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Abstract

We present a new hybrid remapping (conservative interpolation) algorithm for multimaterial Arbi-
trary Lagrangian-Eulerian (ALE) methods. The hybrid remapping is performed in two steps. In the
first step, only nodes of the grid that lie inside subdomains occupied by single materials are moved.
At this stage, computationally cheap swept-region remapping is used. In the second step, nodes
that are vertices of mixed cells (cells containing several materials) and vertices of some cells in the
buffer zone around mixed cells are moved. At this stage, intersection-based remapping is used. This
new approach results in an improved efficiency of remapping for multimaterial ALE methods. We
demonstrate the performance of our new method for both structured and unstructured polygonal
grids in two dimensions, as well as for cell-centered and staggered discretizations.
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conservative interpolation
2000 MSC: 65M06, 65Z05

1. Introduction

In numerical simulations of fluid flow, the choice of the computational grid is crucial. Tradition-
ally, there have been two viewpoints, utilizing the Lagrangian or the Eulerian framework, each with
its own advantages and disadvantages. In a pioneering paper [10], Hirt et al. developed the formal-
ism for a grid whose motion could be determined as an independent degree of freedom, and showed
that this general framework could be used to combine the best properties of the Lagrangian and
Eulerian methods. This class of methods has been termed Arbitrary Lagrangian-Eulerian or ALE.
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Many authors have described ALE strategies to optimize accuracy, robustness, or computational
efficiency, see for example [2, 3, 24, 13, 14, 27, 23].

For multimaterial flows it is common to separate the ALE scheme into three distinct stages.
These are: 1) a Lagrangian stage in which the solution and the grid are updated; 2) a rezoning
stage in which the nodes of the computational grid are moved to a more optimal position; and 3)
a remapping stage, in which the Lagrangian solution is interpolated onto the rezoned grid.

For multimaterial flows, the initial grid is usually aligned with material interfaces, that is, each
cell of the grid contains only one material. For simple flows, it is possible to rezone the grid in
each material and keep material interfaces aligned with the grid at later times by not moving nodes
on interfaces at all or moving them along interfaces during the rezoning stage of ALE. Due to
the nature of shock wave propagation in complex high-speed multimaterial flows with strong shear
deformations, ALE methods are currently the only proven technology for solving such problems.

In ALE methods, the grid does not move with the fluid, and for complex flows it is impossible
to keep nodes of the grid on interfaces between materials during the entire calculation. Therefore,
it is unavoidable that mixed cells containing two or more materials will appear. Mixed cells in ALE
methods represent material interfaces that undergo high deformation.

The main problem related to mixed cells in the Lagrangian phase is how to accurately determine
the thermodynamic states of the individual material components and the nodal forces that such a
zone generates, despite the lack of information about the velocity distribution within multimaterial
cells. Usually, a separate set of material properties is maintained for all the materials in each
multimaterial cell along with the volume fractions that define the fraction of the cell’s volume
occupied by each material. A sub-scale model is then required to define how the volume fractions
and states of the individual materials evolve during the Lagrangian step. The construction of
such a model is beyond the scope of this paper. We refer the interested reader to [30] for more
information and appropriate references. For the purpose of this paper, it is important to note that
the accuracy of the closure model for a mixed cell depends on the accuracy of the information about
each material, its parameters, as well as the material location inside the mixed cell.

In the rezoning stage, the nodes of the computational grid are moved to more optimal positions.
The rezoning stage results in the new grid. We assume that the rezoned grid is close to the
Lagrangian grid. In particular, we assume that, after rezoning, a node of the grid stays in the
union of Lagrangian cells that share this node. The interested reader can find a short review of
rezoning methods in [15].

To start a new Lagrangian step, we need to conservatively interpolate all flow parameters from
the Lagrangian grid at the completed time step to the new rezoned grid. The assumption of small
movements of nodes during the rezoning stage implies that an exchange of information during the
remapping stage occurs only between immediate neighbors.

As we have mentioned before, realistic multimaterial ALE calculations have to deal with mixed
cells, which may appear and disappear after the rezoning stage. Therefore, in the remap stage
one needs to determine which cells of the rezoned grid are pure and which are mixed, and find
parameters for each material in mixed cells. There are several approaches to multimaterial remap,
[3], however, modern methods require knowledge of the interface on the Lagrangian grid.

It is beyond the scope of this paper to discuss interface reconstruction methods for the multi-
material case. We refer the interested reader to [1] for a review of such methods. For the purpose
of this paper it is sufficient to know that if a mixed cell is a convex polygon in 2D (in this paper
we are only concerned with 2D), then we assume each material in the mixed cell is represented
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by a convex sub-polygon, which contains only this material. If a mixed cell is non-convex, then
a material in the mixed cell can be represented by disjoint pieces. However, each of these pieces
is a convex polygon. These sub-polygons do not intersect with each other, and the union of all
sub-polygons representing all materials is equal to the entire mixed cell.

To accurately represent materials on the new grid one needs to intersect cells of the new grid with
pure sub-polygons representing materials on the old grid. This intersection can be computationally
quite expensive, especially if non-convex cells need to be processed, which can result from the
Lagrangian step. However, if a new cell is located inside a single pure material, then simple and
cheaper methods, which do not require intersections, can be used for remapping this cell. One such
relatively cheap method is based on the notion of a swept-region, [25].

The goal of this paper is to describe a new efficient hybrid remapping method to be used in
multimaterial ALE simulations. This hybrid method uses a combination of computationally cheap
swept-region remapping methods for cells inside sub-domains containing a single pure material,
and intersection-based remapping for sub-domains containing mixed cells plus cells in some buffer
region around those mixed cells. Hybrid remapping is performed in two steps. In the first step,
only nodes of the grid inside sub-domains occupied by single materials are moved. In this stage,
computationally cheap swept-region remapping is used. In the second step, nodes are moved that
are vertices of mixed cells (cells containing several materials) and vertices, which are shared by
pure cells containing different materials. At this stage, intersection-based remapping is used. In
general our new approach improves the efficiency of remapping for multimaterial ALE codes while
retaining the accuracy of intersection-based remapping. The general discussion related to factors
affecting relative efficiency of remapping in multiphysics ALE codes is presented in section 7.

The paper is organized as follows. In section 2, we describe notations related to grids and
representation of the materials. In section 3, we describe the main ideas of remapping for the single
material case. We describe intersection-based remapping as well as swept-region-based remapping
and describe their properties including a relative cost estimate. Conventional remapping for multi-
material ALE, which requires intersections, is described in section 4. The new hybrid remapping is
described in section 5. In that section, we give a motivation, describe the algorithm and comment
on the relative cost of hybrid remapping. Numerical experiments are presented in section 6. We
present results using two different multimaterial ALE codes. The first code, [20, 17] uses structured
quadrilateral grids and a staggered discretization. The second code, [9] uses general polygonal grids
and a cell-centered discretization. We first present results for stand-alone cyclic remapping, where
we know the exact solution. Then we present results for two realistic problems: a Rayleigh-Taylor
instability problem and a problem of shock/bubble interaction. For all problems, we present timings
using both ALE codes. We conclude with a discussion in section 7.

2. Notations

2.1. Grids

We consider a two-dimensional computational domain Ω, assumed to be a general polygon. We
assume that we are given a grid on Ω that consists of cells Ci, i = 1, . . . , imax that cover Ω without
gaps or overlaps. The cells Ci can be non-convex.

Each cell is defined by a set of vertices (which we will sometimes call points or nodes), denoted
by P (Ci), and a set of sides (which are segments of straight lines, we will sometimes refer to them
also as faces or edges), denoted by F (Ci). Each side Fk is shared by only two cells, denoted by
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Figure 1: a) Old (Lagrangian) grid, b) New (rezoned) grid.

C (Fk). Each vertex Pm may be shared by an arbitrary number of cells. We denote the set of
cells that have a common vertex by C (Pm); similarly, we denote the set of all sides sharing a
common vertex Pm by F (Pm). The cells that share a side or vertex with a particular cell are called
neighbors; the set of all the neighbors of a cell Ci is denoted by C (Ci). To distinguish between
neighbors which share a face or a point, we will denote them by Cf (Ci) and Cp (Ci), respectively.
The reciprocal relation of the neighborhood defines the connectivity of the grid.

In the context of ALE methods, we consider two grids with the same connectivity — i.e., the
same number of cells and vertices, and the same neighbor relations. The grid that contains the
cells Ci is called the Lagrangian or old grid. The second grid, containing the cells C̃k, is called the
rezoned or new grid.

In the ALE method, the rezoned grid results from an algorithm (i.e., a rezoner) that identifies
and mitigates inadequacies of the Lagrangian grid. In Figs. 1 and 2, we show examples of pairs of
a Lagrangian grid and a rezoned grid. The rezoned grids were generated using the optimization-
based reference Jacobian strategy described in [15]. The rezoned grid produced by this algorithm
remains “close” to the Lagrangian grid, but has better geometrical quality. Fig. 2 illustrates how
complicated the relative locations of the two grids can be, even when displacements of the nodes
are small.

After rezoning, the old grid {Ci} is mapped into a new grid {C̃i}. We define a set C (Ci) =
⋃

k Ck,
such that

C̃i ∈ C (Ci) . (1)

For any two grids, such a set exists because C̃i ∈
⋃imax

k=1 Ck . However, we will always consider the
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Figure 2: Lagrangian (solid lines) and rezoned (dashed lines) grid. a) Entire region, b) Fragment.

reasonably small set for which (1) holds.
In this paper, we will assume that C (Ci) = Ci

⋃

C (Ci) ; that is, the new cell C̃i is contained in
the union of the old cell Ci and its immediate neighbors, see, for example, Fig. 2b).

2.2. Representation of materials

In multimaterial problems each material is assigned some unique number km from the global
list of materials K = {km = 1, 2 , . . . kmax}.

Each cell in the grid can be pure, containing just one material, or mixed, containing several
materials.

In this paper, we assume that materials are represented by pure sub-polygons containing only
one material. This assumes that some interface reconstruction has been performed.

Fig. 3 a) is an example of a grid for a two-material problem. Pure cells containing only material
1 are in dark grey, and pure cells containing only material 2 are in white. In mixed cells containing
both materials the boundary of the sub-polygons containing material 1 is marked by a red dashed
line. Each material, k, in mixed cell Ci occupies part of the cell, which we denote by Ck

i . Each
mixed cell Ci has a list Ki = {k1, k2, . . . ; ks ∈ K} of materials, where ki is one of the materials
from the global list. In Fig. 3 b), we show one mixed cell which consists of four different materials.
For a non-convex cell Ci, Ck

i can consist of several disjoint pieces, as material 2 in (Fig. 3 c)); and
the material can be represented by a non-convex polygon, as material 1 in (Fig. 3 c)) (see [1] for
details). It is important that the pieces representing all materials do indeed cover the mixed cell
without gaps and overlaps. The presence of several disjoint pieces and non-convex polygons can
affect the efficiency of the multimaterial remap.

If Ck
i consists of several disjoint pieces, then we will assume that we know the geometry of each

such piece. For each material k we also know the total mass of the material, mk
i . We will denote

the volume of region Ck
i by |Ck

i | or V k
i , and the density of material k by ρ̄k

i .
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Figure 3: Representation of materials: a) Two-material case, in mixed cells boundaries of polygons representing
material #1 are marked by a thick dashed red line. Material ids are inside pure cells and inside polygons representing
materials in mixed cells; b) one mixed cell containing four different materials - Material ids are inside polygons
representing materials; c) one non-convex mixed cell containing two materials - material #1 in represented by one
non-convex polygon, and material #2 is represented by two triangles.

3. Remapping for the Single-Material Case

3.1. Statement of the Remapping Problem

We start with a definition of the remapping problem for a single material. Here we assume that
there is a positive function ρ(~r) > 0, r = (x, y), which we call density, that is defined throughout
the problem domain. The only information that we are given about this function is its mean value
in each of the cells of the old grid:

ρ̄i =

∫

Ci
ρ(r) dV

V (Ci)
, (2)

where V (Ci) is the volume of the cell Ci. The numerator of (2) is the cell mass

mi ≡
∫

Ci

ρ(r) dV , (3)

and so the mean density is

ρ̄i =
mi

V (Ci)
. (4)

The total problem mass is

M ≡
∫

Ω
ρ(r) dV =

imax
∑

i=1

∫

Ci

ρ(r) dV =

imax
∑

i=1

mi =

imax
∑

i=1

ρ̄i V (Ci) . (5)

The problem statement is to find accurate approximations m̃i for the exact masses, mex
i , of the

new cells

m̃i ≈ mex
i =

∫

C̃i

ρ(r) dV . (6)
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The issue is to define what is meant by “accurate”, since the underlying density field is not known
in detail.

The approximate mean values of density in the new cells are defined by

˜̄ρi =
m̃i

V
(

C̃i

) . (7)

The common accuracy requirement for remapping is formulated as linearity preservation. That
is, if the underlying function ρ(r) is a global linear function, the remap must be exact;

m̃i = mex
i . (8)

Another important property of remapping is bound preservation. If we assume that a new cell
is contained in the immediate neighborhood of the old cell, then it is natural to require

min
i′∈C(Ci)

ρ̄i′ ≤ ˜̄ρi ≤ max
i′∈C(Ci)

ρ̄i′ . (9)

Finally, a statement of global conservation is formulated as

imax
∑

i=1

m̃i = M . (10)

We will refer to the problem of finding accurate, bounded approximations for the masses and
the corresponding mean densities on the new grid, such that total mass is conserved, as bound-
preserving conservative remapping (interpolation).

3.2. Intersection-based Remapping

3.2.1. Aggregated Intersection-based Remapping

Each cell of the new grid C̃i is formed from pieces of the cells of the old grid Ci

C̃i =
imax
⋃

i′=1

(

C̃i

⋂

Ci′

)

=
⋃

i′∈C(Ci)

(

C̃i

⋂

Ci′

)

. (11)

The most natural approach to remapping can be based on this representation of the new cell:

mex
i =

∫

C̃i

ρ(r) dV =
∑

i′∈C(Ci)

∫

C̃i

T

Ci′

ρ(r) dV . (12)

The remapping based on this formula would be exact if we knew the density function everywhere
on the old grid. However, as pointed out earlier, we only know the average value of ρ(r) within a
cell. Thus, it is necessary to reconstruct the density function in each cell of the old grid. Usually,
this is a piece-wise linear reconstruction over cells of the old grid. This reconstruction involves an
estimate of the gradient of the function on the cell and some limiting procedure for the gradient to
avoid the creation of new extrema. Details of the reconstruction are not important for this paper
and can be found elsewhere (see, for example, [21]). For the purpose of this paper, it is important
to know that there is some cost associated with the reconstruction.
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We denote the reconstruction over cell Ci as ρi(r). For aggregated intersection-based remapping,
this must be a conservative reconstruction

∫

Ci

ρi(r) dV = ρ̄i . (13)

Then, we can use the following approximation

∫

C̃i

T

Ci′

ρ(r) dV ≈
∫

C̃i

T

Ci′

ρi′(r) dV . (14)

This leads to the following formula for the remapped masses on the new grid

m̃i =
∑

i′∈C(Ci)

∫

C̃i

T

Ci′

ρi′(r) dV . (15)

It is important to note that any polynomial function can be integrated exactly over a polygonal
cell.

We refer to the remapping method of (15) as aggregated intersection-based (AIB) method.
Here, aggregated refers to the fact that the mass of a new cell is obtained by collecting pieces of
masses from old cells.
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The AIB method is conservative because

imax
∑

i=1

m̃i =

imax
∑

i=1





∑

i′∈C(Ci)

∫

C̃i

T

Ci′

ρk(r) dV



 =

imax
∑

i=1

(

imax
∑

i′=1

∫

C̃i

T

Ci′

ρi′(r) dV

)

=

imax
∑

i′=1

(

imax
∑

i=1

∫

C̃i

T

Ci′

ρi′(r) dV

)

=

imax
∑

i′=1

(

∫

Ci′

ρi′(r) dV

)

=

imax
∑

i′=1

mi′ = M .

AIB remapping also is bound and linearity preserving if the reconstructed function ρk(r) satisfies
these properties, [25].

We note that AIB methods are very general and in principle can be applied when the old and
new grids are not related to each other — they may even have a different number of cells of arbitrary
shapes and a different connectivity.

We now summarize the main stages of AIB remapping:

• Conservatively reconstruct the function on the old grid. This includes estimating and limiting
the gradient using information from neighboring cells.

• Find intersections of old and new cells. If the old and new grid have the same topology and
the new grid is obtained from the old grid by small displacements (as it is the case in this
paper), then one only needs to find intersections of new cells with the corresponding old cell
and its immediate neighbors. Even in 2D, if cells of the old or new grids, or both, are non-
convex, then it may be more efficient to subdivide cells into triangles and to intersect triangles
representing old and new cells. We believe that, in 3D, subdividing cells into tetrahedra is
the only way of doing intersections, because cells in 3D always have non-flat faces.

• Integrate the reconstructed functions over intersections. This involves the computation of
integrals of polynomial functions over polygons, which can be reduced to boundary integrals
and computed exactly.

3.2.2. Flux-Intersection-based Remapping

When the old and new grids have the same connectivity (as we assume in this paper), a new
cell can be represented as follows

C̃i = Ci

⋃





⋃

i′∈C′(Ci)

C̃i

⋂

Ci′



 \





⋃

i′∈C′(Ci)

Ci

⋂

C̃i′



 , (16)

where
C′ (Ci) = C (Ci) \ Ci , (17)

and where \ is the difference operation on sets. In words, the new cell is the old cell plus pieces
of neighboring cells that are added minus pieces of the old cell lost to other new cells. The corre-
sponding representation for the exact mass of the new cell is

mex
i =

∫

C̃i

ρ(r) dV =

∫

Ci

ρ(r) dV +
∑

Ci′∈C
′(Ci)

∫

C̃i

T

Ci′

ρ(r) dV −
∑

Ci′∈C
′(Ci)

∫

Ci

T

C̃i′

ρ(r) dV

= mi +
∑

Ci′∈C
′(Ci)

Fex
i,i′ , (18)
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Figure 5: Flux-intersection-based remapping. The old grid is shown by thin solid lines and the new grid is shown
by thick solid lines. Boundaries of intersection polygons, are marked by dashed lines. Signs + and − correspond to
positive and negative pieces of corresponding generalized fluxes. For example, the generalized flux corresponding to
the edge shared with right cell has two pieces; and the flux corresponding to the left edge has only one piece.

where

Fex
i,i′ =

∫

C̃i

T

Ci′

ρ(r) dV −
∫

Ci

T

C̃i′

ρ(r) dV , (19)

are generalized mass fluxes. We note that the second cell indicated by the index i ′ may be any
cell in the neighborhood and is not restricted to those with whom the cell Ci has a common side.
Equation (18) is exact, and illustrates that the mass of the new cell can be written as the mass of
the corresponding old cell plus the exchange of masses with neighboring cells.

The remapping based on representation (19) has the important theoretical advantage that it is
conservative without requiring any properties in the reconstruction nor an exact integration of the
reconstructed function. In fact, any formula of the form

m̃i = mi +
∑

Ci′∈C
′(Ci)

Fi,i′ , (20)

where Fi,i′ = −Fi′,i is some approximation of the flux, will be conservative because of detailed
balance.

We will refer to methods based on equation (20) and some approximation of (19) as flux-
intersection-based (FIB) methods.

In Fig. 5, we schematically present positive and negative pieces of the generalized fluxes. We
note that, if AIB and FIB methods are using the same reconstruction of ρ on the old grid and
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generalized fluxes in the FIB method are computed as

Fi,i′ =

∫

C̃i

T

Ci′

ρi′(r) dV −
∫

Ci

T

C̃i′

ρi(r) dV , (21)

then the two methods are algebraically equivalent 1. However, as far as their implementation is
concerned, they can be quite different.

We now summarize the main stages of FIB remapping:

• As we have mentioned before in general, FIB remapping does not require conservative re-
construction. However, some reconstruction is still needed to estimate fluxes. To make the
comparison with AIB remapping easier, we still assume that the reconstruction is conservative
and it also includes estimating and limiting the gradient using information from neighboring
cells. Hence, this step is exactly the same as for AIB remapping.

• Find intersections of old and new cells. In general, one needs to find two intersections per
edge and four intersections per vertex of the cell.

• Integrate the reconstructed functions over intersections. This involves the computation of
integrals of polynomial functions over polygons, which can be reduced to boundary integrals.

3.3. Swept-Region-based Methods

Representation (20) allows us to make simplifying approximations that will allow us to avoid
the detailed calculation of the intersections between the cells of the new and old grids without
sacrificing exact conservation.

The approximations that we use are based on two ideas, [25]. First, up to fourth-order accuracy,
the exact masses of new cells can be represented as line integrals of polynomial functions over the
boundary of a new cell. Second, the line integral over the boundary of the new cell is the line
integral over the boundary of the old cell (which is the old mass) plus the line integrals over the
regions swept by the movement of the faces (i.e., sides) of the cell Ci, Fig. 6. The face which shares
cells Ci and Ci′ can be denoted by two indices, i, i′. The corresponding swept region is denoted by
δFi,i′ .

We define swept-region-based remapping (SRB) as follows

m̃i = mi +
∑

Ci′∈Cf (Ci)

Fi,i′ , (22)

where
Fi,i′ = −Fi′,i .

In (22), fluxes correspond only to neighbors which share faces. The approximate ”fluxes”Fi,i′ are

Fi,i′ =

∫

δFi,i′

ρi,i′(r) , (23)

1In the rest of this paper we always will be using definition (21) for generalized fluxes in FIB methods.
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Figure 6: Swept-region-based remapping for single material. Old cell Ci = {a, b, c, d}, and corresponding new cell
{a′, b′, c′, d′}. Swept region δFi,i′ corresponding to face a, b (face shared by cells Ci and Ci′ - “left” cell) is quadrangle
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Triangle {a′, α, a} belongs to two swept regions corresponding to faces a, b and d, a, but its contribution to the area
of these swept regions has a different sign.

where the density function associated with the faces is defined depending on the sign of the volume
of the swept region2

ρi,i′ =

{

ρi′(r) , V (δFi,i′) ≥ 0 ,
ρi(r) , V (δFi,i′) < 0 ,

, (24)

where V (δFi,i′) is the signed volume of the swept region.
The main advantage of the SRB method (23), (24) is that it does not require finding intersec-

tions of the old and new grids, which makes it computationally much cheaper when compared to
intersection-based methods.

We now summarize the main stages of SRB remapping:

• Conservatively reconstruct the function on the old grid, which includes estimating and limiting
gradient using information from neighboring cells.3

• Integrate the reconstructed functions over swept regions. The computation of integrals of
polynomial functions over polygons can be reduced to boundary integrals.

2The signed volume is defined using a line integral representation of the volume where orientation of the boundary
of the swept region is taken in such way that the signed volume is positive if the swept region is added to the cell
and negative other-wise, [25].

3As for any flux based methods this is not required for conservation of the overall method (see note related to FIB
method).
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The detailed derivation and analysis of swept-region-based methods is presented in [25], [21].

3.4. Properties of Remapping Methods for a Single Material

Both intersection-based and swept-region based methods are linearity-preserving, if the recon-
struction procedure for ρi(r) is linearity-preserving. The formal order of accuracy (the accuracy
of remapping for smooth functions) is the same for both methods. In particular, both methods
exactly compute volumes of cells of the new grid, which corresponds to setting ρi(r) = 1. Hence,
they satisfy the geometric conservation law (GCL), [8].

Clearly, intersection-based methods are the most accurate methods for a given reconstruction
of the function on the old grid. The remapped value in the new cell depends on all values in
the neighboring cells. In particular, it involves values in neighboring cells which are sharing only
a vertex with the cell under consideration. This can be significant, if the underlying function is
discontinuous and values of the function in neighbor cells that are only vertex connected are orders
of magnitude different from the value in the cell under consideration. Swept-region-based methods
are using information only from face connected neighbor cells and can be less accurate in such
situations.

However, it is interesting to note that results presented in [21], show that for single mate-
rial cyclic remapping examples (that is, repeated remapping of given function on a sequence of
grids) the accuracy of swept-region-based and intersection-based methods is comparable even for
discontinuous functions.

We now consider the relative computational cost of the methods for the example of logically
rectangular grid with N × M cells. The total number of cells is then N ∗ M , the total number of
vertices is (N + 1) ∗ (M + 1) and the total number of edges is N ∗ (M + 1) + M ∗ (N + 1). Let us
also denote the cost of function reconstruction by Crec, the cost of intersection by Cinter and the
cost of integration by Cinteg.

The total cost of the AIB method is

CAIB = N ∗ M ∗ Crec + N ∗ M ∗ [9 ∗ (Cint + Cinteg)] , (25)

here we took into account that for a logically rectangular grid we need to intersect new cell C̃i with
old cell Ci and its eight neighbor cells.

The total cost of the FIB method is

CFIB = N ∗M ∗Crec +2 ∗ [2 ∗ (N +1) ∗ (M +1)+N ∗ (M +1)+M ∗ (N +1)] [Cint +Cinteg] , (26)

where the second term on the RHS (Right-Hand-Side) includes two intersections and the corre-
sponding integration per face and vertex.

For fine grids, where we keep only terms proportional to M ∗ N , we have

CAIB ∼ N ∗ M ∗ [Crec + 9 ∗ (Cint + Cinteg)] (27)

and
CFIB ∼ N ∗ M ∗ [Crec + 8 ∗ (Cint + Cinteg)] . (28)

Clearly, FIB remapping is cheaper than AIB remapping if we formally count number of arith-
metic operations.

We now consider the SRB method. Its total cost is

CSRB = N ∗ M ∗ Crec + [(N + 1) ∗ M + (M + 1) ∗ N ] ∗ Cinteg , (29)
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which for a fine grid means that

CSRB ∼ N ∗ M ∗ (Crec + 2 ∗ Cinteg) . (30)

In comparison with intersection based methods, the SRB method includes the same cost of function
reconstruction on the old grid, but it does not include the intersection cost. Additionally, the
number of integrations is reduced.

It is important to understand that, if a hydro code requires remapping of many physical quan-
tities and not just density, then reconstruction must be done for all quantities but intersections can
be done once and used for all quantities. Similarly, the most costly part of integration, which is
the integration of 1, x, y, xy, . . . can be done once for all quantities. This observation suggests that
the relative efficiency of remapping methods has to be analyzed for each specific situation.

An alternative remapping approach is presented in [11, 12], It can be considered an intermediate
between intersection-based and swept-region-based methods. In this approach, if the swept region
is self-overlapping (as, for example, the swept region corresponding to edge c, d in Fig. 6), then it
is represented as two triangles. To find these two triangles one needs to intersect the old and new
edge (which is much cheaper than the intersection of polygons). Each of these two triangles now is
treated as a swept region by itself and the reconstructed function in the triangle is taken according
to the sign of its signed volume.

4. Remapping for the Multimaterial Case

In this section, we describe conventional remapping methods for multimaterial ALE methods.

4.1. Statement of Remapping

In multimaterial remap, pure and mixed cells in the new grid must be identified. For each
pure cell, the mass of the corresponding material must be computed. This is similar to the case
of single material remap. For mixed cells, the mass of each material must be determined, as well
as its volume, because after remap we may need to reconstruct interfaces on the new grid. We
also may need some additional information. For example, the advanced interface reconstruction
moment-of-fluid (MOF) method requires remapping of material centroids, [1, 7].

In the case of several materials the total volume Vk and total mass Mk of each material k must
be conserved

Vk =
∑

i

V k
i =

∑

i

Ṽ k
i = Ṽk , Mk =

∑

i

mk
i =

∑

i

m̃k
i = M̃k , (31)

where the sum is formally over all cells, but in practice can be taken only over pure cells containing
material k and mixed cells containing this material.

Accuracy and monotonicity issues of multimaterial remap are beyond of the scope of this paper
and will be addressed in the future.

In general, for multimaterial ALE one needs to use intersection-based remapping, as it is done,
for example, in [35, 20, 17, 9].

4.2. Multimaterial Aggregated Intersection-based Remapping

In the multimaterial case, pieces of material k are collected in the new cell C̃i according to the
following formula

C̃k
i =

⋃

i′∈C(Ci)

(

C̃i

⋂

Ck
i′

)

. (32)
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Figure 7: MAIB - Multimaterial remap AIB method. Old grid - thin solid lines, and new grid - thick solid lines: a)
Two-material case - old and new grid. Pieces of material #1 from numerous old cells which contribute to central
new cell are marked by a, b, c, d, e, f, g in mixed cells in mixed cells. Boundaries of polygons representing material #1
are marked by thick dashed red line. Material ids are inside pure cells and polygons representing material in mixed
cells; b) one mixed cell containing four different materials - (material ids are inside polygons representing material)
intersecting with new cell.

Equation (32) is similar to equation (11), except that new cell C̃i intersects with pure sub-polygons
Ck

i . This process is illustrated in Fig. 7. We denote the method based on formula (32) by MAIB -
multimaterial aggregated-intersection based.

The total volume of material k in new cell Ck
i is computed as the sum of volumes of corresponding

intersections

|C̃k
i | = Ṽ k

i =
∑

Ci′∈C(Ci)

∫

C̃i

T

Ck
i′

dV . (33)

The total mass of material k in new cell Ck
i is computed similarly

m̃k
i =

∑

Ci′∈C(Ci)

∫

C̃i

T

Ck
i′

ρk
i′(r) dV , (34)

where ρk
i′(r) is some reconstruction of the density of material k in C k

i′ ∈ Ci′ .
For advanced interface reconstruction, we may also need to know the centroids of each material

in a mixed cell. The centroid is defined as the ratio of first and zeroth moment of the domain
occupied by the material. The zeroth moment is simply the volume of the domain occupied by the
material and it is defined by equation (33). The first moment, µ̃k

i , is defined as

µ̃k
i =

∫

C̃k
i

r dV =
∑

Ci′∈C(Ci)

∫

C̃i

T

Ck
i′

r dV . (35)

In the process of remapping, we have to identify if a new cell is pure or mixed. This requires
additional logical operations, and building a list of materials for each new mixed cell, as well as
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identifying the situation when a mixed cell becomes pure. As a result of intersections, for each
new mixed cell, we know volume, mass, and centroid of each material. In fact, we know exactly
all pieces of pure polygons representing materials on the old grid, which are now in the new cell.
In Fig. 7 a) these pieces are marked by a, b, c, d, e, f, g. The goal of interface reconstruction is to
simplify this representation by replacing a collection of pieces by one or possibly several (in case
of non-convex cell C̃i) polygons, such that the volume of this polygon exactly equals the sum of
volumes of the pieces.

We note that, again, as in the case of a single material all integrals in the equations in this
section can be computed exactly, because they are integrals of polynomial functions over polygonal
domains.

It is clear that, in comparison with the single material case, MAIB remapping requires more
intersections — a new cell has to be intersected with all material polygons in its neighboring old
cells.

However, the main stages of MAIB are similar to AIB. The total cost of MAIB can be roughly
estimated by a formula similar to (25), where the total number of cells (which was N ∗ M for
single AIB) is replaced by the total number of pure sub-polygons, and the number of neighbors is
increased for mixed cells and for their neighbors. In conventional multimaterial ALE codes, MAIB
remapping is used for the entire grid. Clearly, the cost of intersection based MAIB remapping is
dominated by the cost of intersections, and it is much higher than the cost of SRB remapping for
the single material case for the same grid.

4.3. Multimaterial Flux-Intersection-based Remapping

Formulas for multimaterial flux-intersection-based (MFIB) remapping are

C̃k
i = Ck

i

⋃





⋃

Ci′∈C
′(Ci)

C̃i

⋂

Ck
i′



 \





⋃

Ci′∈C
′(Ci)

Ck
i

⋂

C̃i′



 , (36)

m̃k
i = mk

i +
∑

Ci′∈C
′(Ci)

(

∫

C̃i

T

Ck
i′

ρk
i′(r) dV −

∫

Ck
i

T

C̃i′

ρk
i (r) dV

)

, (37)

Ṽ k
i = V k

i +
∑

Ci′∈C
′(Ci)

(

∫

C̃i

T

Ck
i′

dV −
∫

Ck
i

T

C̃i′

dV

)

, (38)

µ̃k
i = µk

i +
∑

Ci′∈C
′(Ci)

(

∫

C̃i

T

Ck
i′

r dV −
∫

Ck
i

T

C̃i′

r dV

)

. (39)

When comparing the MAIB and MFIB methods we can make the same comments as at the
end of section 4.2. That is, estimate (26) can be used for the cost of MFIB if one considers the
more complicated unstructured grid where cells are pure sub-polygons and counts numbers of cells,
edges and points in such a grid.
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Figure 8: Two-material case. Lagrangian (old grid) - red solid lines; interface (circle) - solid black line; pure cells
containing only material 1 are marked by blue triangles placed inside the cells; pure cells containing only material
2 are marked by red solid triangles placed inside the cells; mixed cells containing both material are marked by cyan
solid circles.

5. Hybrid Multimaterial Remapping

5.1. Motivation

As motivation we consider the example with two materials depicted in Fig. 8. The compu-
tational domain is the unit square. Materials are separated by the circular interface with radius
0.25 and center (0.5, 0.5). Material 1 is inside the circle and material 2 is outside this circle. The
computational grid is a distorted logically rectangular grid of 625 = 25 × 25 cells. The number
of pure cells containing material 1 is 95 or 15.2% of the total number of cells. The number of
pure cells containing material 2 is 474 or 75.84% of the total number of cells. The total number
of pure cells is 569 or 91.04%, and the total number of mixed cells is 56 or 8.96%. Even for this
coarse grid, the number of mixed cells is significantly smaller than the number of pure cells. In
general, for the non-degenerate case, if the total number of cells is N then the number of mixed
cells is proportional to

√
N and therefore the percentage of mixed cells approaches zero as the grid

is refined. For example, if we refine the grid in the previous example and make the total number of
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cells equal to N = 160000 = 400 × 400 then the percentage of mixed cells will drop to only 0.5%.
For this particular example, the number of mixed cells is approximately equal to Cmixed ∗

√
N ,

where Cmixed ∼ 2.
A straightforward approach for remapping in this multimaterial case is to use the MAIB or

MFIB intersection-based methods described in the previous sections.
We now recall that intersection-based methods are quite expensive in comparison with swept-

region-based methods because they require the intersection of the old and new grid. This fact
and the observation that the percentage of mixed cells is small motivate us to construct a hybrid
method, where ”inside” pure materials we use swept-region-based remapping and for mixed cells
we use an intersection-based method. The cost of such a hybrid method can be expected to be
between the cost of a swept-region-based method (which it approaches, when the grid is refined
and the percentage of mixed cells goes to zero) and the cost of intersection-based remapping.

Recall that we assume vertices of the new grid to be located inside the union of the old cells
sharing a corresponding vertex. It is due to this assumption that we can be sure that a pure cell is
surrounded by pure cells of the same material. As a consequence, this cell will remain pure in the
new grid and therefore we can use swept-region remapping to update the density in this cell.

For cells which are mixed or may become mixed we need to use intersection-based methods.
The main problem in constructing hybrid method is to decide what to do with fluxes corre-

sponding to the edges, which are shared by pure and mixed cells.
Intersection-based and swept-region based remapping methods cannot easily be combined, even

in the single material case4. To explain the problem, we consider a hypothetical hybrid method
which combines SRB, the flux-swept-region-based method, and FIB, the flux-intersection-based
method. The first idea that comes to mind is to use the flux from the SRB or FIB method
depending on the type of edge: Use the flux from the SRB method for edges that are shared by
pure cells and use the the flux from the FIB method for edges that are shared by pure and mixed
cells. Unfortunately, such an approach does not work for several reasons. First, the number of fluxes
for the SRB and FIB methods are different; SRB has only edge related fluxes and FIB additionally
has vertex based fluxes. Second, even edge based fluxes are of a different nature in either method.
In the SRB method, an edge flux controls the exchange not only between cells sharing this edge,
but also between cells sharing end points of this edge and the cell under consideration. In contrast,
for the FIB method, the edge flux controls the exchange only with the cell sharing this edge. Thus,
SRB and FIB edge fluxes refer to different geometric objects. One can be easily convinced that
such a simple approach will not work by observing that replacing the SRB flux with the FIB flux
for one of the edges will not be exact even for remapping of the constant density, ρ = 1, hence, it
does not satisfy the geometric conservation law.

Now we will describe one possible approach to constructing a hybrid remapping method.

5.2. Pure and Mixed Points.

We start with a classification of points (vertices) of an old grid. We will call a point mixed in
two cases: if the point is the vertex of a mixed cell or if the point is the vertex that is shared by
pure cells and not all of these cells contain the same material; the rest of points are pure. Fig. 9
illustrates this definition.

4For some special cases like structured quadrilateral grids this can be done, [16].
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Figure 9: Two-material case. Lagrangian (old grid) - red solid lines. Left panel - a): interface (circle) - solid black
line; mixed cells containing both material are marked by magenta solid circles. Right panel - b) interface (straight
line) - solid black line; mixed cells containing both material are marked by magenta solid circles; mixed points are
marked by dark blue circles. In right panel there are several mixed points (in region close to (0.5, 0.3)), that lie on
the interface and are shared by pure cells of different materials.

The main reason for such a classification of points is that the movement of pure points cannot
create new mixed cells, Fig. 10. Therefore, if only pure points have been moved, remapping between
the old grid and an intermediate grid obtained from the old grid by movement of only pure points
can be performed by the SRB method.

In contrast, it is obvious that movement of mixed points can create new mixed cells.
This observation suggests the following two-step rezoning/remapping algorithm.

5.3. Algorithm

5.3.1. Swept-Region Rezoning/Remapping Step.

In the first step, only pure points are moved (rezoned). For example, this can be done by using
any rezoning algorithm, (cf., [32], [15]), while keeping mixed points fixed - this creates intermediate
grid. We assume that the rezoning algorithm creates a valid grid. Examples of an old and an
intermediate grid are presented in Fig. 10 a) and b), respectively. In this case, the intermediate
grid is obtained by one Laplace smoothing step, which is just the simple average of coordinates of
vertices of surrounding cells.

Remapping from the old to the intermediate grid is performed using the SRB method. In fact,
this method can be applied to the entire grid, because edges of mixed cells and edges between pure
cells containing different materials do not move (hence, corresponding fluxes are zero). Alterna-
tively, we can mark such edges and not compute the corresponding fluxes which we know to be
zero. As a result of the first step we have updated values of mass and density in all pure cells.
Densities in mixed cells did not change. At this stage, interface reconstruction in mixed cells is not
needed because mixed cells are not directly affected. Therefore, interfaces in mixed cells are the
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Figure 10: Left panel: old grid - solid red lines, interface and mixed cells. Central panel: only pure points have been
moved, grid after movement of pure cells - solid black lines; no new mixed cells have been created. Right panel:
overlap of old and new grid obtained by movement of only pure points; mixed points are marked by solid blue circles;
mixed cells are the same for old and new grid.

same as they were on the old grid5.

5.3.2. Intersection-based Rezoning/Remapping Step.

In the second step, we start with the intermediate grid where we know all data and move only
mixed points. Again, we can use any rezoning algorithm keeping pure points fixed in the position
that they had been moved to in the first step. We assume that the rezoning algorithm creates a
valid grid. The second step creates the final rezoned (new) grid, Fig. 11, which will be used at
the beginning of next Lagrangian step. Remapping from the intermediate grid to the new grid is
performed using an intersection based method. We now explain the details of this step.

Clearly, in the second step, a mixed cell can exchange data only with other mixed cells or with
pure cells which share an edge or a vertex with this mixed cell. We note that there are degenerate
situations when a mixed point is shared by pure cells that do not all contain the same material. In
this situation, pure cells of different materials are exchanging mass and all of them become mixed.
This observation leads to the notion of buffer cells. Such buffer cells are cells that can be involved
in data exchange in the second step. Buffer cells are cells which have at least one mixed point as
their vertex. In Fig. 12 we depict mixed and buffer cells in the old grid.

If the MFIB method is used in the second step of hybrid remapping, only fluxes need to be
computed that are related to edges for which at least one end point is a mixed point, and for
fluxes related to mixed points. We denote such edges as mixed edges in contrast to pure edges, for
which both end points are pure points. If the MAIB method is used in the second step of hybrid
remapping, it only needs to be performed for mixed and buffer cells.

Before performing the second step we need to reconstruct the density function in buffer cells
using data obtained from buffer cells and its pure neighbors that were the result of the first step
SRB remapping.

5Strictly speaking, this is not exactly true, because densities and geometry of surrounding pure cells has been
changed. If one decides to perform interface reconstruction using the updated grid and geometry using the VOF
method, the interface in mixed cells can change slightly. If one uses MOF interface reconstruction instead, then the
interface will not change because MOF does not use information from neighboring cells. In this work we use MOF
for interface reconstruction and therefore we do not need this additional step.
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Figure 11: Overlap of intermediate grid (solid black line) and final new grid (solid green line). Left panel entire grid:
mixed cells on old grid are marked by magenta solid circles; mixed cells on new grid are marked by cyan pentagons.
Right panel - fragment, interface is also shown. Some cells which were mixed on old grid now is pure and vise versa.
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Figure 12: Mixed and buffer cells. Mixed cells are marked by blue solid circles, and buffer cells are marked by magenta
solid squares. Mixed cells are not affected in the first step of hybrid remapping. Data in buffer cells is updated in
the first step of hybrid remapping. The second step of remapping requires the reconstruction of functions in buffer
cells, because these cells will exchange information with mixed cells and/or between each other.
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Before we summarize the main stages of our two step hybrid rezoning/remapping algorithm for
the multimaterial case, we recall the definitions for the various types of mesh entities.

• point types:

– pure - the union of its adjacent cells contains one material

– mixed - the union of its adjacent cells contains more than one material

• edge types:

– pure - both endpoints are pure points

– mixed - one of its endpoints is a mixed point

• cell types:

– pure - contains one material

– mixed - contains more than one material

– buffer - has at least one mixed point as a vertex

We continue by outlining the main stages of our two step hybrid rezoning/remapping algorithm for
the multimaterial case:

• Preprocessing step. Mark pure and mixed points, buffer cells, and edges for which fluxes must
be computed. In the simplest implementation this requires at least one sweep over the entire
grid and therein nested loops over neighbors of cells and points.

• Reconstruct the function over pure cells. Here, the computation of the gradient must be done
without taking into account contributions from mixed cells as they contain sub-polygons. The
gradient used for SRB will be zero in mixed cells.

• Move pure points.

• Remap using a swept-region-based method. This is a loop over pure edges and the corre-
sponding exchange of mass between cells sharing this edge.

• Reconstruct the function over buffer cells and pure sub-polygons.

• Move mixed points.

• Remap using an intersection-based multimaterial method. In the case of MFIB this is a
loop over mixed edges and the corresponding exchange of information between cells sharing
a mixed edge. This involves all work which is done in MFIB per edge, such as intersection of
a new cell with pure sub-polygons and so on, see section 4.3. In particular, this requires the
remapping of centroids if MOF interface reconstruction is used.

We denote this new two-step hybrid multimaterial algorithm by MHYB.
Note that it is critical that pure cells are processed first. If mixed cells were processed first, a

new mixed cell might be created in the intermediate mesh.
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5.4. Relative Cost of Two-Step Hybrid Algorithm

We now give a very rough estimate of the computational cost of the hybrid method and give a
comparison with the MFIB method on the example with two materials and a logically rectangular
grid. We start with the MFIB algorithm applied to the entire grid. As we have mentioned before,
we need to estimate the total number of cells, edges and points in the grid, which is composed
of pure cells and pure sub-polygons. Then an estimate similar to (26) can be used. We denote
the number of pure, mixed and buffer cells by Ncell,pure, Ncell,mixed and Ncell,buffer, respectively;
and the total number of cells by Ncell,total = Ncell,pure + Ncell,mixed. For a logically rectangular
grid, the total number of cells is Ncell,total = N ∗ M , the total number of edges is Nedge,total =
N ∗ (M +1)+M ∗ (N +1), and the total number of points is Npoint,total = (N +1)∗ (M +1). In the
case of two materials, in each mixed cell we have two pure sub-polygons. Hence, the total number
of cells in the composed grid is Ncell,total +Ncell,mixed. In case of a quad grid and two materials pure
sub-polygons may be triangles, quads or pentagons. For the purpose of counting additional edges
and vertices we can assume that all of them are quads. Under this assumption we add two new
vertices and four new edges per mixed cell. Under these assumptions the cost of MFIB is

CMFIB = (Ncell,total + Ncell,mixed) ∗ Crec + (40)

2 ∗ [(2 ∗ Npoint,total + 2 ∗ Ncell,mixed) + (Nedge,total + 4 ∗ Ncell,mixed)] [Cint + Cinteg] .

Now, if we assume that Ncell,mixed = Cmixed

√

Ncell,total then for fine grids we obtain the following
estimate

CMFIB ∼ (N ∗M+Cmixed∗
√

N ∗ M)∗Crec+2∗[3∗N ∗M+6∗Cmixed∗
√

N ∗ M ] [Cint+Cinteg] . (41)

We now estimate the cost of the hybrid algorithm for the same two-material case. We can ignore
the cost of rezoning because rezoning must be done for MFIB as well and is not accounted for in
estimate (41)6. Clearly, the new part of the algorithm is preprocessing; we denote its total cost as
Cprep - this is the additional cost in comparison with the cost of MFIB. It is not clear that Cprep

can be represented as Ncell,total ∗ Cprep, where Cprep is constant and does not depend on grid size.
However, in our implementation we did not observe such a dependence. Another additional cost is
related to function reconstruction in buffer cells twice. Now, the total cost of MHYB remapping is

CMHY B = Cprep + (Ncell,total + Ncell,mixed? + Ncell,buffer) ∗ Crec + Nedge,pure ∗ Cinteg +

2 ∗ [(4 ∗ Ncell,mixed) + 2 ∗ Ncell,buffer)] [Cint + Cinteg] . (42)

where the first term on the RHS of (42) is the total cost of reconstruction; the second term on the
RHS of (42) is the approximate cost of SRB remap (excluding reconstruction) performed in the
first stage of hybrid remap, and the last term on the RHS is the approximate cost of MFIB remap
(excluding reconstruction) in the second stage of hybrid remap.

Now we assume that Ncell,buffer ∼ 2∗Ncell,mixed = 2∗Cmixed ∗
√

N ∗ M , and that the number of
pure edges is proportional to the number of pure cells (which is the total number of cells minus the
number of mixed) - Nedge,pure ∼ N ∗ M − Cmixed ∗

√
N ∗ M . Under these assumptions, we obtain

6Again, this is not exactly true because in the hybrid algorithm we need to check if a point is pure or mixed before
moving it. This has its own cost, which we ignore for this rough estimate.
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the following estimate for a fine grid

CMHY B ∼ Cprep + (N ∗ M + 3 ∗ Cmixed ∗
√

M ∗ N) ∗ Crec + (N ∗ M − Cmixed ∗
√

N ∗ M ) ∗ Cinteg +

16 ∗ Cmixed ∗
√

N ∗ M ∗ [Cint + Cinteg] . (43)

If the grid is fine enough such that we can ignore terms of order
√

N ∗ M then we get

CMFIB ∼ N ∗ M ∗ (Crec + 6 ∗ [Cint + Cinteg]) ,

CMHY B ∼ Cprep + N ∗ M ∗ (Crec + Cinteg) . (44)

This estimate suggests that the relative efficiency of the two methods depends mostly on the relative
cost of intersections and the cost of the preprocessing stage. We believe that a more detailed analysis
only makes sense for a particular code and a particular implementation of the algorithms. In the
next section, we give comparisons based on wall clock time for two specific implementations in two
different codes, respectively.

6. Numerical Experiments

In this section we present results obtained using the algorithms implemented in two multima-
terial ALE codes.

6.1. Brief Description of Two Multimaterial Codes

The first code, [20, 18], uses a staggered discretization on a logically rectangular grid consisting
of general quadrilateral cells. In a staggered discretization, density, internal energy and pressure
are cell-centered, and the velocity vector is defined at grid points. Staggered discretizations require
special algorithms for remapping nodal quantities, (see for example, [4, 22]). We will not describe
such algorithms here and refer the interested reader to cited papers and the review paper [3].
For the purpose of this paper, it is only important that the remapping of nodal quantities may
require some additional work which can increase the cost of overall remapping. In this code, we
were originally using MFIB remapping for multimaterial problems and SRB remapping for single
material problems. In the new version of the code, we have implemented the new hybrid remapping
described in this paper, where in the second multimaterial step we use MFIB remapping. In the
rest of the paper we will call this code ST - for staggered. In the ST code, the old grid may have
non-convex cells as a result of the Lagrangian step.

The ST code employs MOF, [1, 7], as interface reconstruction method. For each mixed cell, the
MOF package returns a set of triangles which represent a particular material. Even if a material can
be represented by one polygon inside a mixed cell, the MOF package subdivides it into triangles.
This is done to allow unified processing of the materials even in the case when a material is
represented by several disjoint pieces.

When a new cell is intersected with a pure old cell (which maybe non-convex) we use an
algorithm for the intersection of two quads. The algorithm is based on half-plane intersections
(half-planes are defined by the edges of the new cell) with the old cell; it is an extremely robust
algorithm that for close to parallel line segments is bisection-based, [19]. In case of an intersection
of a new cell with a multimaterial cell we intersect the new cell with each triangle representing the
material using the same algorithm as quad-quad intersection. We note that in any case, the new
cell is always represented as a quad and it is not subdivided into triangles.
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The second code uses a cell-centered discretization on a general polygonal grid, [9]. In a cell-
centered discretization, all quantities are cell-centered and a special algorithm for movement of the
nodes is used. Therefore, all quantities are remapped in a unified way using only cells. In this code
we were originally using MAIB remapping for multimaterial problems and SRB remapping for single
material problems. In the new version of the code we have implemented the new hybrid remapping
described in this paper, where in the second multimaterial step we use MAIB remapping. In the rest
of the paper we will refer to this code as CC - for cell-centered. In the CC code, we also use the MOF
method for interface reconstruction. The CC code differs from the ST code in the way intersections
are performed. In this code not only pure sub-polygons representing materials in mixed cells are
subdivided into triangles, but all pure cells of the old grid are subdivided into triangles. Cells of
the new grid are also subdivided into triangles and all intersection-based remapping processes are
reduced to triangle-triangle intersections, where the first triangle represents a cell of the new grid
and the second triangle represents a pure or mixed cell of the old grid. Details of this approach
can be found in [9]. For the purpose of this paper, it is important to note that this process is
more expensive than the one used in the ST code, since it requires many more intersections. Note
also that, in 3D, cells may become non-convex as their faces become non-planar. Thus, it will be
necessary to perform subdivisions of the cells into tetrahedra to perform intersections. Therefore,
the timings for the CC code can give an idea about the relative cost of the MAIB remapping method
in the entire domain and about hybrid remapping in 3D.

The choice of these two codes for performing numerical experiments allows us to demonstrate
different scenarios for our new multimaterial hybrid remapping strategy in multimaterial ALE codes
as well as give an idea about the relative cost of the different methods.

6.2. Stand-alone Remapping

In this section we compare different remapping methods using a stand-alone cyclic remapping
problem. To that end, we define masses of the materials on the initial grid according to a specified
density function, then do several remapping steps changing the grid and using results of the previous
remapping step as initial data for the next remapping step. After several remapping steps we return
to the original grid and compare remapped with the original masses. This approach for testing
remapping was introduced in [25].

The computational domain is a unit square. In this domain we have a circle of radius 0.25 with
its center at (0.5, 0.5). For a single material problem, this circle is used to define a discontinuous
density function. For a multimaterial problem with two materials, this circle contains a material
which is different from the material in the rest of computational domain. In Fig. 13 a) we depict
this circle and a uniform grid.

We define the initial distribution of density as follows

f(x, y) =

{

1 + e10
√

(x−1/2)2+(y−1/2)2 for
√

(x − 1/2)2 + (y − 1/2)2 ≤ 1/4 ,

1 + e
6

“√
(x−1/2)2+(y−1/2)2−1/4

”

in the rest of computational domain.
(45)

This density distribution is used both for the single material and for the two-material problem.
For the multimaterial problem the interface between materials inside a mixed cell is represented

by a segment of a straight line. This line segment is determined using a PLIC (piece-wise linear
interface construction) method. In this paper, we use the MOF method, which requires knowledge
of volume fraction and centroid of each material. Interface reconstruction results in two pure
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Figure 13: Cyclic remapping problem: a) Initial square grid. b) Initial density distribution for multimaterial problem;
c) Initial density distribution for single material problem.

material sub-polygons in each mixed cell. Then one computes mass and mean density in each pure
material sub-polygon using the corresponding density function (45). The color map for mean values
of density for multimaterial problem is presented in Fig. 13 b).

For the single material problem, the entire computational domain is occupied by one material
and the circle is only used to define a discontinuous density. In this case, formally, there are no
mixed cells. However, in each cell which is intersected by the circle we define one mass by summing
masses of ”materials” as described for the multimaterial case. The mean density for such cells equals
mass divided by total volume. The color map for mean values of density for the single material
problem is presented in Fig. 13 c).

Here, we first move all vertices using the following formulas

XNew = XIni + a0∆x cos(2 π rand) , YNew = YIni + a0∆y sin(2 π rand) , (46)

where a0 = 0.2 for structured meshes and a0 = 0.1 for polygonal meshes; ∆x = ∆y =
1

N
(where

N is a parameter that defines the number of cells in one dimension) and 0 < rand < 1 is a random
number to create perturbed grid. After the mesh was perturbed we then move points back to their
initial positions.

The error of remapping is measured using the following relative norms. For single material
problems

L1 m =

∑

∀c |m0
c − mc|

∑

∀c m0
c

, (47)

where m0
c is the initial mass of cell c and mc is the mass of the same cell on the initial grid after

two remapping steps (initial to perturbed grid and back to initial grid).
For the multimaterial problem, we combine errors for each material in one error as follows

Lmat
1m =

∑

∀c

∑

∀k|m0
c,k − mc,k|

∑

∀c

∑

∀k m0
c,k

, (48)

where k is the material index and m0
c,k ,mc,k are the initial and final mass of material k in cell c.
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To investigate convergence and also compare CPU (Central Processing Unit) time required by
different methods we perform cyclic remapping as described before on a series of refined grids.

In the first experiment, we use initial uniform grids of N × N cells, N = 25, 50, 100, 200, 400;
and use grid movement defined by equation (46).

First, we present the result of cyclic remapping using cell-centered remapping from the ST code.
For the single material case, we present the density color map on the initial grid, on the perturbed
grid (after one remapping) and on the initial grid after the second remapping, Fig. 14.
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Figure 14: Density distribution for initial, perturbed, and final grid of SM static remap test for double-exponential
function using algorithms from ST code.

In Table 1, we present errors and timings for the single material cyclic remapping test. Time
measurements are all performed on the same particular computer and it only makes sense to
compare relative CPU time needed for different methods.

resolution swept intersection hybrid

25 × 25, L1 m 0.16 · 10−1 0.18 · 10−1 0.16 · 10−1

25 × 25, T [s] 2.20 · 10−2 7.90 · 10−2 2.90 · 10−2

50 × 50, L1 m 0.74 · 10−2 0.83 · 10−2 0.74 · 10−2

50 × 50, T [s] 8.30 · 10−2 2.79 · 10−1 1.23 · 10−1

100 × 100, L1 m 0.44 · 10−2 0.48 · 10−2 0.44 · 10−2

100 × 100, T [s] 3.01 · 10−1 1.03 · 100 3.74 · 10−1

200 × 200, L1 m 0.20 · 10−2 0.22 · 10−2 0.20 · 10−2

200 × 200, T [s] 1.12 · 100 4.14 · 100 1.44 · 100

400 × 400, L1 m 0.10 · 10−2 0.11 · 10−2 0.10 · 10−2

400 × 400, T [s] 4.48 · 100 1.66 · 101 5.72 · 100

Table 1: L1 mass errors and simulation times, T [s] (in seconds), for single-material case using algorithms from ST
code.

First, Table 1 shows that all methods demonstrate approximately first-order convergence, which
is what is expected when remapping a discontinuous function. Second, the accuracy of the hybrid
method almost equals the accuracy of either the SRB or FIB methods. One might expect that
intersection based methods should be more accurate than swept-region based methods. However,
in this example this is not the case. This can be attributed to the random perturbation of the grid;
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in all cases the errors are very close. For the purpose of this paper it is important to note that the
hybrid method is as accurate as the intersection based method.

Now we consider CPU time. For all methods CPU time increases approximately between three
and four times with increasing resolution - this indicates that CPU time per cell is approximately
a constant.

Now consider the finest resolution 400×400 grid, which can be considered close to the case when
asymptotic estimates presented in previous sections are valid. For this example and this resolution
SRB remapping is ∼ 3.7 times cheaper than FIB remapping - which gives an indication as to the
maximum possible gain in CPU time. In the case of a single material the new hybrid remapping
method produces results, which coincide with SRB remapping because there are no mixed cells and
swept-region remapping is performed for the entire domain. However, the hybrid method requires
preprocessing to mark nodes and edges which takes additional time. The new hybrid remapping
method is only ∼ 2.9 times cheaper than FIB remapping. This indicates that some gain of the
hybrid method over intersection-based remapping is lost due to preprocessing. In this particular
case, the overhead due to preprocessing is about 25% in comparison with SRB remapping.

We now consider a multimaterial example, which uses the same density function as in the single
material case. However, we now have two materials - one is inside and another outside the circle. In
the left panel in Fig. 15, we present materials (result of interface reconstruction) and color map for
density for the initial grid; in the central panel the same information is depicted for the perturbed
grid; and the right panel again depicts the same information for the final grid.

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MM, materials, init. MM, materials, pert. MM, materials, final

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

4

6

8

10

12

14

MM, density, init. MM, density, pert. MM, density, final

Figure 15: Material and density distribution for initial, perturbed, and final grid using algorithms for ST code.
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In Table 2, we present errors and timings for multimaterial cycling remapping starting with a
square grid on a sequence of refined grids.

resolution intersection hybrid

25 × 25, Lmat
1 m 0.19 · 10−2 0.21 · 10−2

25 × 25, T [s] 1.84 · 10−1 1.57 · 10−1

50 × 50, Lmat
1 m 0.39 · 10−3 0.40 · 10−3

50 × 50, T [s] 4.93 · 10−1 3.84 · 10−1

100 × 100, Lmat
1 m 0.88 · 10−4 0.87 · 10−4

100 × 100, T [s] 1.56 · 100 9.73 · 10−1

200 × 200, Lmat
1 m 0.28 · 10−4 0.27 · 10−4

200 × 200, T [s] 5.64 · 100 3.06 · 100

400 × 400, Lmat
1 m 0.96 · 10−5 0.97 · 10−5

400 × 400, T [s] 2.09 · 101 1.06 · 101

Table 2: L1 mass errors and simulation times, T [s] (in seconds), for the multimaterial case using algorithms from the
ST code.

This table demonstrates that for this example, the accuracy of MFIB and hybrid methods is
almost equal and the convergence for both methods is between first- and second-order, but closer to
second-order. This can be explained as follows. As a result of interface reconstruction, we effectively
construct a finer grid which increases resolution near the interface and in our case near the line
where the function has a discontinuity. Also the function reconstruction for the multimaterial case
uses a special procedure to reconstruct the slope in pure sub-polygons in mixed cells, [20, 18], which
in contrast to many other codes leads to a non-zero slope because it uses information from pure
sub-polygons containing the same material from surrounding cells (mixed and pure).

When comparing CPU times for MFIB and hybrid methods, we see that their ratio increases
from 1.17 to 1.97 with grid refinement, which suggests that for a finer grid, the hybrid method is
about twice, or perhaps even more than twice as efficient as MFIB remapping.

For both methods, CPU time increases approximately between 2.5 and 3.7 times with increasing
resolution - which indicates that CPU time per cell is approximately constant.

Now we present results for the same problem using algorithms employed in the CC code. We
remind the reader that the main differences to the ST code are that the CC code uses the MAIB
method instead of MFIB and that intersections are done by subdividing all polygons into triangles.

Here we present only tables. For the single material case, we present results in Table 3, which
is analogous to Table 1.

First, we conclude that accuracy and convergence rate are the same as for the ST code. Theoret-
ically they should be perfectly equal, since the ST and CC codes are just different implementations
of the same formulas. However, the codes are using different random number generators, which
produces slightly different grid motion. The discrepancy in timings between the CC and ST codes
for the SRB method is due to the fact that different computers and different compilers were used.

We now consider the timings for the intersection-based algorithm. From a comparison with
results in Table 1 we conclude that the intersection-based algorithm implemented in the CC code
is 16 to 28 times more expensive (depending on resolution) than the intersection-based algorithm
implemented in the ST code. This can be explained by the fact that each quad cell of the old and
new grid is subdivided into triangles and we need to intersect each triangle representing the new
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resolution swept intersection hybrid

25 × 25, Lmat
1 m 0.13 · 10−1 0.17 · 10−1 0.13 · 10−1

25 × 25, T [s] 1.0 · 10−2 1.22 · 100 3.0 · 10−2

50 × 50, Lmat
1 m 0.68 · 10−2 0.85 · 10−2 0.68 · 10−2

50 × 50, T [s] 4.0 · 10−2 5.0 · 100 1.3 · 10−1

100 × 100, Lmat
1 m 0.37 · 10−2 0.46 · 10−2 0.37 · 10−2

100 × 100, T [s] 2.1 · 10−1 2.0 · 101 5.5 · 10−1

200 × 200, Lmat
1 m 0.17 · 10−2 0.22 · 10−2 0.17 · 10−2

200 × 200, T [s] 9.1 · 10−1 8.02 · 101 2.26 · 100

400 × 400, Lmat
1 m 0.81 · 10−3 0.1 · 10−2 0.81 · 10−3

400 × 400, T [s] 3.65 · 100 3.25 · 102 9.45 · 100

Table 3: L1 mass errors and simulation times, T [s] (in seconds), for single-material case using algorithms from CC
code.

cell with triangles representing cells of the old grid in the neighborhood of the old cell. This by
itself can account for factor of four difference in CPU time. Additionally, the AIB method is more
expensive then the FIB method. There are also differences to the ST code’s triangle intersection
algorithm. Another very important difference is that CC code is an unstructured code and memory
access to geometric data from a neighboring cell may take much longer. Our goal here is not to
analyze why the difference between two implementations of intersection algorithms is so dramatic,
but to demonstrate what can happen in real relatively simple ALE codes.

For finer resolution, the cost of the hybrid method using the CC code is a little bit higher
(because of different overhead, which is about 100% in this case), but comparable with the hybrid
method using the ST algorithms. This is because for a finer grid, the cost is dominated by the SRB
algorithm, for which timing is almost the same for both codes.

The relative efficiency of the hybrid method in comparison with the intersection-based method
is much higher for the CC code than for the ST code. For the ST code it is around two, and for the
CC code it is about 40. This is because the CC code’s intersection-based method is so expensive.

We now consider the multimaterial case. The results are presented in Table 4. First, the
convergence rates for both intersection-based and hybrid methods are about the same as when
algorithms from the ST ALE code are used, because it is essentially an equivalent implementation.

In the multimaterial case for the finest grid, the hybrid method is about twenty times more
efficient than the intersection-based method. Recall that when using the ST code, the hybrid
method was only twice as efficient as the intersection-based method.

It is interesting to observe that for intersection-based method CPU time increases proportionally
to the number of cells, in particular, about four times for two consecutively refined grids. For the
hybrid method this increase is only two times. Our explanation for this behavior is that the CC
code’s intersection algorithm is very expensive, and dominates the overall cost. Additionally, in
this particular example, the number of cells where intersections are needed is increasing roughly by
a factor of two under regular refinement. Eventually for fine enough resolution the cost of swept
remapping will dominate and CPU time will increase four times with doubling of the resolution in
each coordinate direction.

The CC code is an unstructured code which can handle arbitrary polygons. We demonstrate
its performance on the cyclic remapping example described at the beginning of this section, but
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resolution intersection hybrid

25 × 25, Lmat
1 m 0.18 · 10−2 0.17 · 10−2

25 × 25, T [s] 1.46 · 100 5.3 · 10−1

50 × 50, Lmat
1 m 0.32 · 10−3 0.33 · 10−3

50 × 50, T [s] 5.45 · 100 1.15 · 100

100 × 100, Lmat
1 m 0.77 · 10−4 0.81 · 10−4

100 × 100, T [s] 2.09 · 101 2.52 · 100

200 × 200, Lmat
1 m 0.17 · 10−4 0.18 · 10−4

200 × 200, T [s] 8.24 · 101 6.27 · 100

400 × 400, Lmat
1 m 0.42 · 10−5 0.45 · 10−5

400 × 400, T [s] 3.27 · 102 1.79 · 101

Table 4: L1 mass errors and simulation times, T [s] (in seconds), for multimaterial case using algorithms from CC
code.

using an initial polygonal grid.
The initial polygonal grid is presented in Fig. 16 a). This grid is a centroidal Voronoi grid, [6],

where there are four generators at the corners of the computational domain and the same number
of generators as number of squares in the previous quad grid examples. The result of interface
reconstruction at the initial time is presented in Fig. 16 b).
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Figure 16: Initial time - CC code: a) Initial polygonal grid; b) Result of interface reconstruction.

In Fig. 17, we present the color map of density for the single material case. In Table 5, we
present errors and timing for single material case. In general, for a polygonal grid all the methods
are more expensive because cells have more edges, and must be subdivided into more triangles
than for a quad grid. The qualitative conclusions are similar to the square grid case and we do not
repeat them here.

In Fig. 18, we present results for interface reconstruction for initial, perturbed and final grid for
the multimaterial case (top panel) and the color map for the density function on these grids. Errors
and timings for the multimaterial case are presented in Table 6. Again, qualitative conclusions are
the same as for the quad grid.
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Figure 17: Density distribution for initial, perturbed, and final grid of SM remapping test - initial polygonal grid.

resolution swept intersection hybrid

25 × 25, Lmat
1 m 0.78 · 10−2 0.83 · 10−2 0.78 · 10−2

25 × 25, T [s] 1.99 · 10−2 3.72 · 100 4.00 · 10−2

50 × 50, Lmat
1 m 0.44 · 10−2 0.50 · 10−2 0.44 · 10−2

50 × 50, T [s] 8.00 · 10−2 1.54 · 101 1.7 · 10−1

100 × 100, Lmat
1 m 0.18 · 10−2 0.21 · 10−2 0.18 · 10−2

100 × 100, T [s] 3.4 · 10−1 6.29 · 101 7.4 · 10−1

200 × 200, Lmat
1 m 0.94 · 10−3 0.11 · 10−2 0.94 · 10−3

200 × 200, T [s] 1.33 · 100 2.56 · 102 2.95 · 100

Table 5: Polygonal grid: L1 mass errors and simulation times for single-material case - CC code

6.3. ALE Calculation of a Rayleigh-Taylor Instability

We are considering a Rayleigh-Taylor instability (RTI) problem for two immiscible ideal gases,
one heavy and one light, with gravitational field directed vertically downward and with magnitude
g = 0.1 The computational domain is defined by (x, y) ∈ [0, 1/6] × [0, 1]. The initial density for
the heavier gas is ρ1 = 2, and ρ2 = 1 for the lighter gas. Both gases have the same adiabatic
constant γ = 1.4. The interface has been deliberately perturbed according to the formula Yi(x) =
1
2 + 10−2 cos(6πx), see also Fig. 19. The initial pressure distribution is approximately hydrostatic
and is defined as follows:

P1(x, y) = 1 + ρ1 ‖ g ‖ (1 − y), if y > Yi(x),

P2(x, y) = 1 + ρ1 ‖ g ‖ (1 − Yi(x)) + ρ2 ‖ g ‖ (Yi(x) − y), if y < Yi(x).

It is well known that this configuration is unstable and as time progresses, the heavier gas will
sink and the lighter gas will rise through the formation of bubbles and spikes. This problem does
not involve any shock wave, but the vorticity is so high that pure Lagrangian schemes eventually
fail, therefore we use ALE methods. The final time for this problem is t = 10s.

We model this problem using both the ST and CC ALE codes. Because this problem involves two
gases with the same equation of state we can run it both in single material mode and multimaterial
mode similar to the stand-alone remapping test presented in the previous section. This allows us
to do a similar analysis of the numerical results.
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Figure 18: Material and density distribution for initial, perturbed, and final grid of MM cyclic remapping test -
polygonal grid - CC code.

6.3.1. Single Material Calculations of RTI Problem

For the single material RTI problem, we can compare the swept-region method for the entire
domain, the intersection-based method for the entire domain, and the hybrid method.

We start with results obtained from the ST code. We have chosen to use this code to run
problem in Eulerian=Lagrange+Remap mode, that is, after each Lagrangian step we return back
to the original grid. The initial grid is almost a rectangular grid (in right panel of Fig.20 we show
such a grid for 17 × 100 = 1700 cells).

In the right panel in Fig. 20, we show the initial distribution of density. In the other panels,
we show the distribution of density at the final time for different remapping methods: swept-
region-based, intersection-based, and hybrid. The conclusion from these pictures is that they are
practically identical.

We now consider the timings for this problem, which are presented in Table 7. Our fist ob-
servation is that the total time of calculation increases about ten times with increasing resolution,
which indicates that there is no simple dependence of the total cost of ALE on the grid resolution.
Our second observation is that for this example using the ST ALE code the cost of the hybrid
method is almost the same as the cost of the swept-region-based method. So in the overall ALE
calculation the relative cost of overhead related to the hybrid method is negligible. Finally, for the
finest resolution, intersection-based remapping is about 27% more expensive than swept-region-
based remapping. This may suggest that in this situation one may choose to use intersection-based
remapping because in principle it should give more accurate results.
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resolution intersection hybrid

25 × 25, Lmat
1 m 0.83 · 10−3 0.80 · 10−3

25 × 25, T [s] 4.04 · 100 1.08 · 100

50 × 50, Lmat
1 m 0.15 · 10−3 0.15 · 10−3

50 × 50, T [s] 1.63 · 101 2.44 · 100

100 × 100, Lmat
1 m 0.31 · 10−4 0.30 · 10−4

100 × 100, T [s] 6.49 · 101 4.87 · 100

200 × 200, Lmat
1 m 0.78 · 10−5 0.70 · 10−5

200 × 200, T [s] 2.59 · 102 1.16 · 101

Table 6: Polygonal grid: L1 mass errors and simulation times for multimaterial case - CC code.
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Figure 19: Statement of Rayleigh-Taylor instability problem.

Now we present some results for the CC code. We chose to run this code using the initial
polygonal grid shown in the right panel in Fig. 21. We run this problem in real ALE mode, where
the grid is smoothed in each time step. In Fig. 21, we also present the grid and the color map for
the density function at the final time for all remapping methods.

In the right panel in Fig. 21, we show the initial distribution of density. In the other panels we
show the distribution of density at the final time for different remapping methods: swept-region-
based, intersection-based, and hybrid. Our conclusion from these pictures is the same as for ST
ALE method - they are practically identical to the naked eye.

For the CC ALE code, at a resolution comparable with 17×100 resolution on a rectangular grid,
it takes 3.6 · 103 s to run this test using swept-region-based remapping, 3.83 · 104 s to run it using
intersection based remapping and 4.54 · 103 when the hybrid method is used. So the intersection-
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Figure 20: Single material Rayleigh-Taylor instability. Presented cell density in the initial and final time for all
methods - ST code.

resolution swept intersection hybrid

17 × 100 1.42 · 103 2.08 · 103 1.51 · 103

33 × 200 1.15 · 104 1.65 · 104 1.19 · 104

66 × 400 9.80 · 104 1.41 · 105 1.01 · 105

133 × 800 1.02 · 106 1.40 · 106 1.04 · 106

Table 7: Single material RTI problem - ST code timing results.
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Figure 21: Single material Rayleigh-Taylor instability. Presented cell density in the initial and final time for all
methods - CC ALE code.

36



resolution intersection hybrid

17 × 100 3.47 · 103 2.95 · 103

33 × 200 2.68 · 104 2.15 · 104

66 × 400 2.37 · 105 1.78 · 105

133 × 800 2.21 · 106 1.68 · 106

Table 8: Multimaterial RTI problem - ST code timing results.

based method is about eight times more expensive than the hybrid method and ten times more
expensive than the swept-region-based method. This is a dramatic difference in comparison with
the ST code, where the intersection-based method is only 1.37 times more expensive than the hybrid
method and 1.4 times more expensive than the swept-region-based method. However, overall, the
CC code is still much more expensive than the ST code.

6.3.2. Multimaterial Calculations of for the RTI Problem

For the multimaterial RTI problem, we only compare intersection-based and hybrid methods
for both ST multimaterial ALE and CC multimaterial ALE codes.

Again, similar to the single material RTI problem, we run ST ALE in Eulerian=Lagrange+Remap
mode.

In Fig. 22, we depict the color map for density in the corresponding material polygons (we do
not show results of interface reconstruction because it looks almost identical to density color map)
for the initial configuration and for the final time using intersection-based and hybrid remapping.
From this we conclude that, for practical purposes, results for both methods are almost identical.

In Table 8, we present timings for different resolutions. We observe in Table 8 that for this
problem, intersection-based remapping in the ST code is about 31% more expensive than hybrid
remapping. We remind the reader that the timings in Table 8 are for the total calculation which
includes the entire ALE algorithm.

Now, consider results obtained with the CC multimaterial ALE code, which we use in real ALE
mode. In Fig. 23, we present results for density and interface reconstruction in the same way as in
Fig. 22 for the ST multimaterial ALE code. Conclusions from this figure are the same as for the
ST code: Results for both remapping methods are identical to the naked eye.

The CC ALE code takes 9.65 · 103 s to run using hybrid remapping and 3.51 · 104 s to run using
intersection-based remapping for a resolution comparable with 17 × 100 resolution on a rectan-
gular grid, so the intersection-based method is about 3.63 times more expensive than the hybrid
method. For the ST ALE code and similar spatial resolution the intersection-based method was
approximately 1.2 more expensive than the hybrid method.

We conclude this section by presenting pictures of interface reconstruction and mixed points as
defined in the description of hybrid remapping for initial and final time, see Fig. 24. We observe that
during the calculation the number of mixed points is changing because the “length” and complexity
of the interface are growing. This is one of the reasons why it is practically impossible to have an
estimate of CPU time per cell for a realistic ALE calculation.

6.4. Shock-Bubble Interaction

This test case is taken from the paper [29] (see also, [9]). The setup consists of a Helium
bubble surrounded by air. The initial domain is the rectangular box [0, 0.650] × [−0.089, 0.089],
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Figure 22: “Multimaterial” Rayleigh-Taylor instability problem - results for the ST multimaterial ALE code. Two left
panels represent initial density; central panel represents density for intersection-based remapping at the final time;
right panel represents density for hybrid remapping at final time.

38



0 0.10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 0.10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

init. intersection hybrid

Figure 23: “Multimaterial” Rayleigh-Taylor instability problem - results for the CC multimaterial ALE code. Left
panel represents initial density; central panel represents density for intersection-based remapping at the final time;
right panel represents density for hybrid remapping at final time.
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Figure 25: Computational domain for shock-bubble interaction problem.
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Figure 26: Initial density distribution for shock-bubble interaction problem - the entire domain and zoom of the
region around bubble - ST code.

Fig. 25. The bubble is a circle defined by the coordinates of its center (xc, yc) = (0.320, 0) and its
radius Rb = 0.025. We prescribe wall boundary conditions on all boundaries with the exception
of the right boundary, where we impose a piston-like boundary condition defined by the inward
velocity V ? = (u?, 0). The incident shock wave produced by motion of the piston is defined by
its Mach number, Ms = 1.22. The bubble and the air are initially at rest. The initial data for
Helium are (ρ1, P1) = (0.182, 105), its molar mass is M1 = 5.269 · 10−3 and its adiabatic constant
is γ1 = 1.648. The initial data for air are (ρ2, P2) = (1, 105), its molar mass is M2 = 28.963 · 10−3

and its adiabatic constant is γ2 = 1.4. Using the Rankine-Hugoniot relations, we find that the
x-velocity of the piston is given by u? = −124.824. The x-component of the incident shock velocity
is Dc = −456.482. The incident shock wave hits the bubble at time ti = 668.153 · 10−6. The
stopping time for our computation is tend = ti + 674 · 10−6 = 1342.153 · 10−6. It corresponds to the
time for which an experimental shadow-graph is displayed in [29].

This problem is a two-material problem and to model it, we need to use a multimaterial ALE
code. As for the previous examples, we will present results both for the ST multimaterial ALE
code as well as for the CC multimaterial ALE code. Because this is a true multimaterial problem,
we compare only intersection-based and hybrid remapping. Similar to the previous example, we do
not present results for interface reconstruction because they are nearly identical to the color map
of density.

We now present results obtained by the ST code. We chose to use an initial rectangular grid
with 134 × 36 = 4824 cells, and to run this problem in real ALE mode smoothing the grid and
remapping after every Lagrangian step. Initial density distribution at the initial time is depicted
in Fig. 26.

Density distributions for the final time using intersection-based and hybrid remapping are de-
picted in Fig. 27. There is a slight difference in the results at x axes.
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Figure 27: Density distribution for shock-bubble interaction problem - final time - the entire domain and zoom of the
region around bubble - ST code. Upper row – intersection-based remap, lower row – hybrid remapping.

These figures demonstrate that results obtained by intersection-based and hybrid remapping
are practically the same.

It takes about 2078 s to run this calculation using the intersection based method and about
1529 s to run it using hybrid remapping. Thus, the intersection-based method is about 35%
more expensive than hybrid method, which is a similar result to the multimaterial Rayleigh-Taylor
instability problem.

Now, we present results obtained by using the CC multimaterial ALE code. We chose to run
this code in real ALE mode using grid smoothing and remapping after each Lagrangian step. The
initial grid is polygonal consisting of 4847 polygons and is depicted in Fig. 28.

The initial density distribution at the initial time is depicted in Fig. 28.
Density distributions at the final time that were obtained using intersection-based as well as

hybrid remapping are presented in Fig. 29. There is a slight difference in the results at x axes.
These figures demonstrate that results obtained by intersection-based and hybrid remapping

are practically the same.
The CC multimaterial ALE code takes 3.51 · 104 s to run this problem using intersection-based

remap and 9.65·103 s using hybrid remapping. So, intersection-based remapping is about 3.64 times
more expensive than hybrid remapping. This result is similar to the multimaterial Rayleigh-Taylor
instability problem.

7. Conclusions and Discussion

In this paper, we have presented a new hybrid rezoning/remapping algorithm for multimaterial
ALE methods. Hybrid remapping is performed in two steps. In the first step only nodes of the grid
are moved that are inside subdomains occupied by single materials. At this stage, computationally
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Figure 28: Initial density distribution for the shock-bubble interaction problem - the entire domain and zoom of the
region around bubble - CC code.
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Figure 29: Density distribution for the shock-bubble interaction problem - final time - the entire domain and zoom
of the region around bubble - CC code. Upper row – intersection-based remap, lower row – hybrid remapping.
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cheap swept-region remapping is used. In the second step, nodes are moved that are vertices
of mixed cells or vertices of some cells in the buffer zone around mixed cells. At this stage,
intersection-based remapping is used. We have demonstrated the performance of this new method
for both structured and unstructured polygonal grids in two dimensions as well as for ALE codes
using staggered and cell-centered discretizations.

We have shown that the accuracy of intersection-based remapping and hybrid remapping is
almost the same. This is demonstrated on a cyclic stand-alone remapping example, where the
exact solution is known, as well as on calculations of two realistic problems - a Rayleigh-Taylor
instability and an interaction of a shock with a gas bubble.

We showed that CPU time strongly depends on implementation of the intersection algorithm
and other implementation issues.

We now discuss some considerations which must be taken into account when considering the
efficiency of remapping in multimaterial ALE codes.

First, it is necessary to estimate the cost of the hydro part relative to other physics that
is implemented in the code. In the case of multiphysics codes, which include hydrodynamics,
strength of materials, radiation hydrodynamics, astrophysics, combustion and so on, [28], [31],
[26], [5], [35], the relative computational cost of the hydro part may be small. In this situation,
accuracy is the most important issue and, thus, intersection-based remap should be used everywhere.
In multiphysics codes many quantities must be remapped. In this situation the relative cost of
intersection based remap is lower because intersections are done only once and used for many
quantities - the cost of remap is dominated by reconstruction of all variables and by computing
fluxes, which has to be done for swept-region remapping, too. LASNEX, [35], is an example of a
multiphysics code where intersection-based remapping is used for the entire grid.

Another consideration is the cost of remapping in ALE itself relative to the cost of the La-
grangian and rezoning stages. This depends on the type of grid the code is using: structured,
block structured, or unstructured, and on the type of data structures that are used to represent
it. One also needs to take into account the type of discretization the code is using: staggered or
cell-centered. Another consideration is how many materials are used in the problem, which affects
the fraction of the computational domain that is occupied by mixed cells. All these considerations
may affect performance of the algorithm and in particular cost of memory access.

For 2D codes it is important to know if the Lagrangian step allows grid movement that creates
valid non-convex cells or not. If so, then for intersection based remap more complicated and
expensive intersection algorithms must be used, for example, based on subdivision of the cell into
triangles, [9]. In 3D, subdivision of cells into tetrahedra appears to be unavoidable. Therefore, even
for codes with relatively simple physics, the choice of remapping algorithm can be different in 2D
and 3D.

Finally, the computer architecture on which algorithm will be implemented and available par-
allelization strategies must be considered (see, [34, 33], for examples of implementations of com-
pressible gas dynamics on the Roadrunner machine).

Considerations presented in this section, the analysis of relative cost of multimaterial remapping
performed in section 5.4, and timing results presented in section 6 for two different multimaterial
ALE codes suggest that in multiphysics codes all options should be available, such that different
remapping methods can be used for different problems and/or on different computer platforms.
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