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Abstract. Accurate discrete analogs of differential operators that satisfy the identities and the-
orems of vector and tensor calculus provide reliable finite difference methods for approximating the
solutions to a wide class of partial differential equations. These methods mimic many fundamental
properties of the underlying physical problem including conservation laws, symmetries in the solution,
and the nondivergence of particular vector fields (i.e., they are divergence free) and should satisfy a
discrete version of the orthogonal decomposition theorem. This theorem plays a fundamental role in
the theory of generalized solutions and in the numerical solution of physical models, including the
Navier–Stokes equations and in electrodynamics. We are deriving mimetic finite difference approx-
imations of the divergence, gradient, and curl that satisfy discrete analogs of the integral identities
satisfied by the differential operators. We first define the natural discrete divergence, gradient, and
curl operators based on coordinate invariant definitions, such as Gauss’s theorem, for the divergence.
Next we use the formal adjoints of these natural operators to derive compatible divergence, gradient,
and curl operators with complementary domains and ranges of values. In this paper we prove that
these operators satisfy discrete analogs of the orthogonal decomposition theorem and demonstrate
how a discrete vector can be decomposed into two orthogonal vectors in a unique way, satisfying a
discrete analog of the formula ~A = gradϕ + curl ~B. We also present a numerical example to illus-
trate the numerical procedure and calculate the convergence rate of the method for a spiral vector
field.
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1. Introduction. We are developing a discrete analog of vector and tensor cal-
culus that can be used to accurately approximate continuum models for a wide range
of physical processes on logically rectangular, nonorthogonal, nonsmooth grids. These
finite difference methods preserve fundamental properties of the original continuum
differential operators and allow the discrete approximations of partial differential equa-
tions (PDEs) to mimic critical properties of the underlying physical problem including
conservation laws, symmetries in the solution, and the nondivergence of particular
vector fields (i.e., they are divergence free). These discrete analogs of differential
operators satisfy the identities and theorems of vector and tensor calculus and are
providing new reliable finite difference methods for a wide class of PDEs.

The orthogonal decomposition theorem plays a fundamental role in the theory of
generalized solutions and in the numerical approximation of physical models, including
the Navier–Stokes equations and in electrodynamics. In this paper, we will prove
discrete analogs of the orthogonal decomposition theorem for the discretization of a
vector field. That is, we prove that for given discrete divergence and curl, a discrete
vector can be decomposed into two orthogonal vectors in a unique way satisfying
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a discrete analog of the formula ~A = gradϕ + curl ~B if its normal or tangential
component is given on the boundary.

In [16], we defined the natural discrete divergence, gradient, and curl operators
based on coordinate invariant definitions, such as Gauss’s theorem, for the divergence.
We introduced notations for two-dimensional (2-D) logically rectangular grids, defined
analogues of line, surface, and volume integrals, described both cell and nodal dis-
cretizations for scalar functions, and constructed the natural discretizations of vector
fields, using the vector components normal and tangential to the cell boundaries.

The domains and ranges of the natural discrete operators arise “naturally” from
discrete analogs of Stokes’s theorem. To form second-order nontrivial combinations
of these operators, which are discrete analogs of div grad, grad div, and curl curl,
the range of the first operator must be equal to the domain of the second operator.
The natural operators alone are not sufficient to construct discrete analogs of the
second-order operators div grad, grad div, and curl curl because of inconsistencies
in domains and range of values.

In [17], we used the formal adjoints of these natural operators to derive compatible
divergence, gradient, and curl operators with complementary domains and ranges of
values. These new discrete operators are adjoints to the natural operators and, when
combined with natural operators, allow all the compound operators to be constructed.
By construction all of these operators satisfy discrete analogs of the integral identities
satisfied by the differential operators.

In [16] and [17], we proved discrete analogs of main theorems of vector analysis
for both the natural and adjoint discrete operators. These theorems include Gauss’s
theorem; the theorem that div ~A = 0 if and only if ~A = curl ~B; the theorem that
curl ~A = 0 if and only if ~A = gradϕ; the theorem that if ~A = gradϕ, then the
line integral does not depend on path; and the theorem that if the line integral of a
vector function is equal to zero for any closed path, then this vector is the gradient
of a scalar function.

The discrete analogs of the differential operators are derived and analyzed using
the support-operators method (SOM) [33, 35, 36]. In the SOM, first a discrete ap-
proximation is defined for a first-order differential operator, such as the divergence
or gradient, that satisfies the appropriate discrete analog of an integral identity, such
as Stokes’s theorem. This initial discrete operator, called the prime operator, then
supports the construction of other discrete operators, using discrete formulations of
the integral identities∫

V

udiv ~W dV +

∫
V

( ~W,gradu) dV =

∮
∂V

u ( ~W,~n) dS ,(1.1) ∫
V

( ~A, curl ~B) dV −
∫
V

( ~B, curl ~A) dV =

∮
∂V

(~n, ~A× ~B) dS .(1.2)

For example, if the initial discretization is defined for the divergence (prime operator),
it should satisfy a discrete form of Gauss’s theorem. This prime discrete divergence,
DIV, is then used to support the derived discrete operator GRAD satisfying a discrete
version of the integral identity (1.1). The derived operator GRAD would then also
be the negative adjoint of DIV.

The SOM uses the discrete versions of integral identities as a basis to construct
discrete operators with compatible domains and ranges and is used to extend the
set of discrete operators by forcing discrete analogs of the integral identities (1.1) or
(1.2). In the simplest case, when boundary integrals vanish, the above entities imply



790 J. HYMAN AND M. SHASHKOV

div = −grad∗ and curl = curl∗ in the sense of the inner products

(u, v)H =

∫
V

u v dV , ( ~A, ~B)H =

∫
V

( ~A, ~B) dV .(1.3)

The natural discrete divergence is defined as a discrete operator from the spaceHS
of discrete vector functions, defined by their orthogonal projections onto directions
perpendicular to the face of the cell, to the space HC of discrete scalar functions,
given by their values in the cell (see [16] and section 3 of this paper for details)

DIV : HS → HC .

The discrete gradient,

GRAD : HC → HS ,
is constructed as a negative adjoint to DIV,

GRAD = −DIV∗ ,(1.4)

where we have indicated the derived adjoint operator by the overbar.
The natural discrete gradient GRAD is defined as a discrete operator from space

HN of discrete scalar functions, given by their values in the nodes, to the space HL
of discrete vector functions, defined by their orthogonal projections onto directions of
the edges of the cell

GRAD : HN → HL .
The discrete divergence,

DIV : HL → HN ,

is constructed as a negative adjoint to GRAD,

DIV = −GRAD∗ .(1.5)

In a similar way, the natural CURL : HL → HS is used to construct another discrete
curl,

CURL : HS → HL , CURL = CURL∗ .(1.6)

These operators satisfy the main discrete theorems of vector analysis [16, 17].
The natural operators alone can be combined only to construct the trivial oper-

ators:

DIV CURL : HL → HC , DIV CURL ≡ 0 ,(1.7)

CURL GRAD : HN → HS , CURL GRAD ≡ 0 .(1.8)

For example, we cannot apply DIV to GRAD because the range of values of GRAD
does not coincide with the domain of operator DIV, and so on.

Similarly, the adjoint operators alone can be combined only to construct the trivial
operators:

DIV CURL : HS → HN , DIV CURL ≡ 0 ,(1.9)

CURL GRAD : HC → HL , CURL GRAD ≡ 0 .(1.10)
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However, the natural and adjoint operators together can be combined to form all the
nontrivial high-order operators:

DIV GRAD : HC → HC , DIV GRAD : HN → HN ,(1.11)

CURL CURL : HS → HS , CURL CURL : HL → HL ,(1.12)

GRAD DIV : HL → HL , GRAD DIV : HS → HS .(1.13)

In this paper, we use results from [16, 17] to prove discrete analogs of one of
the most important theorems of vector analysis, i.e., the orthogonal decomposition
theorem for vector fields. This theorem states that a vector function ~a in a bounded
domain, V , is uniquely determined by its divergence, curl, and values of normal
component on the boundary:

div~a = ρ , (x, y, z) ∈ V ,(1.14)

curl~a = ~ω , (x, y, z) ∈ V ,(1.15)

and

(~a, ~n) = β , (x, y, z) ∈ ∂V .(1.16)

Moreover, any vector ~a can be represented in the form

~a = gradϕ+ curl ~B .(1.17)

This decomposition forms a considerable part of the theory of generalized so-
lutions [41], and Weyl’s theorem on orthogonal decomposition plays a fundamental
role in solving the Navier–Stokes equations [12, 19, 21, 40, 41] and in electrodynamics
[15]. The discrete version of Weyl’s theorem, formulated in [39] for square grids in two
dimensions, can be used to construct high-quality finite-difference methods (FDMs)
for Navier–Stokes equations [3, 4]. The orthogonal decomposition theorem has been
proved for discrete vector fields on both orthogonal grids [8, 22, 23, 24, 20, 32] and
Voronoi grids [27, 28, 14]. Similar results for the finite-element method can be found
in [12, 26]. The orthogonal decomposition theorem has been applied in numerical
simulation to remove artificial vorticity from a velocity vector field [10]. Some general
results for discrete models can also be found in [6, 7].

The discrete analog of the orthogonal decomposition theorem for vectors from the
space HS grids states that any discrete vector function ~A ∈ HS, where

DIV ~A = ρh , CURL ~A = ωh ,(1.18)

where the normal component of the vector ~A is given on the boundary (for ~A ∈ HS
these are the components used to describe discrete vector field) and can be represented
in the form

~A = GRADϕ+ CURL ~B ,(1.19)

where ϕ ∈ HC and ~B ∈ HL. As in the continuous case, the discrete vector functions
GRADϕ and CURL ~B are orthogonal to each other.

The theorem also holds for any discrete vector function ~A ∈ HL, where

DIV ~A = ρh , CURL ~A = ωh .(1.20)
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(a) Cell-centered grid, HC (b) Nodal grid, HN

Fig. 2.1. On a logically rectangular grid, the scalar function values can be either cell-centered
(HC), as in (a), or defined at the nodes (HN), as in (b).

Here the tangential component of the vector ~A is given on the boundary (for ~A ∈ HL
these are the components used to describe discrete vector field) and can be presented
in the form

~A = GRADϕ+ CURL ~B ,(1.21)

where ϕ ∈ HN and ~B ∈ HS , and the discrete vector functions GRADϕ and CURL ~B
are orthogonal to each other.

The discrete orthogonal decomposition theorem can be viewed from two different
perspectives. In the first case, we can consider the solution of the discrete problem
(1.18) as an approximation to the solution of the corresponding continuous problem
(1.14), (1.15), (1.16). In the second case, we have a pure discrete problem: for a given

discrete vector, ~A ∈ HS, find its representation in the form (1.19), or for the vector
~A ∈ HL, find its representation in the form (1.21).

After describing the grid, discretizations of scalar and vector functions, and inner
products in spaces of discrete functions, we will review the derivation of the natural
and adjoint finite difference analogs for the divergence, gradient, and curl. Next we
prove the discrete orthogonal decomposition theorems for discrete vector functions
from HS and HL. Finally, we present a numerical example for the orthogonal de-
composition of a spiral vector field and demonstrate a second-order convergence rate
in max norm for the recovered (reconstructed) discrete vector function ~A ∈ HS.

2. Spaces of discrete functions.

2.1. Grid. We index the nodes of a logically rectangular grid using (i, j), where
1 ≤ i ≤ M and 1 ≤ j ≤ N (see Figure 2.1). The quadrilateral defined by the nodes
(i, j), (i + 1, j), (i + 1, j + 1), and (i, j + 1) is called the (i + 1/2, j + 1/2) cell (see
Figure 2.2 (a)). The area of the (i+1/2, j+1/2) cell is denoted by V Ci+1/2,j+1/2, the
length of the side that connects the vertices (i, j) and (i, j+1) is denoted by Sξi,j+1/2,
and the length of the side that connects the vertices (i, j) and (i+ 1, j) is denoted by
Sηi+1/2,j . The angle between any two adjacent sides of cell (i, j) that meet at node

(k, l) is denoted by ϕ
i+1/2,j+1/2
k,l .
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Fig. 2.2. (a) The (i+ 1/2, j + 1/2) cell in a logically rectangular grid has area V Ci+1/2,j+1/2
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and Sξi+1,j+1/2 is ϕ
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i+1,j . (b) The 2-D (i + 1/2, j + 1/2) cell (z = 0) is interpreted as the

base of a 3-D logically cuboid (i+ 1/2, j + 1/2, k + 1/2) cell (a prism) with unit height.
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Fig. 2.3. The (ξ, η, ζ) curvilinear coordinate system is approximated by the i, j, and k piecewise
linear grid lines.

When defining discrete differential operators, such as CURL, it is convenient to
consider a 2-D grid as the projection of a three-dimensional (3-D) grid. This approach
eliminates any ambiguity in the notation and simplifies generalizing the FDMs to 3-D.
In this paper, we consider functions of the coordinates x and y and extend the grid
into a third dimension, z, by extending a grid line of unit length into the z direction
to form a prism with unit height and with a 2-D quadrilateral cell as its base (see
Figure 2.2 (b)).

Sometimes it is useful to interpret the grid as being formed by intersections of
broken lines that approximate the coordinate curves of some underlying curvilinear
coordinate system (ξ, η, ζ). The ξ, η, or ζ coordinate corresponds to the grid line
where the index i, j, or k is changing, respectively (see Figure 2.3).

We denote the length of the edge (i, j, k) − (i + 1, j, k) by lξi+1/2,j,k, the length
of the edge (i, j, k) − (i, j + 1, k) by lηi,j+1/2,k, and the length of the edge (i, j, k) −
(i, j, k + 1) by lζi,j,k+1/2 (which we have chosen to be equal to 1). The area of the
surface (i, j, k)−(i, j+1, k)−(i, j, k+1)−(i, j+1, k+1), denoted by Sξi,j+1/2,k+1/2, is
the analog of the element of the coordinate surface dSξ. Similarly, the area of surface
(i, j, k)− (i+ 1, j, k)− (i, j, k+ 1)− (i+ 1, j, k+ 1) is denoted by Sηi+1/2,j,k+1/2. We
use the notation Sζi+1/2,j+1/2,k for the area of the 2-D cell (i + 1/2, j + 1/2); that
is, Sζi+1/2,j+1/2,k = V Ci+1/2,j+1/2. Because the artificially constructed 3-D cell is a
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right prism with unit height, we have

Sξi,j+1/2,k+1/2 = lηi,j+1/2,k · lζi,j,k+1/2 = lηi,j+1/2,k

and

Sηi+1/2,j,k+1/2 = lξi+1/2,j,k · lζi,j,k+1/2 = lξi+1/2,j,k .

With this 3-D interpretation, the 2-D notations Sξi,j+1/2 and Sηi+1/2,j are not
ambiguous because the 3-D surface (i, j, k), (i, j + 1, k), (i, j, k + 1), (i, j + 1, k + 1)
corresponds to an element of the coordinate surface Sξ, and since the prism has unit
height, the length of the side (i, j) − (i, j + 1) is equal to the area of the element of
this coordinate surface.

2.2. Discrete scalar and vector functions. In a cell-centered discretization,
the discrete scalar function Ui+1/2,j+1/2 is defined in the space HC and is given
by its values in the cells (see Figure 2.1 (a)), except at the boundary cells. The
treatment of the boundary conditions requires introducing scalar function values at
the centers of the boundary segments: U(1,j+1/2), U(M,j+1/2), where j = 1, . . . , N − 1,
and U(i+1/2,1), U(i+1/2,N), where i = 1, . . . ,M − 1 . In three dimensions the cell-
centered scalar functions are defined in the centers of the 3-D prisms, except in the
boundary cells, where they are defined on the boundary faces. The 2-D case can
be considered a projection of these values onto the 2-D cells and midpoints of the
boundary segments.

In a nodal discretization, the discrete scalar function Ui,j is defined in the space
HN and is given by its values in the nodes (see Figure 2.1 (b)). The indices vary in
the same range as for coordinates xi,j , yi,j .

We assume that vectors may have three components, but in our 2-D analysis,
the components depend on only two spatial coordinates, x and y. We consider two
different spaces of discrete vector functions for our 3-D coordinate system. The HS
space (see Figure 2.4 (a)), where the vector components are defined perpendicular
to the cell faces, is the natural space when the approximations are based on Gauss’
divergence theorem. The HL space (see Figure 2.5 (a)), where the vectors are defined
tangential to the cell edges, is natural for approximations based on Stokes’ circulation
theorem.

The projection of the 3-D HS vector discretization space into two dimensions
results in the face vectors being defined perpendicular to the quadrilateral cell sides
and in the cell-centered vertical vectors being defined perpendicular to the 2-D plane
(see Figure 2.4 (b)). We use the notation

WSξ(i,j+1/2) : i = 1, . . . ,M ; j = 1, . . . , N − 1

for the vector component at the center of face Sξ(i,j+1/2) (side lη(i,j+1/2)), the notation

WSη(i+1/2,j) : i = 1, . . . ,M − 1 ; j = 1, . . . , N

for the vector component at the center of face Sη(i+1/2,j) (side lξ(i+1/2,j)), and the
notation

WSζ(i+1/2,j+1/2) : i = 1, . . . ,M − 1 ; j = 1, . . . , N − 1

for the component at the center of face Sζ(i+1/2,j+1/2) (2-D cell Vi+1/2,j+1/2).
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The projection of the 3-D HL vector discretization space into two dimensions
results in the vectors being defined as tangential to the quadrilateral cell sides and in
a vertical vector at the nodes (see Figure 2.5 (b)). We use the notation

WLξ(i+1/2,j) : i = 1, . . . ,M − 1 ; j = 1, . . . , N

for the component at the center of edge lξ(i+1/2,j) (in 2-D, the same position as for
WSη(i+1/2,j)), the notation

WLη(i,j+1/2) : i = 1, . . . ,M ; j = 1, . . . , N − 1

for the component at the center of edge lη(i,j+1/2) (in 2-D, the same position as for
WSξ(i,j+1/2)), and the notation
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WLζ(i,j) : i = 1, . . . ,M ; j = 1, . . . , N

for the component at the center of edge lζ(i,j) (in 2-D the position that corresponds
to node (i, j)).

From here on, there will not be any dependence on the k index, and it is dropped
from the notation.

2.3. Discrete inner products. In the space of discrete scalar functions, HC,
(functions defined in the cell centers), the natural inner product corresponding to the
continuous inner product

(u, v)H =

∫
V

u v dV +

∮
∂V

u v dV(2.1)

is

(U, V )HC =
M−1∑
i=1

N−1∑
j=1

U(i+1/2,j+1/2) V(i+1/2,j+1/2) V C(i+1/2,j+1/2)

(2.2) +
M−1∑
i=1

U(i+1/2,1)V(i+1/2,1)Sη(i+1/2,1)+
N−1∑
j=1

U(M,j+1/2)V(M,j+1/2)Sξ(M,j+1/2)

+
M−1∑
i=1

U(i+1/2,N)V(i+1/2,N)Sη(i+1/2,N)

N−1∑
j=1

U(1,j+1/2)V(1,j+1/2)Sξ(1,j+1/2) .

In our future consideration, we will use the subspace of HN ,
0

HN , where discrete
functions are equal to zero on the boundary:

0

HN
def
= {U ∈ HN,Ui,j = 0 on the boundary}

(the notation of “zero” above the name of a space indicates the subspace where the
functions are equal to zero on the boundary), with the inner product defined as

(U, V ) 0

HN

def
=

M−1∑
i=2

N−1∑
j=2

U(i,j) V(i,j) V N(i,j) ,(2.3)

where V N(i,j) is the nodal volume.
In the space of vector functions HS, the natural inner product corresponding to

the continuous inner product (3.14) is

( ~A, ~B)HS =
M−1∑
i=1

N−1∑
j=1

( ~A, ~B)(i+1/2,j+1/2) V C(i+1/2,j+1/2) ,(2.4)

where ( ~A, ~B) is the dot product of two vectors. Next, we define this dot product in
terms of the components of the vectors perpendicular to the cell sides (see Figure
2.6). Suppose that the axes ξ and η form a nonorthogonal basis and that ϕ is the

angle between these axes. If the unit normals to the axes are ~nSξ and ~nSη, then
the components of the vector ~W in this basis are the orthogonal projections WSξ
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(WLξ, WLη) of vector ~W are the orthogonal projections onto the grid lines, and the components
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and WSη of ~W onto the normal vectors. The expression for the dot product of
~A = (ASξ,ASη) and ~B = (BSξ,BSη) is

( ~A, ~B) =
ASξ BSξ +ASη BSη + (ASξ BSη +ASη BSξ) cosϕ

sin2 ϕ
,(2.5)

where ϕ is the angle between these axes (see Figure 2.6).
From this expression, the dot product in the cell is approximated by

( ~A, ~B)(i+1/2,j+1/2) =

1∑
k,l=0

V
(i+1/2,j+1/2)
(i+k,j+l)

sin2 ϕ
(i+1/2,j+1/2)
(i+k,j+l)

·
[
ASξ(i+k,j+1/2)BSξ(i+k,j+1/2)+ASη(i+1/2,j+l)BSη(i+1/2,j+l)(2.6)

+(−1)k+l (ASξ(i+k,j+1/2)BSη(i+1/2,j+l)

+ ASη(i+1/2,j+l)BSξ(i+k,j+1/2))cosϕ
(i+1/2,j+1/2)
(i+k,j+l)

]
,

where the weights V
(i+1/2,j+1/2)
(i+k,j+l) satisfy

V
(i+1/2,j+1/2)
(i+k,j+l) ≥ 0 ,

1∑
k,l=0

V
(i+1/2,j+1/2)
(i+k,j+l) = 1 .(2.7)

In this formula, each index (k, l) corresponds to one of the vertices of the (i+ 1/2, j+
1/2) cell, and notations for weights are the same as for angles of cell.

The inner product in HL is similar to the inner product for space HS:

( ~A, ~B)HL =
M−1∑
i=1

N−1∑
j=1

( ~A, ~B)(i+1/2,j+1/2) V C(i+1/2,j+1/2) ,(2.8)

where ( ~A, ~B)i+1/2,j+1/2 approximates the dot product of two vectors at the cell (i+
1/2, j + 1/2). In HL, the vectors are represented by orthogonal projections to the
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directions of the edges of the 3-D cells (see Figure 2.6). If the axes ξ and η form a

nonorthogonal basis, the components of the vector ~W in this basis are the orthogonal
projections WLξ and WLη of ~W onto the directions of the coordinate axes. If ~A =
(ALξ,ALη) and ~B = (BLξ,BLη), then the dot product is

( ~A, ~B) =
ALξ BLξ +ALηBLη − (ALξ BLη +ALηBLξ) cosϕ

sin2 ϕ
.(2.9)

From a formal point of view, the only difference between this formula and the one
for the surface components (see (2.5)) is the minus sign before the third term. This
difference can be easily understood by taking into account that the basis vectors of
the nonorthogonal local systems are perpendicular to each other.

Equation (2.9) is used to approximate the dot product in a cell:

( ~A, ~B)(i+1/2,j+1/2) =
1∑

k,l=0

V
(i+1/2,j+1/2)
(i+k,j+l)

sin2 ϕ
(i+1/2,j+1/2)
(i+k,j+l)

·
[
ALξ(i+1/2,j+l)BLξ(i+1/2,j+l) +ALη(i+k,j+1/2)BLη(i+k,j+1/2)(2.10)

−(−1)k+l
(
ALξ(i+1/2,j+l)BLη(i+k,j+1/2)

+ ALη(i+k,j+1/2)BLξ(i+1/2,j+l)

)
cosϕ

(i+1/2,j+1/2)
(i+k,j+l)

]
,

where V
(i+1/2,j+1/2)
(i+k,j+l) represents the same weights used for the space HS.

When computing the adjoint relationships between the discrete operators, it is
helpful to introduce the formal inner products (denoted by square brackets [·, ·]) in
the spaces of scalar and vector functions. In HC, the formal inner product is

[U, V ]HC =
M−1∑
i=1

N−1∑
j=1

U(i+1/2,j+1/2) V(i+1/2,j+1/2) +
M−1∑
i=1

U(i+1/2,1) V(i+1/2,1)

+
N−1∑
j=1

U(M,j+1/2) V(M,j+1/2) +
M−1∑
i=1

U(i+1/2,N) V(i+1/2,N) +
N−1∑
j=1

U(1,j+1/2) V(1,j+1/2) ;

in HS, the formal inner product is

[ ~A, ~B]HS =
M∑
i=1

N−1∑
j=1

ASξ(i,j+1/2)BSξ(i,j+1/2) +
M−1∑
i=1

N∑
j=1

ASη(i+1/2,j)BSη(i+1/2,j) .

The natural and formal inner products satisfy the relationships

(U, V )HC = [C U, V ]HC and ( ~A, ~B)HS = [S ~A, ~B]HS ,(2.11)

where C and S are symmetric positive operators in the formal inner products. For
operator C we have

[C U, V ]HC = [U, C V ]HC and [C U,U ]HC > 0 ,(2.12)

and therefore

(C U)(i+1/2,j+1/2) = V C (i+1/2,j+1/2) U(i+1/2,j+1/2) ,

i = 1, . . . ,M − 1 , j = 1, . . . , N − 1 ,

(C U)(i,j+1/2) = Sξ (i,j+1/2) U(i,j+1/2) , i = 1 and i = M , j = 1, . . . , N − 1 ,

(C U)(i+1/2,j) = Sη (i+1/2,j) U(i+1/2,j) , i = 1, . . . ,M − 1 , j = 1 and j = N .
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i,j

i,j+1

Stencil for operator S12

i,j
i+1,j

Stencil for operator S 21

Fig. 2.7. The stencils of the components S12 and S21 of the symmetric positive operator S that
connects the natural and formal inner products ( ~A, ~B)HS = [S ~A, ~B]HS .

The operator S can be written in block form,

S ~A =

(
S11 S12

S21 S22

) (
ASξ
ASη

)
=

(
S11ASξ + S12ASη
S21ASξ + S22ASη

)
,(2.13)

and is symmetric and positive in the formal inner product

[S ~A, ~B]HS = [ ~A,S ~B]HS , [S ~A, ~A]HS > 0 .(2.14)

By comparing the formal and natural inner products

( ~A, ~B)HS = [S ~A, ~B]HS=
M∑
i=1

N−1∑
j=1

[(S11ASξ)(i,j+1/2)+(S12ASη)(i,j+1/2)]BSξ(i,j+1/2)

+(2.15)

M−1∑
i=1

N∑
j=1

[(S21ASξ)(i+1/2,j) + (S22ASη)(i+1/2,j)]BSη(i+1/2,j),

we can derive the explicit formulas for S:

(S11ASξ)(i,j+1/2) =

 ∑
k=±1/2; l=0,1

V
(i+k,j+1/2)

(i,j+l)

sin2 ϕ
(i+k,j+1/2)

(i,j+l)

 ASξ(i,j+1/2) ,

(S12ASη)(i,j+1/2)

=
∑

k=±1/2 ;l=0,1

(−1)k+ 1
2

+l
V

(i+k,j+1/2)

(i,j+l)

sin2 ϕ
(i+k,j+1/2)

(i,j+l)

cosϕ
(i+k,j+1/2)
(i,j+l) ASη(i+k,j+l) ,

(S21ASξ)(i+1/2,j)

=
∑

k=±1/2; l=0,1

(−1)k+ 1
2

+l
V

(i+1/2,j+k)

(i+l,j)

sin2 ϕ
(i+1/2,j+k)

(i+l,j)

cosϕ
(i+1/2,j+k)
(i+l,j) ASξ(i+l,j+k) ,

(S22ASη)(i+1/2,j) =

 ∑
k=±1/2; l=0,1

V
(i+1/2,j+k)

(i+l,j)

sin2 ϕ
(i+1/2,j+k)

(i+l,j)

 ASη(i+1/2,j) .

(2.16)

The operators S11 and S22 are diagonal, and the stencils for the operators S12 and
S21 are shown on Figure 2.7. These formulas are valid only for sides of the grid cells
interior to the domain. They can be applied at the sides on the domain boundary
if the grid and discrete functions are first extended to a row of points outside the
domain by using the appropriate boundary conditions.
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The relationship between the natural and formal inner products in
0

HN is

(U, V ) 0

HN
= [N U, V ] 0

HN
,(2.17)

where N is the symmetric positive operator in the formal inner product,

[N U, V ]HN = [U,N V ]HN , [N U,U ]HN > 0 ,(2.18)

and

(N U)(i,j) = V N(i,j) U(i,j) , i = 2, . . . ,M − 1 , j = 2, . . . , N − 1.(2.19)

The operator L, which connects the formal and natural inner products in HL
(similar to operator S for space HS), can be written in block form as

L ~A =

(
L11 L12

L21 L22

) (
ALξ
ALη

)
=

(
L11ALξ + L12ALη
L21ALξ + L22ALη

)
.(2.20)

This operator is symmetric and positive in the formal inner product:

[L ~A, ~B]HL = [ ~A,L ~B]HL , [L ~A, ~A]HL > 0 .(2.21)

A comparison of formal and natural inner products gives the following:

(L11ALξ)(i+1/2,j) =

 ∑
k=± 1

2
; l=0,1

V
(i+1/2,j+k)
(i+l,j)

sin2 ϕ
(i+1/2,j+k)
(i,j+l)

 ALξ(i+1/2,j) ,

(L12ALη)(i+1/2,j)

= −
∑

k=± 1
2

; l=0,1

(−1)k+ 1
2

+l
V

(i+1/2,j+k)
(i+l,j)

sin2 ϕ
(i+1/2,j+k)
(i+l,j)

cosϕ
(i+1/2,j+k)
(i+l,j) ALη(i+l,j+k) ,

(2.22)

(L21ALξ)(i,j+1/2)

= −
∑

k=± 1
2

; l=0,1

(−1)k+ 1
2

+l
V

(i+k,j+1/2)
(i,j+l)

sin2 ϕ
(i+k,j+1/2)
(i,j+l)

cosϕ
(i+k,j+1/2)
(i,j+l) ALξ(i+k,j+l) ,

(L22ALη)(i,j+1/2) =

 ∑
k=± 1

2
; l=0,1

V
(i+k,j+1/2)
(i,j+l)

sin2 ϕ
(i+k,j+1/2)
(i,j+l)

 ALη(i,j+1/2) .

The operators L11 and L22 are diagonal, and the stencils for the operators L21 and
L12 (in 2-D) are the same as for the operators S12 and S21 (see Figure 2.7).

These discrete inner products satisfy the axioms of inner products; that is,
• (A, B)Hh = (B, A)Hh ,
• (λA, B)Hh = λ (A, B)Hh (for all real numbers λ),
• (A1 +A2, B)Hh = (A1B)Hh + (A2B)Hh ,
• (A, A)Hh ≥ 0 and (A, A)Hh = 0 if and only if A = 0 .

In these axioms, A and B are either discrete scalar or discrete vector functions and
(·, ·)Hh is the appropriate discrete inner product.

Therefore the discrete inner products are true inner products and not just ap-
proximations of the continuous inner products. Also, discrete spaces are Euclidean
spaces.
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3. Discrete analogs of div,grad, and curl.

3.1. Natural operators.

3.1.1. Natural operator DIV. The coordinate invariant definition of the div
operator is based on Gauss’s divergence theorem:

div ~W = lim
V→0

∮
∂V

( ~W,~n) dS

V
,(3.1)

where ~n is a unit outward normal to boundary ∂V . To extend the operator div to
the boundary, we define the extended divergence operator d as

d~w =

{
+div ~w , (x, y) ∈ V,
−(~w,~n) , (x, y) ∈ ∂V.(3.2)

The corresponding natural definition of the discrete divergence operator is

DIV : HS → HC ,(3.3)

where

(DIV ~W )(i+1/2,j+1/2)(3.4)

=
1

V C(i,j)

{(
WSξ(i+1,j+1/2) Sξ(i+1,j+1/2) −WSξ(i,j+1/2) Sξ(i,j+1/2)

)
+
(
WSη(i+1/2,j+1) Sη(i+1/2,j+1) −WSη(i+1/2,j) Sη(i+1/2,j)

)}
.

The discrete operator DIV is also extended to the boundary, and we denote the
extended operator as D. This operator coincides with DIV, (D ~W )(i+1/2,j+1/2) =

(DIV ~W )(i+1/2,j+1/2) on the internal cells and is defined on the boundary by

(D ~W )(i+1/2,1) = −WSη(i+1/2,1) , i = 1, . . . ,M − 1 ,

(D ~W )(i+1/2,N) = +WSη(i+1/2,N) , i = 1, . . . ,M − 1 ,(3.5)

(D ~W )(1,j+1/2) = −WSξ(1,j+1/2) , j = 1, . . . , N − 1 ,

(D ~W )(M,j+1/2) = +WSξ(M,j+1/2) , j = 1, . . . , N − 1 .

3.1.2. Natural operator GRAD. For any direction l given by the unit vector
~l, the directional derivative can be defined as

∂u

∂l
= (gradu,~l) .(3.6)

For a function Ui,j ∈ HN , this relationship leads to the coordinate invariant definition
of the natural discrete gradient operator:

GRAD : HN → HL .(3.7)

The vector ~G = GRADU is defined as

GLξi+1/2,j =
Ui+1,j − Ui,j
lξi+1/2,j

, GLηi,j+1/2 =
Ui,j+1 − Ui,j
lηi,j+1/2

, GLζi,j = 0 .(3.8)

Note that if GRADU = 0, then scalar discrete function U is a constant, and vice
versa.
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3.1.3. Natural operator CURL. The coordinate invariant definition of the
curl operator is based on Stokes’s circulation theorem,

(~n, curl ~B) = lim
S→0

∮
l
( ~B,~l) dl

S
,(3.9)

where S is the surface spanning (based on) the closed curve l, ~n is the unit outward

normal to S, and ~l is the unit tangential vector to the curve l.
Using the discrete analog of (3.9), we can obtain expressions for components of

vector ~R = (RSξ,RSη,RSζ) = CURL ~B , where

CURL : HL → HS,

and

RSξi,j+1/2 =
BLζi,j+1 lζi,j+1,k+1/2 −BLζi,j lζi,j,k+1/2

Sξi,j+1/2,k+1/2
(3.10)

=
BLζi,j+1 −BLζi,j

lηi,j+1/2
,

RSηi+1/2,j = −BLζi+1,j,k+1/2 lζi+1,j,k+1/2 −BLζi,j,k+1/2 lζi,j,k+1/2

Sηi+1/2,j,k+1/2
(3.11)

= −BLζi+1,j −BLζi,j
lξi+1/2,j

,

and

RSζi+1/2,j+1/2

=
{(
BLηi+1,j+1/2 lηi+1,j+1/2 −BLηi,j+1/2 lηi,j+1/2

) −(
BLξi+1/2,j+1 lξi+1/2,j+1 −BLξi+1/2,j lξi+1/2,j

)}
/ Sζi+1/2,j+1/2

(3.12)

(see [16] for details).

Note that if ~B = (0, 0, BLζ), then the condition CURL ~B = 0 is equivalent to

BLζi,j = const. This follows since for any such vector ~B we have that RSζi,j = 0,
and from (3.10), (3.11) we can conclude that RSξi,j and RSηi,j equal zero only if
BLζi,j = const.

3.1.4. Properties of natural discrete operators. The natural discrete oper-
ators satisfy discrete analogs of the theorems of vector analysis [16], including Gauss’s

theorem; the theorem that div ~A = 0 if and only if ~A = curl ~B; the theorem that
curl ~A = 0 if and only if ~A = gradϕ; the theorem that if ~A = gradϕ, then the
line integral does not depend on path; and the theorem that if the line integral of a
vector function is equal to zero for any closed path, then this vector is the gradient
of a scalar function.

In this paper we use two theorems:
DIV ~A = 0 if and only if ~A = CURL ~B, where ~A ∈ HS and ~B ∈ HL;
CURL ~A = 0 if and only if ~A = GRADU , where ~A ∈ HL and U ∈ HN .
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3.2. Adjoint operators. In [17], we use the SOM to derive the operators DIV,
GRAD, and CURL from discrete analogs of the integral identities (1.1) and (1.2).
These identities connect the differential operators div, grad, and curl and allow us
to obtain their discrete analogs with consistent domains and ranges of values.

3.2.1. Operator GRAD. To construct the operator GRAD we use a discrete
analog of the identity (1.1). If we introduce the space of scalar functions H with the
inner product

(u, v)H =

∫
V

u v dV +

∮
∂V

u v dS , u, v ∈ H ,(3.13)

and the space of vector functions H with inner product defined as

( ~A, ~B)H =

∫
V

( ~A, ~B) dV , ~A , ~B ∈ H ,(3.14)

then the identity (1.1) implies

d = −grad∗(3.15)

or

(d ~w, u)H =

∫
V

udiv ~w dV −
∮
∂V

u (~w, ~n) dS

= −
∫
V

(~w, gradu) dV(3.16)

= (~w, −gradu)H .

We will base the definition of GRAD on a discrete analog of (3.14). In section
3.1.1, we defined the operator D as the discrete analog of the continuous operator

d. Therefore the derived gradient operator is defined by GRAD
def
= −D∗, where the

adjoint is taken in the natural inner products (from here on, we will use notation
def
= ,

when we define a new object).
Because D : HS → HC, the adjoint operator is defined in terms of the inner

products

(D ~W,U)HC = ( ~W,D∗U)HS ,(3.17)

which can be translated into the formal inner products as

[D ~W, C U ]HC = [ ~W,SD∗U ]HS .(3.18)

The formal adjoint D† of D is defined to be the adjoint in the formal inner product

[ ~W,D† C U ]HS = [ ~W,SD∗U ]HS .(3.19)

This relationship must be true for all ~W and U . Therefore D† C = SD∗ or D∗ =
S−1 D† C , and the discrete analog of the operator grad can be represented as

GRAD = −D∗ = −S−1 D† C .(3.20)

Because the operator S is banded, its inverse S−1 is full on nonorthogonal grids,
and it is not possible to derive explicit formulas for the components of the operator
GRAD. Consequently, GRAD has a nonlocal stencil.
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The discrete flux,

~W = −GRADU = S−1 D† C U ,
is obtained by solving the banded linear system (recall that C, S, and D are local
operators)

S ~W = D† C U ,(3.21)

where the right-hand side, F = (FSξ, FSη) = D† C U , is

FSξi,j+1/2 = −Sξi,j+1/2 (Ui+1/2,j+1/2 − Ui−1/2,j+1/2) ,

(3.22)

FSηi+1/2,j = −Sηi+1/2,j (Ui+1/2,j+1/2 − Ui+1/2,j−1/2) .

The discrete operator S is symmetric positive definite and can be represented as
matrix with five nonzero elements in each row (see (2.16) and Figure 2.7).

To prove that GRADU is zero if and only if U is constant, note that (3.22) implies
that if U is a constant, then D†MU = 0 and therefore GRADU = S−1D†MU = 0.
Conversely, if we assume GRADU = 0, then (3.20) and the fact that S is positive
definite imply

D†MU = 0 .(3.23)

This and (3.22) then give

U(i+1/2,j+1/2) − U(i−1/2,j+1/2) = 0 ; i = 1, . . . ,M , j = 1, . . . , N − 1 ,

U(i+1/2,j+1/2) − U(i+1/2,j−1/2) = 0 ; i = 1, . . . ,M − 1 , j = 1, . . . , N ,

which implies that U is a constant. Therefore the null space of the discrete operator
GRAD is composed only of the constant functions.

3.2.2. Operator DIV. The operator DIV is defined as the negative adjoint to

the natural operator GRAD. In the subspace of scalar functions,
0

H, where u(x, y) =
0 , (x, y) ∈ ∂V , the boundary term in integral identity (1.1) is zero, and therefore∫

V

( ~W,grad u) dV = −
∫
V

udiv ~W dV .(3.24)

That is, in this subspace div is the negative adjoint of grad in the sense of

(u, v) 0

H
=

∫
V

u v dV and ( ~A, ~B)H =

∫
V

( ~A, ~B) dV .(3.25)

The discrete adjoint operator DIV : HL →
0

HN is defined as the negative adjoint

of the discrete natural operator GRAD :
0

HN→ HL,

DIV
def
= −GRAD∗ .(3.26)

Using the connections between the formal and natural inner products,

DIV = −N−1 ·GRAD† · L .(3.27)
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(i,j)

(i+1,j)
(i-1,j)

(i,j-1)

(i,j+1)

AL ALξ η

Fig. 3.1. Stencil for the operator DIV = −GRAD∗ : HL →
0

HN .

DIV is local because N is diagonal, and both GRAD† and L are local. It is easy to
see that

−GRAD† ~A =

(
ALξi+1/2,j

lξi+1/2,j
− ALξi−1/2,j

lξi−1/2,j

)
+

(
ALηi,j+1/2

lηi,j+1/2
− ALηi,j−1/2

lηi,j−1/2

)
.

The stencil for DIV at the interior nodes (shown in Figure 3.1) is obtained by
combining this formula with the stencil for operators L11, L12, L21, and L22 defined
in (2.22).

3.2.3. Operator CURL. In the subspace of vectors ~A, where the surface inte-
gral in (1.2) on the right-hand side vanishes, we have∫

V

(curl ~A, ~B) dV =

∫
V

( ~A, curl ~B) dV .(3.28)

That is, in this subspace of vector functions, curl is self-adjoint,

curl = curl∗ ,(3.29)

in the inner product

( ~A, ~B)H =

∫
V

( ~A, ~B) dV .(3.30)

In the discrete case, for ~A ∈ HL, the vector CURL ~A ∈ HS, and we define the
discrete adjoint operator CURL : HS → HL as the adjoint to the discrete natural
operator CURL : HL → HS by

CURL
def
= CURL∗ .(3.31)

That is,

(CURL ~A, ~B)HS = ( ~A,CURL ~B)HL .(3.32)

We can express CURL as

CURL = L−1 · CURL† · S(3.33)
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and see that although CURL is a local operator, the operator CURL is nonlocal.
We can determine ~C = CURL ~B by solving the system of linear equations

L ~C = CURL† · S ~B ,(3.34)

with local operators L and CURL† · S.
When ~B = (0, 0, BSζ), it easy to prove that the condition CURL ~B = 0 implies

that BSζi,j = const. The proof is similar to one for GRAD.

3.2.4. Properties of adjoint discrete operators. The vector analysis theo-
rems for adjoint operators are proved in [17]. In this paper we use two theorems:

DIV ~A = 0 if and only if ~A = CURL ~B, where ~A ∈ HL and ~B ∈ HS;
CURL ~A = 0 if and only if ~A = GRADU , where ~A ∈ HS and U ∈ HC.

4. Orthogonal decomposition of discrete vector functions.

4.1. Continuous case. The orthogonal decomposition theorem for continuous
operators states that we can find the unique vector ~a, which satisfies the system of
equations

div~a = ρ , (x, y, z) ∈ V ,(4.1)

curl~a = ~ω , (x, y, z) ∈ V ,(4.2)

and one of the boundary conditions,

(~a, ~n) = β , (x, y, z) ∈ ∂V ,(4.3)

where ∂V is the boundary of V , ~n is the outward unit normal to ∂V , or

[~a × ~n] = ~γ , (x, y, z) ∈ ∂V ,(4.4)

where the tangential components of vector ~a are given on the boundary.
In addition the vector ~ω must satisfy

div ~ω = 0(4.5)

because div ~ω = div curl~a ≡ 0 , and there are additional compatibility conditions
that depend on the boundary conditions (see, for example, [12, 19, 21]). When the
normal components of the vector are on the boundary, the additional compatibility
condition needed is ∫

V

ρ dV =

∮
∂V

β dS .(4.6)

When the tangential components of the vector are on the boundary, the compatibility
condition is ∫

S

(~ω, ~n) dS =

∮
∂S

(~γ, ~l) dl ,(4.7)

where S is the part of ∂V , spanned by the contour ∂S, and ~l is the unit tangential
vector to ∂S.

Moreover, the vector ~a can be represented in the form

~a = ~a1 + ~a2 ,(4.8)
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where

div~a1 = ρ , curl~a1 = 0 ,(4.9)

div~a2 = 0 , curl~a2 = ~ω .(4.10)

From these equations, we can conclude that there is a scalar function ϕ and a vector
function ~b such that

~a1 = gradϕ , ~a2 = curl~b ,(4.11)

and the vector ~a can be decomposed into two orthogonal parts:

~a = gradϕ+ curl~b .(4.12)

For the case where the normal component of ~a is given on the boundary, we have

div gradϕ = ρ , (x, y, z) ∈ V,(4.13)

(gradϕ, ~n) = β, (x, y, z) ∈ ∂V,(4.14)

and

curl curl~b = ~ω , (x, y, z) ∈ V,(4.15)

(curl~b, ~n) = 0, (x, y, z) ∈ ∂V.(4.16)

The representation (4.12) is called the orthogonal decomposition of ~a because the
vector functions ~a1 and ~a2 are orthogonal to each other, (~a1, ~a2)H = 0 , in the sense
of the inner product. In fact,

(~a1, ~a2)H

def
=

∫
V

(~a1, ~a2) dV(4.17)

=

∫
V

(
gradϕ, curl~b

)
dV(4.18)

= −
∫
V

ϕdiv curl~b dV +

∮
∂V

ϕ (~n, curl~b) dS

= 0 .

This follows from the boundary condition (4.16) and the fact that div curl~b = 0 for

any vector ~b.
The Neumann boundary condition (4.14) allows the scalar function ϕ to be de-

termined only up to an arbitrary constant. Note that if ~b is set equal to zero on the
boundary, then it automatically satisfies the Dirichlet-type boundary condition (4.16)

for ~b.
When the tangential components of ~a are given on the boundary, ϕ and ~b satisfy

the equations

div gradϕ = ρ , (x, y, z) ∈ V,(4.19)

[gradϕ× ~n] = ~0, (x, y, z) ∈ ∂V,(4.20)

and

curl curl~b = ~ω , (x, y, z) ∈ V,(4.21)

[curl~b× ~n] = ~γ, (x, y, z) ∈ ∂V.(4.22)
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Here again, the vector functions ~a1 and ~a2 are orthogonal to each other:

(~a1, ~a2)H =

∫
V

(
gradϕ, curl~b

)
dV(4.23)

=

∫
V

(
curl gradϕ, ~b

)
dV −

∮
∂V

(
~b, [gradϕ× ~n]

)
= 0 .

This follows from the boundary condition (4.20) and the fact curl gradϕ = 0 for any
scalar function ϕ.

We can take the function ϕ equal to zero on the boundary to satisfy the Dirichlet
boundary condition (4.20). For the Neumann boundary condition (4.22) for ~b, we can

determine ~b up to the gradient of an arbitrary scalar function.
In this paper, we consider only the 2-D case when the vector ~a depends on (x, y)

and lies in (x, y) plane. For simplicity, we will call these 2-D vectors.
For the 2-D vector ~a, the vector ~ω = curl~a has only the ωz component, which

we, for simplicity, will denote by ω. Also the first compatibility condition in (4.5),
div ~ω = 0, is always satisfied because vector ωz is independent of z. In the 2-D case,
vector [~a×~n] = ~γ in the boundary condition (4.4) has a single component and can be
considered a scalar, which we denote by γ. The compatibility condition (4.7) reduces
to the case where S is a 2-D domain, and ∂S is the boundary contour. Note that
(4.15) and (4.21) are scalar equations in the 2-D case.

We will now consider the orthogonal decomposition of discrete vector functions for
both the case where the normal component of the vector for discrete vector functions
from the space HS is given or where the tangential component of the vector for
discrete vector functions from the space HL is given.

4.2. Orthogonal decomposition of vector functions in HS. We first con-
sider the orthogonal decomposition of 2-D vector functions ~A ∈ HS, where ~A =
(ASξ, ASη, 0).

The discrete orthogonal decomposition states that we can find a vector function
~A ∈ HS, satisfying the conditions(

DIV ~A
)
i+1/2,j+1/2

= ρi+1/2,j+1/2 ,

{
i = 1, . . . ,M − 1,
j = 1, . . . , N − 1,

(4.24) (
CURL ~A

)
i,j

= ωi,j ,

{
i = 2, . . . ,M − 1,
j = 2, . . . , N − 1,

(4.25)

ASξ1,j+1/2 = βLj+1/2 , ASξM,j+1/2 = βRj+1/2 , j = 1, . . . , N − 1 ,
ASηi+1/2,1 = βBi+1/2 , ASηi+1/2,N = βTi+1/2 , i = 1, . . . ,M − 1 .

(4.26)

That is, the equation DIV ~A = ρ is satisfied in all the cells, the equation CURL ~A =
ω is satisfied at all the internal nodes, and the components of vector ~A on the boundary
faces are given.

The discrete compatibility condition (and analog of (4.6)) for ρ and β is

M−1∑
i=1

N−1∑
j=1

ρi+1/2,j+1/2 V Ci+1/2,j+1/2 =
N−1∑
j=1

(
βRj+1/2 SξM,j+1/2 − βLj+1/2 Sξ1,j+1/2

)
+

M−1∑
i=1

(
βTi+1/2 Sηi+1/2,N−βBi+1/2 Sηi+1/2,1

)
.(4.27)
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The discrete analog of the condition div ~ω = 0 is always satisfied because the vector
ω has only a z component, which depends only on (x, y).

Theorem 4.1. The solution to (4.24)–(4.27) is unique.

Proof. We prove that the solution is unique by contradiction. Assume ~A1 and ~A2

are two different solutions, then ~ε = ~A1 − ~A2 satisfies

DIV ~ε = 0 ,(4.28)

CURL ~ε = 0 ,(4.29)

εSξ1,j+1/2 = 0 , εSξM,j+1/2 = 0 , j = 1, . . . , N − 1 ,
εSηi+1/2,1 = 0 , εSηi+1/2,N = 0 , i = 1, . . . ,M − 1 .

(4.30)

From (4.29), we can conclude

~ε = GRADϕ(4.31)

on the internal faces. Normal components of vector ~ε are equal to zero on the bound-
ary (4.30). We know that for the subspace of vector functions with zero normal
components on the boundary, the discrete divergence is the negative adjoint of the
gradient

DIV = −GRAD
∗
,(4.32)

or

(DIV ~ε, ϕ)HC + (GRADϕ, ~ε)HS = 0 .(4.33)

Using (4.28), (4.31), and (4.33), we can conclude

(GRADϕ,GRADϕ)HS = 0 ,

which implies

GRADϕ = 0 .

Therefore ~ε = 0 both on the internal faces (4.31), and on the boundary faces (4.30).

Hence ~A1 = ~A2, and the solution is unique.
Theorem 4.2. There exists a solution of problem (4.24)–(4.27).
Proof. We will find the solution of (4.24)–(4.27) in the form

~A = ~G+ ~C ,(4.34)

where the vectors ~G and ~C satisfy the equations

CURL ~G = 0 ,(4.35)

DIV ~G = ρ ,(4.36)

GSξ1,j+1/2 = βLj+1/2 , GSξM,j+1/2 = βRj+1/2 , j = 1, . . . , N − 1 ,
GSηi+1/2,1 = βBi+1/2 , GSηi+1/2,N = βTi+1/2 , i = 1, . . . ,M − 1 ;

(4.37)

DIV ~C = 0 ,(4.38)

CURL ~C = ω ,(4.39)

CSξ1,j+1/2 = 0 , CSξM,j+1/2 = 0 , j = 1, . . . , N − 1 ,
CSηi+1/2,1 = 0 , CSηi+1/2,N = 0 , i = 1, . . . ,M − 1 .

(4.40)
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By linearity, if the problems for ~G and ~C have a solutions, then ~A = ~G+ ~C is the
solution of our original problem.

First we note that at the internal faces (4.35) can be replaced by

~G = GRADϕ .(4.41)

Equations (4.36) and (4.41) with boundary conditions (4.37) give the discrete Poisson

equation with Neumann boundary conditions and can be solved by eliminating ~G and
moving all known values of ~G on the boundary to the right-hand side of (4.36). From a
formal point of view, the transformed equations are equivalent to a problem with zero
Neumann boundary conditions and a modified right-hand side, where the operator
DIV is defined on the subspace of vector functions with zero normal components on
the boundary

DIV GRADϕ = ρ̃ .(4.42)

Because DIV = −GRAD
∗

on the subspace of vector functions with zero normal
components on the boundary, DIV GRAD is a self-adjoint operator. The number of
linear equations for ϕi,j in system (4.42) is equal to the number of unknowns (and
equal to number of cells), (M − 1)× (N − 1).

Equation (4.42) also can be written as

DIV ~̃G = ρ̃,(4.43)

~̃G = GRADϕ,(4.44)

G̃Sξ1,j+1/2 = 0 , G̃SξM,j+1/2 = 0 , j = 1, . . . , N − 1 ,

G̃Sηi+1/2,1 = 0 , G̃Sηi+1/2,N = 0 , i = 1, . . . ,M − 1 ,
(4.45)

where ~̃G ≡ ~G on all the internal faces. The compatibility condition (4.27) is

M−1∑
i=1

N−1∑
j=1

ρ̃i+1/2,j+1/2 V Ci+1/2,j+1/2 = 0 .(4.46)

When the number of unknowns is equal to the number of equations, then a system
of linear equations has a solution if and only if the right-hand side is orthogonal to
all the solutions of the homogeneous adjoint equation [38].

The homogeneous adjoint problem

DIV ~F = 0 ,(4.47)

~F = GRADψ ,(4.48)

FSξ1,j+1/2 = 0 , FSξM,j+1/2 = 0 , j = 1, . . . , N − 1 ,
FSηi+1/2,1 = 0 , FSηi+1/2,N = 0 , i = 1, . . . ,M − 1 ,

(4.49)

has ψ = const. as a solution. To prove this is the only solution, notice that if ψ is the
solution of homogeneous system, then DIV GRADψ = 0. Because DIV = −GRAD

∗
,

we have

0 = (DIV GRADψ,ψ)HC = (GRADψ,GRADψ)HS ,(4.50)

and therefore GRADψ = 0 , which requires ψ = const.
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The right-hand side ρ̃ of (4.43) is orthogonal to the constant function, which is
equal to one in all cells; I = Ii,j = const.;

(ρ̃, I)HC = constant
M−1∑
i=1

N−1∑
j=1

ρ̃i+1/2,j+1/2 V Ci+1/2,j+1/2 = 0 ,(4.51)

using compatibility conditions (4.46). Therefore there is a solution to our original

problem for ~G. Furthermore, as in the continuous case, ϕ is defined up to a constant,
and because GRAD I = 0 , the vector ~G = GRADϕ is unique.

Next we show that there is a unique vector ~C satisfying (4.38)–(4.40).

From condition (4.38) we know that ~C = CURL ~B on all faces. Because ~C is a

2-D vector, the vector ~B has a single component, BLζ; then

CSξi,j+1/2 =
BLζi,j+1 −BLζi,j

lηi,j+1/2
,(4.52)

CSηi+1/2,j = −BLζi+1,j −BLζi,j
lξi+1/2,j

,(4.53)

and we can satisfy the boundary conditions (4.40) by choosing BLζi,j equal to zero
on the boundary.

The equations for ~C are equivalent to the problem for the vector ~B;

CURL CURL ~B = ω ,(4.54)

BLζ1,j = 0 , BLζM,j = 0 , j = 1, . . . , N ,
BLζi,1 = 0 , BLζi,N = 0 , i = 1, . . . ,M .

(4.55)

If we know BLζi,j , then ~C is determined by (4.52), (4.53).
To show that the solution of (4.54), (4.55) is unique, note that for vector functions

with zero boundary conditions CURL = CURL
∗
, and therefore

(CURL CURL ~B, ~B)HL = (CURL ~B, CURL ~B)HS ≥ 0 ,(4.56)

or

CURL CURL ≥ 0 .

If

(CURL CURL ~B, ~B)HL = (CURL ~B, CURL ~B)HS = 0 ,(4.57)

then CURL ~B = 0 , and because ~B has only one component, BLζ, BLζi,j = const.
Also, because of BLζi,j = 0 on the boundary, then BLζi,j = 0 everywhere. This
implies that the operator CURL CURL is positive; CURL CURL > 0.

Positive operators are invertible in a finite-dimensional space. Therefore CURL
CURL has an inverse, and the system (4.54), (4.55) has a unique solution.

Theorem 4.3. GRADϕ is orthogonal to CURL ~B.
Proof. Because of the zero boundary conditions for ~B,(

GRADϕ, CURL ~B
)
HS

=
(

CURL GRADϕ, ~B
)
HL

,(4.58)

and since CURL GRADϕ = 0 for any ϕ, we have(
GRADϕ, CURL ~B

)
HS

= 0 ,(4.59)

proving that GRADϕ is orthogonal to CURL ~B.
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4.3. Orthogonal decomposition of vector functions in HL. We now
consider the orthogonal decomposition of vector functions ~A ∈ HL, where ~A =
(ALξ, ALη, 0), and its tangential components ALξ, ALη are given on correspond-
ing parts of the boundary.

The goal is to a find vector function ~A ∈ HL, satisfying the conditions(
DIV ~A

)
i,j

= ρi,j ,

{
i = 1, . . . ,M − 1,
j = 1, . . . , N − 1,

(4.60)(
CURL ~A

)
i+1/2,j+1/2

= ωi+1/2,j+1/2,

{
i = 1, . . . ,M − 1,
j = 1, . . . , N − 1,

(4.61)

ALη1,j+1/2 = βLj+1/2 , ALηM,j+1/2 = βRj+1/2 , j = 1, . . . , N − 1 ,
ALξi+1/2,1 = βBi+1/2 , ALξi+1/2,N = βTi+1/2 , i = 1, . . . ,M − 1 .

(4.62)

That is, the equation DIV ~A = ρ is satisfied at all the internal nodes, the equation
CURL ~A = ω is satisfied in all the cells, and the tangential components of the vector
~A are given on the boundary edges. The discrete compatibility condition for ω and
β’s,

M−1∑
i=1

N−1∑
j=1

ωi+1/2,j+1/2 V Ci+1/2,j+1/2 =
N−1∑
j=1

(
βRj+1/2 SξM,j+1/2 − βLj+1/2 Sξ1,j+1/2

)
−
M−1∑
i=1

(
βTi+1/2 Sηi+1/2,N − βBi+1/2 Sηi+1/2,1

)
,(4.63)

also has to be satisfied.
Theorem 4.4. The solution to (4.60)–(4.62) is unique.

Proof. We prove the uniqueness of the solution contradiction. If ~A1 and ~A2 are
two different solutions, then ~ε = ~A1 − ~A2 satisfies

DIV ~ε = 0 ,(4.64)

CURL ~ε = 0 ,(4.65)

εLη1,j+1/2 = 0 , εLηM,j+1/2 = 0 , j = 1, . . . , N − 1 ,
εLξi+1/2,1 = 0 , εLξi+1/2,N = 0 , i = 1, . . . ,M − 1 .

(4.66)

From (4.64), we can conclude

~ε = CURL ~B(4.67)

on the internal edges.
The tangential components of the vector ~ε are zero on the boundary by (4.66). In

the subspace of vector functions with zero tangential components on the boundary,
the discrete operators CURL and CURL are adjoint to each other, CURL = CURL

∗
,

or

(CURL ~ε, ~B)HS + (CURL ~B, ~ε)HL = 0 .(4.68)

Using (4.65) and (4.67), we conclude that (CURL ~B,CURL ~B)HL = 0 , and therefore

CURL ~B = 0 . Because ~ε = CURL ~B = 0 on the internal edges, and it is equal to zero
on the boundary (4.66), then ~ε = 0 , and the solution is unique.

Theorem 4.5. There exists the solution of problem (4.60)–(4.62).
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Proof. We will find the solution of (4.60)–(4.62) in the form

~A = ~G+ ~C ,(4.69)

where the vector ~G satisfies the equations

CURL ~G = 0 ,(4.70)

DIV ~G = ρ ,(4.71)

GLη1,j = 0 , GLηM,j = 0 , j = 1, . . . , N − 1 ,
GLξi,1 = 0 , GLξi,N = 0 , i = 1, . . . ,M − 1 ,

(4.72)

and the vector ~C satisfies the equations

DIV ~C = 0 , X(4.73)

CURL ~C = ω ,(4.74)

CLη1,j+1/2 = βLj+1/2 , CLηM,j+1/2 = βRj+1/2 , j = 1, . . . , N − 1 ,
CLξi+1/2,1 = βBi+1/2 , CLξi+1/2,N = βTi+1/2 , i = 1, . . . ,M − 1 .

(4.75)

We first consider the problem for ~G and replace (4.70) by the equation

~G = GRADϕ .

Because the components GLξi,j , GLηi,j of the vector GRADϕ are equal to

GLξi+1/2,j =
ϕi+1,j − ϕi, j
lξi+1/2,j

, GLηi,j+1/2 =
ϕi,j+1 − ϕi, j
lηi,j+1/2

,(4.76)

the boundary conditions (4.72) will be satisfied if we choose ϕi,j = 0 on the boundary.
Therefore, instead of the original problem, we can consider

DIV ~G = ρ ,(4.77)

~G = GRAD , ϕ(4.78)

ϕ1,j = 0 , ϕM,j = 0 , j = 1, . . . , N ,
ϕi,1 = 0 , ϕi,N = 0 , i = 1, . . . ,M .

(4.79)

This is a discrete Poisson’s equation with Dirichlet boundary conditions. It can easily
be shown that the solution is unique using the fact that DIV and GRAD are negative
adjoint to each other in the subspace of discrete scalar functions that are zero on the
boundary. The proof is almost identical to one for the Dirichlet problem in the case
of HS vectors.

Now let us consider problem (4.70)–(4.72) for the vector ~C. The condition (4.73)

implies that ~C = CURL ~B on the internal edges. Because the vector ~C is a 2-D vector,
the vector ~B has only one component, BSζ.

This Neumann boundary problem is self-adjoint, and the compatibility condition
(4.63) guarantees that the right-hand side of the nonhomogeneous equation is orthog-
onal to all solutions (constants) of the adjoint homogeneous equation. The proof

that this problem has a unique (up to constant) solution and that the vector ~C is
unique follows from a simple modification of the proof for the HS case with Neumann
boundary conditions.

Theorem 4.6. GRADϕ is orthogonal to CURL ~B.
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Fig. 5.1. Continuous spiral vector field ~a.

Proof. Because of the zero boundary conditions for the scalar function ϕ,(
GRADϕ, CURL ~B

)
HL

=
(
ϕ, DIV CURL ~B

)
HN

,(4.80)

and because DIV CURL ~B = 0 for any ~B,(
GRADϕ, CURL ~B

)
HL

= 0 .(4.81)

Hence GRADϕ and CURL ~B are orthogonal.

5. Numerical example. We will illustrate these theorems on the orthogonal
decomposition of a spiral vector field. The continuous spiral vector field ~a given by
its Cartesian components (ax(x, y), ay(x, y)),

ax(x, y) = x− y , ay(x, y) = x+ y ,(5.1)

is shown in Figure 5.1 in the square [−0.5, 0.5]× [−0.5, 0.5].
This vector field satisfies

div~a = 2 , curl~a = 2 ,(5.2)

and the values of the normal components of the vector on the boundary can be
obtained from the exact solution.

We first consider approximation of problem (5.2) in space HS:

DIV ~A = 2 , CURL ~A = 2 ,(5.3)

where ~A ∈ HS and the components of ~A are given on the boundary, and then solve for
the orthogonal decomposition of ~A = GRADϕ+ CURL ~B, satisfying (4.35)–(4.40).

We solve (5.3) on the smooth grid (shown in Fig. 5.2 (a)) obtained by mapping
the uniform grid in square [−0.5 , 0.5] × [−0.5 , 0.5] in the space (ξ , η) into the same
square in computational space x(ξ , η) , y(ξ , η):

x(ξ, η) = ξ + 0.1 sin(2π ξ) sin(2π η) , y(ξ, η) = η + 0.1 sin(2π ξ) sin(2π η) .

The numerical solution of 5.3 for M = N = 17 is shown in Figure 5.2 (b).
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(a) Computational grid (b) Discrete vector field ~A

Fig. 5.2. (a) The smooth computational grid, used in solution of (5.3). (b) The recovered

(reconstructed) discrete vector field ~A.
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(a) Discrete vector field GRADϕ (b) Discrete vector field CURL ~B

Fig. 5.3. The orthogonal decomposition of vector ~A = GRADϕ+ CURL ~B satisfying (5.3). (a)

Vector function GRADϕ, M = N = 17. (b) Vector function CURL ~B, M = N = 17.

To solve discrete equations we use the multigrid-preconditioned conjugate-gradient
method described in [25].

The results of orthogonal decomposition, vector functions GRADϕ and CURL ~B,
are shown in Figure 5.3 (a) and (b).

Table 5.1 verifies the second-order convergence rate for the approximate vector
field ~A to the exact solution in the max norm

ψ = max{max
i,j
|ASξi,j+1/2 −ASξEi,j+1/2| ,max

i,j
|ASηi+1/2,j −ASηEi+1/2,j |} ,(5.4)

where ASξi,j+1/2 , ASηi+1/2,j are the approximate solutions, and ASξEi,j+1/2 , ASη
E

i+1/2,j are the projections of the exact spiral vector field, defined by

ASξEi,j+1/2 = nξxi,j+1/2 0.5 [ax(xi,j+1, yi,j+1) + ax(xi,j , yi,j)](5.5)

+nξyi,j+1/2 0.5 [ay(xi,j+1, yi,j+1) + ay(xi,j , yi,j)] ,
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Table 5.1
Convergence rate for the approxiamte vector field ~A to the exact solution

M = N 17 33 65
max norm 1.11E-2 3.05E-3 7.85E-4
qmax 1.86 1.95 -

ASηEi+1/2,j = nηxi+1/2,j 0.5 [ax(xi+1,j , yi+1,j) + ax(xi,j , yi,j)](5.6)

+nηyi+1/2,j 0.5 [ay(xi+1,j , yi+1,j) + ay(xi,j , yi,j)] ,

where
(
nξxi,j+1/2, nξ

y
i,j+1/2

)
and

(
nηxi+1/2,j , nη

y
i+1/2,j

)
are Cartesian components of

the unit normal vectors to the faces Sξi,j+1/2 and Sηi+1/2,j .

6. Discussion. The orthogonal decomposition theorem of a vector field is one
of the most important theorems of vector analysis. In this paper, we proved that the
new mimetic discrete approximations of the divergence, gradient, and curl derived
using the SOM automatically satisfy discrete analogs of the theorem for vectors from
spaces HL of discrete vector functions defined by their orthogonal projections onto
directions of the edges of the cell and HS of discrete vector functions defined by their
orthogonal projections onto directions perpendicular to face of the cell. That is, any
vector ~A ∈ HS can be represented uniquely as

~A = GRADϕ+ CURL ~B ,(6.1)

where ϕ ∈ HC and ~B ∈ HL, and similarly any vector ~A ∈ HL can be presented as

~A = GRADϕ+ CURL ~B ,(6.2)

where ϕ ∈ HN and ~B ∈ HS.
The approximations for div, grad, and curl described in detail in [16, 17] in-

clude the natural discrete divergence, gradient, and curl operators based on coordinate
invariant definitions, such as Gauss’s theorem, for the divergence, and the formal ad-
joints of these operators. The operators have compatible domains and ranges and can
be combined to form all the compound operators div grad, grad div, and curl curl.
By construction, all of these operators satisfy discrete analogs of the integral identities
satisfied by the differential operators. Furthermore, all the discrete operators defined
by this self-consistent approach satisfy analogs of the major theorems of vector anal-
ysis relating the differential operators. These discrete operators have proven to be
effective in solving the heat conduction equation [36], [37], [18], Maxwell equations
[9], [1], and the equations of magnetic field diffusion [34]. In our continuing quest
to create a discrete analog of vector analysis on logically rectangular, nonorthogonal,
nonsmooth grids, we are comparing the accuracy and stability of the SOM meth-
ods with the commonly used FDM and finite-element methods and are investigating
higher-order methods on nonuniform grids. We will use the theorems in this paper to
investigate the stability and accuracy of SOM methods using the energy method in
an approach similar to what has been used in [13], [30], [31] for rectangular grids.

These new methods have great potential for solving complex, nonlinear PDEs on
nonuniform grids and preserving the conservation laws and geometric properties of
the underlying physical problem.
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