Here we show analytically that the scheme (5.10), (5.11), which uses the grid with
straight lines, does not preserve spherical symmetry. A numerical example demonstrating
this phenomenon will be presented in the next section.

For polar distributions of nodes, the grid with straight lines in shown in Fig. 3b. The for-
mulas (4.2), (4.6) for discrete divergence and gradient remain valid for this grid. Moreover,
in this case the normals corresponding to one side are the same, for example,Enξ i+1, j+1/2

i+1, j =
Enξ i+1, j+1/2

i+1, j+1 . However, Eq. (6.22) is not valid anymore, and instead we have

Enηi+1/2, j
i, j = (sinθi+1/2, cosθi+1/2), Enηi−1/2, j

i, j = (sinθi−1/2, cosθi−1/2). (7.1)

The formulas (6.23) now take the form

(GRADr p)i, j = (pj+1/2− pj−1/2)
Sηi+1/2, j

i, j sinθi+1/2+ Sηi−1/2, j
i, j sinθi−1/2

Vi, j
, (7.2)

(GRADz p)i, j = (pj+1/2− pj−1/2)
Sηi+1/2, j

i, j cosθi+1/2+ Sηi−1/2, j
i, j cosθi−1/2

Vi, j
. (7.3)

Let us consider the simplest case of a uniform-in-angle polar grid. Then after some algebra,
one can transform these equations to a form similar to (6.27), (6.28), where instead of sinθi
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and cosθi we will have following approximations to these quantities

2 · sin2 θi−1/2+ 2 sin2 θi + sin2 θi+1/2

sinθi−1+ 6 sinθi + sinθi+1
, (7.4)

2 · cosθi−1/2 sinθi−1/2+ 2 cosθi sinθi + cosθi+1/2 sinθi+1/2

sinθi−1+ 6 sinθi + sinθi+1
. (7.5)

These expressions clearly depend not only on the angleθi but also on the anglesθi−1 and
θi+1; the gradient is not in the radial direction and therefore spherical symmetry is violated.

8. NUMERICAL EXAMPLES

In this section we present two examples using the curvilinear grid, both in cylindrical
coordinates. The first example is Noh’s spherically divergent infinite shock, for a perfect gas
robustness of our new method in a case where the initial grid does not reflect the symmetry
of the flow.

8.1. Spherical Noh Problem

Here we consider the spherical Noh problem. The problem domain starts as the unit
sphere. The initial state of the fluid is uniform, with a density of one and an internal
energy of zero. The initial velocity is directed radially inward with magnitude of−1.0. The
fluid obeys an ideal gas equation of state with gas constantγ = 5/3. Although an analytic
solution exists for the time evolution of the spherical Noh problem, here we consider only
the symmetry aspect. See [5] for a more detailed description of the problem solution. We
begin with the case of a radial grid that is uniform in angle, shown in Fig. 8. Att = 0.6 we
show the resulting grid from two calculations: one in which we use straight lines to connect
the nodes (Fig. 8a), and the other where we use curvilinear elements to reconstruct the
grid (Fig. 8b). The curvilinear grid stays spherically symmetric, confirming our theoretical
results in Subsection 6.5. The grid based on linear segments becomes highly distorted near
the shock front, which eventually causes the calculation to stop.

Next we rerun the spherical Noh problem with an initial grid that is nonuniform in angle.
Using the standard method based on linear grid reconstruction, this problem will not run up

FIG. 8. A uniform-in-angle grid for Noh’s problem; (a) conventional scheme, (b) new scheme.
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FIG. 9. A nonuniform-in-angle grid for Noh’s problem.

to t = 0.6 because of the severe grid distortion. The grid for the new method is presented in
Fig. 9. Again this grid remains perfectly symmetric, as predicted by our theory.

8.2. Saltzman’s Problem

Here we present results for the well-known Saltzman piston problem. This problem
tests the ability of a code to maintain a one-dimensional solution to a one-dimensional
problem when run on a nonuniform two-dimensional mesh. The problem domain consists
of a cylinder whose lateral surface and bottom base are free-slip stationary walls, while the
top is a piston moving with a constant downward velocity that drives a strong shock into
the fluid. The analytic solution of this problem is one dimensional, depending only on the
axial coordinatez, and in our terminology has plane symmetry. In the numerical simulation,
however, the one-dimensional flow symmetry is broken by the computational mesh. The
initial mesh contains 10 cells in ther direction and 100 cells in thezdirection and is defined
by

ri, j = ( j − 1)hr , (8.1)

zi, j = 1− (i − 1) ∗ hz+ (11− j )hr sin
π(i − 1)

100
(8.2)

i = 1, 2, . . . ,101; j = 1, 2, . . . ,11, (8.3)

wherehr = hz= 0.01. The grid is shown in Fig. 10.
The fluid is assumed to be an ideal gas with gas constantγ = 5/3. The piston moves

downward with a constant velocity of 1. The fluid is initially at rest, with a density of
one and with internal energy 10−4. The analytic post shock conditions are described by a
pressure of 1.333, a density of 4, and an internal energy of 0.5; the shock speed is 1.333.

Our aim in choosing this problem is to demonstrate the robustness of our new method.
It is well known that the initial nonuniform grid leads to mesh tangling, because of the
presence of an “hourglass” mode and of artificial vorticity [11, 14]. We do not expect
the curvilinear grid to significantly improve our solution; rather we will demonstrate that
the simulation on the new grid will not be noticeably worse.
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FIG. 10. Initial grid for Saltzman’s problem.

Because the initial grid consists of straight lines, all the initial conditions including the
distribution of masses are the same for the standard and for the new methods. Furthermore,
because the initial grid is not rectangular, the new method will not preserve the planar
symmetry. In Fig. 11 we present the grids for the standard method (a), and new method (b)

FIG. 11. Grids for the Saltzman piston problem; (a) conventional scheme, (b) new scheme.
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FIG. 12. Isolines of density for the Saltzman piston problem; (a) conventional scheme, (b) new scheme.

(we present only the portions of the grid where the most severe tangling occurs). The grid
for the new method looks very reasonable when compared with the standard method and is
perhaps even smoother in the interior. Near the right boundary we can see cells with clearly
curvilinear sides. It appears that this is an artificial phenomenon, the result of insufficient
resolution near this boundary. To show how the grid influences the density field we compare
the isolines of density for the two methods in Fig. 12. The resolution of the shock front
is almost the same in the two calculations. The new method gives better results near the
z axis, while the standard method gives better results near the right boundary. We note
that the artificially curved cells near the right boundary lead to some overcompression. We
consider these results to be very satisfactory. On the other hand, it is also clear that for
practical applications we will need some modification of our grid reconstruction algorithm,
to include limiters that control how big the change in angle can be for any side of the cell.

9. CONCLUSION

It is clear that there are still many issues that need to be addressed. For example, one
important issue will be to improve the robustness of the grid reconstruction algorithms. It
is possible to reconstruct the grid to ensure that the tangent vector to the grid lines will be
continuous at the grid points (which is not the case for the grid reconstruction procedure
described in this paper). There are many ways to do this. Also, one can use a linear blending
of the local circles, or use cubic Hermite interpolation. The main issue here is to determine
which approach is more accurate and robust. A related idea is to introduce limiters that
control the variability of the tangent of the reconstructed curve, leading to a smoother grid.

An alternate approach is to develop an equation for the evolution of the curvature of
each segment, as opposed to reconstructing the grid at each time step. This approach might
be especially useful in simulating the evolution of unstable interfaces, where the mesh
ultimately will not be sufficient to resolve the developing small features, but where an
appropriate equation can predict these small features by evolving the curvature.

Another important question is how the curvilinear grid affects the accuracy of the sim-
ulation. We will investigate this question in the context of elliptic equations, where again
we can use the discrete operators constructed in this paper.

In summary, we have demonstrated the feasibility of preserving certain physical sym-
metries in numerical simulations of fluid flow by using higher-order reconstructions of
the computational grid. In particular, we used arcs of the circles to connect the nodes and
showed that planar, cylindrical, and spherical symmetries could be maintained exactly.
While demonstrating feasibility, we recognize that our particular algorithm is constructed
heuristically, and that continued research may lead to further significant improvements.
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Nevertheless, we believe that the utility of our more general grid reconstruction is in itself
worth illustrating.

APPENDIX A: LENGTHS, AREAS, AND VOLUMES

We start with the 2-D figures. Because the curve that connects two nodes is an arc of a
local circle, its length is

L = R ∗ |ω|, (A.1)

whereR is the radius of the local circle andω is the central angle.
To compute the area of a quadrilateral with curved sides, we first compute the area of the

associated quadrilateral with straight sides (obtained by connecting the nodes by straight
lines), and then adding or subtracting the partial areas (segments) enclosed by an arc and
the chord formed by the straight line, see Fig. 13. For the area of each segment of the circle,
we use the well-known formula

Ssegment of circle= R2

2
∗ ((|ω| − sin(|ω|)). (A.2)

It is easy to decide whether to add or subtract the area of the segment based on the sign
of ω.

Next we consider the 3-D figures of revolution. To compute the areas of the faces of the
figures of rotation, we use the formula

S= rcR(α1− α0)+ R2(sin(α1)− sin(α0)), (A.3)

whererc is the radial coordinate of the center of the local circle,R is the radius of the local
circle, andα0, α1 are the polar angles corresponding to the endpoints of the arc of the circle.
This formula can be easily obtained from the fact that the elementary area is

dS= (R dα)(rc + Rcos(α)), (A.4)

recognizing thatR is constant on the surface.

FIG. 13. Illustration of procedure for computation of the area of a curved quadrilateral.
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To compute the volume of the figure of revolution, we use a similar logic as that used
to compute the areas of the 2-D figures with curved boundaries. First, we calculate the
volume of the figure of revolution of the quadrilateral with straight sides and then we
add or subtract the volumes of figure of revolution of the segments of the circles. To
compute the volume of the quadrilateral with straight sides we subdivide the quadrilateral
into two triangles and then compute the individual volumes of these triangles. The volume
of the figure of revolution of a triangle is the product of its area with therm coordinate of
the center of mass. For a trianglerm is just one third of the sum of ther coordinates
of the three vertices of the triangle. The volume of the figure of revolution of the segment
of a circle equals

V = R2

2
rc[(α1− α0)− sin(α1− α0)]+ R3

6
[2(sin(α1)− sin(α0))

− (cos(α1)+ cos(α0)) sin(α1− α0)].

This formula is obtained as the difference of the volumes of the figures obtained by rotation of
the sector of the circle and the triangle formed by the rays of the circle and the corresponding
chord, see Fig. 14. The volume of revolution of the triangleP0O P1 is

Vtriangle = R2

2
rc sin(α1− α0)+ R3

6
(cos(α1)+ cos(α0)) sin(α1− α0). (A.5)

The volume of the elementary sector centered at angleα and subtending the angledα is

dVsector=
(

rc + 2

3
Rcos(α)

)
R2

2
− dα, (A.6)

FIG. 14. Illustration for derivation of the formula for the volume of a figure of revolution.



SYMMETRY-PRESERVING DISCRETIZATIONS 413

and integration overα gives

Vsector= R2

2
rc(α1− α0)+ R3

3
[sin(α1)− sin(α0)], (A.7)

and finally,

V = Vsector− Vtriangle. (A.8)

APPENDIX B: EDGE ARTIFICIAL VISCOSITY

It is necessary to introduce artificial viscosity to simulate high-speed flows with shocks.
The purpose of the artificial viscosity is to spread shocks and other steep wave fronts over
several grid points. In this section, we describe the modifications to the edge viscosity
introduced in [5] necessitated by the new curvilinear grid. We do not give any motivation
or derivation for this form of the viscosity, but simply present the computational formulas.

In Fig. 15 we illustrate the additional geometrical elements needed to describe the viscous
forces. The artificial viscous forces are associated with the subtriangles that are shown in
Fig. 15. In each cell we define four forces related to the four subtriangles. For example, the
force related to celli + 1/2, j + 1/2 and to the triangle that includes the edgei + 1/2, j is

Ef i+1/2, j+1/2
i+1/2, j = qi+1/2, j+1/2

i+1/2, j (1− ψi+1/2, j )Sξ
i+1/2, j+1/2
i+1/2, j

× δ[(1̂ EUi+1/2, j , Enξ i+1/2, j+1/2
i+1/2, j

)]
1̂ EUi+1/2, j . (B.1)

Here the superscripts denote the cell, and the subscripts identify the side of the cell, which
uniquely determines the triangle. Also,qi+1/2, j+1/2

i+1/2, j is the scalar part of the viscosity,ψi+1/2, j

is a limiter, andδ is a switch used to turn the viscosity on or off. The vectorEnξ i+1/2, j+1/2
i+1/2, j

is the unit normal to the circle at the pointi + 1/2, j . Sξ i+1/2, j+1/2
i+1/2, j is the area of the arc

FIG. 15. Geometrical elements involved in the description of the viscous forces.
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connecting pointsi + 1/2, j , andi + 1/2, j + 1/2, and1̂ EUi+1/2, j is the unit vector in the
direction of EUi+1/2, j − EUi, j , that is,

1 EUi+1/2, j = EUi+1, j − EUi, j , 1̂ EUi+1/2, j = 1 EUi+1/2, j

|1 EUi+1/2, j |
. (B.2)

The scalar part of the viscosity,q, in the case of an ideal gas with gas constantγ , is given
by

qi+1/2, j+1/2
i+1/2, j

= ρi+1/2, j+1/2

{
γ + 1

4
|1 EUi+1/2, j | +

√(
γ + 1

4

)2

(1 EUi+1/2, j )2+ C2
i+1/2, j+1/2

}
,

(B.3)

whereCi+1/2, j+1/2 is the speed of sound in the cell. The limiterψ is defined as

ψi+1/2. j = max

{
0,min

[
r l

i+1/2, j + r r
i+1/2, j

2
, 2r l

i+1/2, j , 2r r
i+1/2, j , 1

]}
, (B.4)

where

r l
i+1/2, j =

1 EUi−1/2, j · 1̂ EUi+1/2, j

1Exi−1/2, j · 1̂Exi+1/2, j

/ |1 EUi+1/2, j |
|1Exi+1/2, j | ,

r r
i+1/2, j =

1 EUi+3/2, j · 1̂ EUi+1/2, j

1Exi+3/2, j · 1̂Exi+1/2, j

/ |1 EUi+1/2, j |
|1Exi+1/2, j | .

In the last two equations,1Ex is defined similarly to1 EU , (B.2), whereEx is the coordinate
vector. The switch function is defined as

δ[s] =
{

s, if s< 0
0, if s ≥ 0.

(B.5)

The forces acting on the other triangles in a cell are defined in an analogous manner, making
necessary changes to the indices.

The discrete momentum equation, including all the viscous forces that surround the node,
can be written as

ρi, j

EUn+1
i, j − EUn

i, j

1t

= −(GRAD p)i, j +
{ Ef i+1/2, j+1/2

i+1/2, j + Ef i+1/2, j+1/2
i, j+1/2 + Ef i−1/2, j+1/2

i, j+1/2 + Ef i−1/2, j+1/2
i−1/2, j

+ Ef i−1/2, j−1/2
i−1/2, j + Ef i−1/2, j−1/2

i, j−1/2 + Ef i+1/2, j−1/2
i, j−1/2 + Ef i+1/2, j−1/2

i+1/2, j

}/
Vi, j .
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Applying the principle of compatibility [6] the corresponding energy equation is

ρi+1/2, j+1/2
εn+1

i+1/2, j+1/2− εn
i+1/2, j+1/2

1t

= −pi+1/2, j+1/2

(
DIV

EUn+1+ EUn

2

)
i+1/2, j+1/2

+ {( Ef i+1/2, j+1/2
i+1/2, j ,1 EUn+1/2

i+1/2, j

)
+ ( Ef i+1/2, j+1/2

i, j+1/2 ,1 EUn+1/2
i, j+1/2

)+ ( Ef i+1/2, j+1/2
i+1, j+1/2 ,1 EUn+1/2

i+1, j+1/2

)
+ ( Ef i+1/2, j+1/2

i+1/2, j+1 ,1 EUn+1/2
i+1/2, j+1

)}/
Vi+1/2, j+1/2. (B.6)

The superscriptn+ 1/2 indicates that this term is computed using the arithmetic mean of
the old and new velocities.
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