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We have constructed reliable finite difference methods for approximating the so-
lution to Maxwell’s equations using accurate discrete analogs of differential oper-
ators that satisfy the identities and theorems of vector and tensor calculus in dis-
crete form. The numerical approximation does not have spurious modes and mimics
many fundamental properties of the underlying physical problem including conser-
vation laws, symmetries in the solution, and the nondivergence of particular vector
fields. Numerical examples demonstrate the high quality of the method when the
medium is strongly discontinuous and for nonorthogonal, nonsmooth computational
grids.
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1. INTRODUCTION

We will construct conservative finite difference methods (FDMs) for two-dimensional
Maxwell’s curl equations for multimaterial medium on nonorthogonal, nonsmooth, logically
rectangular computational grid. These FDMs are based on the discrete analogs of first-order
differential operators,div, grad, andcurl , that satisfy discrete analogs of the theorems of
vector analysis. The new methods produce solutions free of spurious modes and satisfy the
divergence-free conditions exactly. The properties of the discrete operators guarantee the
stability of the FDMs and allow powerful iterative methods to solve the systems of linear
equations relating to these FDMs.

This paper is a part of our attempt to develop a discrete analog of vector and tensor calculus
that can be used to accurately approximate continuum models for a wide range of physical
processes on logically rectangular, nonorthogonal, nonsmooth grids. ThesemimeticFDMs
mimicfundamental properties of the original continuum differential operators and allow the
discrete approximations of partial differential equations (PDEs) to preserve critical prop-
erties including conservation laws and symmetries in the solution of the underlying phys-
ical problem. In particular, we have constructed discrete analogs of first-order differential
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operators, such asdiv, grad, andcurl , that satisfy the discrete analogs of theorems of vector
and tensor calculus [10–13]. This approach has also been used to construct high-quality
mimetic FDMs for the divergence and gradient in approximating the diffusion equation [15,
38, 39].

In this paper we apply our new methodology to construct mimetic FDMs to Maxwell’s
first-order curl equations,

∂ EB
∂t
= −curl EE, ∂ EE

∂t
= 1

ε
curl

EB
µ
, (1.1)

where EB is the magnetic flux density andEE is the electric field intensity. The permittivity,
ε, and permeability,µ, can be general symmetric positive-definite tensors with possibly
discontinuous elements at the interface between different media. We chose this form for
the equations because at the interface between two media the normal components ofEB
and the tangential components ofEE are continuous (see, for example, [32]). This approach
is consistent with the discrete operators described in [10–13], that also uses these vectors
components.

In addition to Eqs. (1.1), the following “divergence-free” conditions

div ED = 0, div EB = 0, (1.2)

are satisfied. HereED= ε EE is the electric flux density. If the solution of (1.1) satisfies these
“divergence-free” conditions initially, then they will be satisfied at later times [32]. Because
we use discrete operators that satisfy discrete analogs of theorems of vector analysis, the
discrete analogs of “divergence-free” conditions are automatically a consequence of the
discrete “curl” equations.

In this paper we consider 2-D logically rectangular grids, where the tensors determining
material properties are defined in the grid cells, and assume that the interface between
different materials coincides with the faces of the cells. We describe the primary variable
EE by its orthogonal projection onto the directions of edges of the computational cells and
the primary variableEB is described by its orthogonal projection onto the directions normal
to the cell faces.

Because we use different discrete descriptions of the magnetic and electric fields we need
two different discrete analogs ofcurl . To discretizecurl EE we use a coordinate invariant
definition of thecurl EE based on Stokes’ circulation theorem applied to the faces of the cell.
This definition defines the discrete analog of Faraday’s law of electromagnetic induction
locally for each face.

When discretizing the second equation in (1.1), whenε andµ are discontinuous and (or)
the computational grid is not smooth, then it is not possible to separate the discretization
of curl EB from the discretization of1

ε
curl EB

µ
. We construct a discrete analog of the full

operator1
ε

curl EB
µ

using a discrete analog of the integral identity for curls

∫
V
( EA, curl EB) dV −

∫
V
( EB, curl EA) dV =

∮
∂V
([ EB× EA], En) dS, (1.3)

which is also responsible for the law of conservation of electromagnetic energy. HereEA and
EB are arbitrary vector functions, and(·, ·) and [·×·] are dot and cross product of two vectors,
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respectively, andEn is the unit outward normal to the surface∂V of volumeV . This approach
guarantees that the electromagnetic energy is conserved on the discrete level. This construc-
tion is done within the framework of the support-operators method (SOM) [33, 35, 38].

To discretize the conditiondiv EB= 0 we use the natural coordinate invariant definition
of the divergence based on Gauss’ divergence theorem. It is shown in [10] that this discrete
divergence satisfies the discrete analog of identitydiv curl EE= 0 in each cell. Therefore if
a discrete analog ofdiv EB= 0 holds initially, then it will hold for later times.

To discretize the conditiondiv ED= div ε EE= 0, we must define a discrete analog of
operatordiv ε·. Following the approach used in [11], we construct a discretediv ε operator
using the integral identity∫

V
( EW, grad u) dV = −

∫
V

u div EW dV+
∮
∂V

u( EW, En) dS, (1.4)

where EW andu are arbitrary vector and scalar functions, and the natural discretization of the
grad operator is based on its connection to the directional derivative. We prove that these
operators satisfy a discrete analog of the identitydiv curl EH = 0. Therefore if the discrete
analog ofdiv ε EE= 0 holds initially, then it will hold for later times.

Using these discrete spatial operators, which we denote using capital letters (CURL∼ curl
andεCURLµ∼ 1

ε
curl ·

µ
), we consider the following discretization of Maxwell’s curl equa-

tions

EBn+1
h − EBn

h

1t
= −CURL EEα1

h ,
EEn+1

h − EEn
h

1t
= εCURLµ EBα2

h , (1.5)

where EEα1
h =α1 EEn+1

h + (1−α1) EEn
h and EBα2

h =α2 EBn+1
h + (1−α2) EBn

h, and tn=1tn. For
some problems with strongly discontinuous coefficients, it is important to preserve en-
ergy. It is easy to show that the only method of this form which preserves energy is the
midpoint method (α1=α2= 0.5). To solve the system of linear equations arising when us-
ing this implicit scheme we reduce the original discrete system of equations to a system of
equations, which contains only the unknownEEn+1

h . The adjointness property of the discrete
curls guarantees that the resulting system of equations will be symmetric and positive-define
(SPD). After solving forEEn+1

h , the first equation in (1.5) is used to explictly definiteEBn+1
h .

These discrete operators also can be used to discretize the equations of magnetic diffusion
[41]

∂ EB
∂t
= −curl EE, σ EE = curl

EB
µ
,

which arise in magnetohydrodynamics (MHD) [14]. Here the conductivityσ is a symmetric
positive-definite discontinuous tensor. The equations of magnetic diffusion are often solved
together with Lagrangian hydrodynamics. The Lagrangian grids move with the media and
can be extremely distorted or rough; FDMs have to be robust and accurate on these grids.
The numerical examples presented in Section 8 and [14] demonstrate that our FDM is
accurate on nonsmooth grids.

Implicit time integration methods are required to efficiently solve these equations in many
practical applications. When integrating the equations with an implicit method our approach
guarantees that the system of linear equations is SPD even on highly distorted grids. The
SPD property allows powerful interative methods to be used to solve these equations.
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The remainder of this paper is organized as follows. In Section 2 we give a brief overview
of methods for solving Maxwell’s equations. In Section 3 we dicuss the properties of the
governing equations preserved by the discrete model. In Section 4 we describe the grid, the
discretizations of scalar and vector functions, and the inner products in the discrete function
spaces. In Section 5 we review the derivation of the natural and adjoint finite difference
analogs for the divergence, gradient, and curl and introduce discrete analogs of the operators
div ε· and 1

ε
curl ·

µ
. We also define the discrete analogs of the theorems of vector analysis

needed for the derivations in this paper. In Section 6 we describe our FDMs and prove that
they satisfy the desired properties. In Section 7 we discuss the solution of implicit equations.
Finally in Section 8, we present the numerical examples.

2. BACKGROUND

There is a huge literature related to solving Maxwell’s equations. We want to note that
our method onorthogonal gridsis identical to the finite-difference time-domain (FDTD)
method developed by Yee [44] and the structure of discrete operators is the same as in the
MAFIA family of methods, [43].

Recently Yee’s method has been extended for general grids (see, for example, [42,
pp. 369–374] and references therein). These generalizations use the original grid and a
newly defined dual grid. Faraday’s law is discretized on the original grid and the electric
field, EE, is defined by components on the edges of the grid, which can be interpreted as
the flow of the electric field along the cell edges. This description agrees with the method
we are proposing if our components forEE are multiplied by the length of the edges. The
magnetic flux,EB, is described in these methods by the components on the cell faces. These
components can be interpreted as the flux through the face of the cell, and agree with com-
ponents we are using up to a factor of face area. Ampere’s law is discretized on the dual
grid using the same procedure (with respect to edges and faces of the dual grid) for the
magnetic field,EH , and the electric flux,ED. The discretizations of the equations in terms of
these variables are straightforward.

However, to close the system the discrete analogs of constitutive equationsED= ε EE and
EB=µ EH must be defined consistent with the discretization. BecauseED and EE (as well asEB
and EH ) are defined in different locations, it is not trivial to define a consistent interpolation
procedure, when coefficients are discontinuous and the grid is nonsmooth. Most procedures
use the connection between the co- and contravariant components of the vector to construct
the interpolation formula. The potential disadvantages of this approach are clear when we
consider nonsmooth grids and the case of discontinuous coefficients.

There are several possible approaches to define the dual grid. For example, in [42] the
dual grid formed by connecting the centers of the cells of the original grid is adequate for
the smooth grid but is a poor choice if the grid is nonsmooth. On very irregular grids the
edges of this dual grid may fail to intersect the corresponding face of the original grid and
instead intersect faces of other cells, or even cross several cells. When this happens, and
µ andε are discontinuous and the interfaces coincide with faces of the original grid, then
the interpolation formulas for the constitutive equations are unlikely to even be consistent.
That is, the naive interpolation can lead to errors which do not vanish as grid size goes to
zero (see [39, pp. 402–404]), lead to stability problems [34], and introduce spurious modes
into the solution [16].
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It is recognized [34] that FDMs will be stable if interpolation operators are symmet-
ric and positive-definite. These properties can be achieved for reasonably regular grids
by manipulation of the local basis vectors related to original and the dual grids [34].
This framework can be used to interpret our approach as a consistent way to define sym-
metric positive-definite interpolation operators (material matrices, using terminology from
[43, 34]) without using the dual grids.

The FDM and analysis is presented here for the first time for general problems. However,
for the equations of magnetic diffusion Shashkov and others published a series of papers
(independent of Yee’s paper) constructing variational FDMs on logically rectangular grids
[19]. For this particular problem the discretization and location of variables are the same as
the method we are proposing. The discretizations of the curl operator constructed in these
papers have been applied to the solutions of Maxwell’s equations in cylindrical geometry
on orthogonal grids [7] and to modeling a microwave plasma generator [21]. The stability
and convergence of the variational FDMs have been theoretically analyzed [2], using the
energy method based on the adjointness property of the discrete operators.

Algebraic topology provides a natural framework to describe discrete structures. The ideas
of algebraic topology have been applied to developing numerical methods (especially on
rectangular grids) for more than 40 years (see references in [10]). By applying this approach
to electromagnetics (see, for example, [3] and references therein) formal structures can be
introduced that correspond to the objects of electromagnetics. The “edge elements” and
“facet elements” introduced in this approach correspond to our discretization of the electric
and magnetic fields. The main difficulties in this approach are the construction of consistent
adjoint operators or using terminology of algebraic topology, discrete analogs of the Hodge
operator. This paper and [10–13] provide a self-consistent derivation of FDMs based on
the discrete vector analysis without resorting to the terminology or machinery of algebraic
topology.

There is continuing discussion about the origin of spurious solutions that arise in com-
putational electromagnetic models (e.g., [16, 17] and references there). Spurious solutions
for FDMs for first-order systems can originate from inconsistent discretizations of the op-
eratorsdiv, curl , andgrad. SOM FDMs defined in a consistent way are free of spurious
solutions. The consistent definition of the initial electric and magnetic fields can be achieved
using the discrete analogs of the orthogonal decomposition theorem proved in [12]. That
is, given discrete divergence and curl of a discrete vector, the full vector can be uniquely
reconstructed and decomposed into two orthogonal vectors in a unique way, satisfying a
discrete analog of the formulaEA= gradϕ+ curl EB, if its normal or tangential component
is given on the boundary.

A discrete vector field theory on Delaunay–Voronoi meshes is created in [28, 29]. This the-
ory uses the special geometrical property of the Delaunay–Voronoi meshes that the sides of
Delaunay triangulation are orthogonal to the corresponding sides of the Voronoi polygons.
The local orthogonality property makes these grids similar to the usual orthogonal grids.
Another important property of these grids is that vertices of triangles can be also considered
as “centers” of the Voronoi cells. This approach leads to a natural generalization of the
standard staggered mesh FDM for Maxwell’s equations to tetrahedral meshes [22, 30]. This
approach is accurate on smooth grids, but when the nodal distribution is nonsmooth, the
segment connecting two neighbors may not intersect the face of the cell (it is always orthog-
onal to the plane containing this face) and may in fact intersect this plane outside the face.
Several years ago our approach was extended to Voronoi cells [37] for the heat conduction
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equation. When we apply our methodology to this mesh it would have the same directions
as the methods in [22, 30] for the vector components but the magnetic field would be in a
different location. Their magnetic field is defined in the middle of the segment’s connecting
point to its neighbors but ours is defined in the middle of a cell face. The advantages of
our approach are most evident when the methods are applied on extremely rough grids,
especially when the properties of the media are discontinuous.

The finite-element method (FEM) (see, for example, [18, 40], and the references therein)
have been used extensively to solve Maxwell’s equations. From our perspective the main
difference between our FDM and FEMs is that in defining our discretizations we have
built the discrete analogs of the continuous operators directly into the FDMs so they can be
manipulated exactly as the continuous differential operators. Typically, one defines FEMs to
discretize the space of solutions. This is in contrast to our FDMs where we directly discretize
the differential operators which participate in the formulation of governing equations. The
“spirit” of our FDM is close to the original mixed FEM introduced by Raviart and Thomas
[31] and Nedelec [27, 1] and the use of vector elements in [18, Chap. 8, pp. 231–280] and
the references therein.

3. MAXWELL’S CURL EQUATIONS AND THEIR PROPERTIES

In this paper we consider a nonconducting, free of charge, medium. In this case the
governing equations are

∂ EB
∂t
= −curl EE, (3.1a)

∂ ED
∂t
= curl EH , (3.1b)

where EH is magnetic field intensity, and the dependent equations are

div ED = 0, (3.2a)

div EB = 0. (3.2b)

If the domain of interest contains more than one media then on the interface between say,
medium 1 and medium 2, the tangential component ofEE and the normal component ofEB
are continuous;

[En× ( EE1− EE2)] = 0, (En, ( EB1− EB2)) = 0.

If Eq. (3.2b) is initially satisfied then it will hold at later times. This follows if we apply
div to the left- and right-hand sides of (3.1a) and use the identitydiv curl EE= 0 to obtain
∂(div EB)/∂t = 0; thereforediv EB= const= div EB|t=0= 0. Similarly, if (3.2a) is initially
satisfied it will hold at later times. This follows from applyingdiv to the left- and right-hand
sides of (3.1b) and using the identitydiv curl EH = 0 to obtain∂(div ED)∂t = 0; therefore
div ED= const= div ED|t=0= 0.

Therefore, when constructing our FDM we require that the discrete analogs of the identi-
tiesdiv curl EH = 0, div curl EE= 0 holdexactly, and that discrete analogs of the conditions
div ED= 0, div EB= 0 are initially satisfied.
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We now consider the law of conservation of electromagnetic energy and analyze the
related properties of the differential operators. The energy density of the electromagnetic
field is defined as12{( EE, ED)+ ( EB, EH)} for a linear and nondispersive medium whereε and
µ are independent of the field variables and time. The conservation law in electromagnetics
(for a nonconducting medium) can be formulated as [32, p. 339]

0= ∂

∂t

∫
V

1

2
{( EE, ED)+ ( EB, EH)} dV +

∮
∂V
([ EE × EH ], En) dS, (3.3)

whereEn is the unit outward normal to the surface∂V . This equation can be derived by first
taking the scalar product of Eq. (3.1b) withEE and subtracting the resulting equation from
the scalar product of Eq. (3.1a) withEH to obtain

( EH , curl EE)− ( EE, curl H) = −
(
EH , ∂
EB
∂t

)
−
(
EE, ∂
ED
∂t

)
. (3.4)

Then, using the property

∂

∂t
( EE, EE) = 2

(
EE, ∂
EE
∂t

)
(3.5)

and thatε andµ are independent of time, we have(
EE, ∂
ED
∂t

)
= 1

2

∂

∂t
( EE, ED),

(
EH , ∂
EB
∂t

)
= 1

2

∂

∂t
( EH , EB). (3.6)

Next, integrating Eq. (3.4) over the domainV and using (3.6) we obtain∫
V
{( EH , curl EE)− ( EE, curl EH)} dV = − ∂

∂t

∫
V

1

2
{( EE, ED)+ ( EB, EH)} dV.

The conservation law (3.3) follows from this equation and the identity (1.3) for curls. If
the boundary integral in the right-hand side of (1.3) vanishes, then this identity expresses
the self-adjointness property of the operatorcurl . Therefore, the discrete analog of this
conservation law will hold if the time integration method satisfies a discrete analog of (3.5)
and the discretecurl satisfies a discrete analog of (1.3).

Because the normal components ofEB and the tangential components ofEE are continuous
on discontinuities in the media, we will use them to describe the magnetic flux density and
the electric field intensity in the discrete case. Therefore, we solve Maxwell’s equations in
the form

∂ EB
∂t
= −curl EE, (3.7a)

∂ EE
∂t
= 1

ε
curl

EB
µ
, (3.7b)

and impose the divergence-free condition forED, (3.2a) as

div ε EE = 0. (3.8)
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In this paper we consider boundary conditions where the tangential component ofEE is
given on the boundary,

En× EE = γ. (3.9)

Whenγ = 0, this condition is appropriate for a perfectly conducting surface. The approxi-
mation of (3.9) is especially easy for our FDM because we use the tangential components
of EE to describe the electric field. Impedance boundary conditions (see [18, p. 7]) require
a combination of the tangential components ofEE and EH given on the boundary. These
boundary conditions can also be treated (see the note at the end of Subsection 5.2).

In this paper we will consider only the “2-D Case,” where there are no variations in the
electromagnetic fields or geometry in thez direction. That is, all partial derivatives with
respect toz are zero, and the domain extends to infinity in thez-direction with no change
in the shape or position of its transverse cross section.

In this situation the full set of Maxwell’s curl equations can be presented as two groups
of equations (see, for example, [42, pp. 54–55]). The first group of equations involves only
Hx, Hy, andEz, and is called the transverse magnetic (TM) mode. The second group of
equations involves onlyEx, Ey, andHz, and is called the transverse electric (TE) mode. The
TM and TE modes are decoupled and can exist simultaneously with no mutual interaction.

4. SPACES OF DISCRETE FUNCTIONS

4.1. Grid. Consider the logically cuboid grid with hexahedron cells, shown in Fig. 1,
where the nodes are enumerated by three indices(i, j, k) : 1≤ i ≤M; 1≤ j ≤ N; 1≤ k≤O.
Sometimes it is useful to interpret the logically cuboid grid as being formed by intersec-
tions of broken lines that approximate the coordinate curves of some underlying curvilinear
coordinate system (ξ, η, ζ ). Theξ, η, or ζ coordinate corresponds to the grid line where
the indexi, j , or k is changing, respectively. This interpretation motivates the notation

FIG. 1. The elements of the 3-D grid.
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we introduce for the areas of faces and lengths of the edges. We denote the length of the
edge(i, j, k)—(i + 1, j, k) by lξi+1/2, j,k, the length of the edge(i, j, k)—(i, j + 1, k) by
lηi, j+1/2,k, and the length of the edge(i, j, k)—(i, j, k+ 1)by lζi, j,k+1/2. The area of the sur-
face (i, j, k)—(i, j + 1, k)—(i, j, k+ 1)—(i, j + 1, k+ 1) is denoted bySξi, j+1/2,k+1/2,
the area of surface(i, j, k)—(i + 1, j, k)—(i, j, k+ 1)—(i + 1, j, k+ 1) is denoted by
Sηi+1/2, j,k+1/2, and the area of surface(i, j, k)—(i + 1, j, k)—(i + 1, j + 1, k)—(i, j +
1, k) is denoted bySζi+1/2, j+1/2,k. The volume of a 3-D cell isV Ci+1/2, j+1/2,k+1/2 and the
volume relating to the node (see Subsection 4.3 for an explanation why we need one) is
denoted byV Ni, j,k.

4.2. Discrete scalar and vector functions.A discrete scalar function is a function whose
domain is the set of multi-indices and range of values isR. For example, if the set of
multi-indices is [(i, j, k)—i = 1, . . . ,M; j = 1, . . . , N; k= 1, . . . ,O] then the values of
the discrete scalar functionU areUi, j,k. (From here on, we will use the same notation for
continuous and discrete functions if it does not lead to ambiguity.) From the formal point of
view the discrete scalar function is the vector, whose dimension corresponds to the dimen-
sion of a multi-index set. The space of discrete scalar functions consists of all discrete scalar
functions with the same domain. The sum of two discrete scalar functions and the multipli-
cation by a scalar are defined in the obvious way: ifW=U +V thenWi, j,k=Ui, j,k+Vi, j,k,
and ifW= λU thenWi, j,k= λUi, j,k. From a formal point of view the space of discrete scalar
functions is the usual linear space. We view discrete scalar functions as an approximation to
a continuous scalar function where the multi-index corresponds to the particular location on
the computational grid. The value of the discrete scalar function is interpreted as an approx-
imate value of a continuous function at this location. For example, we interpret the discrete
scalar function with the domain [(i, j, k)− i = 1, . . . ,M; j = 1, . . . , N; k= 1, . . . ,O] as
a function whose values are an approximation to the values of a continuous scalar function
at the nodes of the computational grid. For this reason we will define the domain of this
function as the nodes of the grid, or say that this function is defined at the nodes. We denote
this space of discrete scalar functions asH N (hereN stands for “node”). In general, we
use italics for spaces of scalar functions.

A discrete vector function is the discrete analog of a continuous vector function. It has
three components which can be viewed as discrete scalar functions. From a formal point
of view, the space of discrete vector functions is the direct sum of linear spaces, that corre-
spond to the discrete scalar functions. For example, we define the discrete vector function
EA= (AX, AY)T ; AX, AY∈ H N. The space of discrete vector functions at the nodes is

denoted asHN (in general, we will use script for spaces of discrete vector functions). Note
that formallyHN = H N⊕ H N.

We define the spaceHC (C stands for “cell”) as the space where the discrete scalar
functionU is defined by its values in the cells,Ui+1/2, j+1/2,k+1/2, and values at the centers
of the boundary faces (see [11] for details). We use the cell-centered discretization for
scalar functionsε andµ that determine the material properties. We define three spaces
associated with faces of the cell; the function in the spaceH Sξ is defined on theξ faces of
the cell; the spacesH Sη andH Sζ are defined similarly. There are three spaces associated
with the edges of a cell; the function in the spaceH Lξ is defined on theξ edges of the
cell; the spacesH Lη and H Lζ are defined similarly. We consider two different spaces
of discrete vector functions. The spaceHS = H Sξ ⊕ H Sη⊕ H Sζ is associated with the
discrete representation of a vector function by its orthogonal projections onto the normal
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FIG. 2. (a)HS discretization of a vector in three dimensions; (b) The 2-D interpretation of theHS discretiza-
tion of a vector results in the face vectors being defined perpendicular to the cell sides and the vertical vectors
being defined at cell centers perpendicular to the plane.

of the cell faces (see Fig. 2a). We use this space to describe the discrete magnetic fluxEB.
The spaceHL= H Lξ ⊕ H Lη⊕ H Lζ is associated with the discrete representation of a
vector function by its orthogonal projections onto the direction of the edges (see Fig. 3a).
We use this space for the discrete representation of the electric fieldEE.

In this paper we consider the “2-D” case, where the unknowns depend only on the two spa-
tial coordinates,x andy, even though the vectors may have three components. Formally, 2-D
discretizations can be obtained from 3-D discretizations where theζ -edges are orthogonal to
the(x, y) plane and have unit length (see [10], for details). From here on, the discrete values
will be independent of thek index and it is dropped from the notation. Also note that for the
2-D caseSξi, j+1/2= lηi, j+1/2, Sηi+1/2, j = lξi+1/2, j andV Ci+1/2, j+1/2= Sζi+1/2, j+1/2. The
angle between any two adjacent sides of the cell(i + 1/2, j + 1/2) that meet at the node
(i ′, j ′) is denoted byϕi+1/2, j+1/2

i ′, j ′ .

FIG. 3. (a)HL discretization of a vector in three dimensions; (b) 2-D interpretation of theHL discretization
of a vector results in the edge vectors targential to the cell sides and the vertical vectors being defined at cell nodes.
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The projection of the 3-DHS vector discretization space into 2-D results in face vectors
perpendicular to the quadrilateral cell sides and cell-centered vertical vectors perpendicular
to the 2-D plane (see Fig. 2b). We use the notation

BSξ = {BSξ(i, j+1/2) : i = 1, . . . ,M; j = 1, . . . , N − 1},
BSη = {BSη(i+1/2, j ) : i = 1, . . . ,M − 1; j = 1, . . . , N},
BSζ = {BSζ(i+1/2, j+1/2) : i = 1, . . . ,M − 1; j = 1, . . . , N − 1},

and EB= (BSξ, BSη, BSζ )T ∈HS.
The projection of the 3-DHL vector discretization space into 2-D results in vectors

tangential to the quadrilateral cell sides and vertical vectors at the nodes (see Fig. 3b). We
use the notation

E Lξ = {E Lξ(i+1/2, j ) : i = 1, . . . ,M − 1; j = 1, . . . , N},
E Lη = {E Lη(i, j+1/2) : i = 1, . . . ,M; j = 1, . . . , N − 1},
E Lζ = {E Lζ(i, j ) : i = 1, . . . ,M; j = 1, . . . , N},

and EE= (E Lξ, E Lη, E Lζ )T ∈HL.

4.3. Discrete inner products.Defining consistent FDMs also requires deriving the ap-
propriate discrete adjoint operators. To define the adjoint operators we must specify the
inner products in the spaces of discrete scalar and vector functions. Because the space of
discrete scalar functions is the usual linear vector space, we have the usual inner product,
[·, ·] (which we will call theformal inner product), which is just the dot product between
vectors in this space. InHC (discrete scalar functions defined in the cell centers), the formal
inner product is

[U,V ]HC
def=
∑

c∈HC

UcVc,

wherec is multi-index corresponding to cells. From here on, we will use notation
def=, when

we define a new object. In the space of discrete vector functionsHS = H Sξ ⊕ H Sη⊕ H Sζ ,
the formal inner product is the sum of the formal inner products of its components

[ EA, EB]HS
def=

∑
f ξ∈H Sξ

ASξ f ξ , BSξ f ξ +
∑

f η∈H Sη

ASη f ηBSη f η +
∑

f ζ∈H Sζ

ASζ f ζ BSζ f ζ ,

where f ξ , f η, and f ζ are multi-indices for the corresponding families of faces of the cells.
Similar definitions hold for the spacesH N andHL.

Because our construction is based on the approximation of the integral identities we
introduce additional inner products,(·, ·) (which we will call thenatural inner products),
which correspond to the continuous inner products. In the space of discrete scalar functions,
HC, the natural inner product corresponding to the continuous inner product

∫
V uv dV+∮

∂V uv dS is

(U,V)HC
def=
∑

c∈HC

UcVcṼ Cc,
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whereṼ Cc is the volume of thecth cell in the interior of the domain and on the boundary
it is equal to the area of boundary face.

We define
0

H N to be the subspace ofH N where discrete functions are equal to zero on
the boundary

0
H N

def= {U ∈ H N,Ui, j = 0 on the boundary}

(the notation of “zero” above the name of a space indicates the subspace where the functions
are equal to zero on the boundary) with natural inner product defined as

(U,V) 0
H N

def=
∑

n∈
0

H N

UnVnV Nn, (4.1)

wheren is the multi-index corresponding to the nodes andV Nn is the nodal volume.
In the space of vector functionsHS, the natural inner product corresponding to the

continuous inner product
∫

V (
EA, EB) dV is

( EA, EB)HS def=
M−1∑
i=1

N−1∑
j=1

( EA, EB)(i+1/2, j+1/2) V C(i+1/2, j+1/2), (4.2)

where( EA, EB) is the dot product of two vectors. The dot product in the cell is approximated
by

( EA, EB)(i+1/2, j+1/2) =
1∑

k,l=0

V (i+1/2, j+1/2)
(i+k, j+l )

sin2 ϕ
(i+1/2, j+1/2)
(i+k, j+l )

·[ASξ(i+k, j+1/2) BSξ(i+k, j+1/2)+ ASη(i+1/2, j+l ) BSη(i+1/2, j+l )

+ (−1)k+l
(

ASξ(i+k, j+1/2)BSη(i+1/2, j+l )

+ ASη(i+1/2, j+l )BSξ(i+k, j+1/2)
)

cosϕ(i+1/2, j+1/2)
(i+k, j+l )

]
+ ASζi+1/2, j+1/2BSζi+1/2, j+1/2, (4.3)

where the weightsV (i+1/2, j+1/2)
(i+k, j+l ) satisfy

V (i+1/2, j+1/2)
(i+k, j+l ) ≥ 0,

1∑
k,l=0

V (i+1/2, j+1/2)
(i+k, j+l ) = 1. (4.4)

In this formula, each index(k, l ) corresponds to one of the vertices of the(i +1/2, j + 1/2)
cell, and the notation for the weights is the same as for the angles of a cell. The formula for
this dot product is derived in [39, 11].

This dot product is the simplest robust approximation where if a cell angle is close
to zero orπ (and consequently the coordinate system related to this angle is close to
degenerate), then the corresponding weight (and contribution from this vertex) vanishes
smoothly when the coordinate system becomes degenerate. Consequently, this dot product
can be used for triangular cells that arise as the limit of degenerate quadrilaterals because
the unknown component of the vector related to the degenerate vertex does not appear in
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either the equation or the dot product. This dot product can also be derived by averaging the
dot products corresponding to piece-wise constant vector finite-elements. More accurate
approximations for the dot product can be derived using the low-order Raviart–Thomas
elements [31, 4] and include terms likeASξi, j+1/2. ASξi+1, j+1/2.

The inner product inHL is similar to the inner product for spaceHS,

( EA, EB)HL def=
M−1∑
i=1

N−1∑
j=1

( EA, EB)(i+1/2, j+1/2)V C(i+1/2, j+1/2), (4.5)

where( EA, EB)i+1/2, j+1/2 approximates the dot product of two vectors in the cell (see [11])
and looks similar to one for vectors fromHS.

The natural and formal inner products satisfy the relationships

(U,V)HC = [CU, V ]HC and ( EA, EB)HS = [S EA, EB]HS , (4.6)

whereC : HC→ HC andS :HS→HS are symmetric positive operators;

[CU,V ]HC = [U, CV ]HC, and [CU,U ]HC > 0, (4.7)

[S EA, EB]HS = [ EA,S EB]HS , [S EA, EA]HS > 0. (4.8)

Therefore, the operatorC satisfies the relations

(CU )c= Ṽ CcUc, c∈ HC.

The operatorS can be written in block form,

S EA =

S11 S12 0

S21 S22 0

0 0 S33


ASξ

ASη

ASζ

 =
S11 ASξ + S12 ASη

S21 ASξ + S22 ASη

S33 ASζ

 . (4.9)

By comparing the formal and natural inner products, we can derive the explicit formulas
for S (see [11]). For example, forS11 andS12 we have

(S11 ASξ)(i, j+1/2) =
 ∑

k=± 1
2 ;l=0,1

V (i+k, j+1/2)
(i, j+l )

sin2 ϕ
(i+k, j+1/2)
(i, j+l )

 ASξ(i, j+1/2), (4.10)

(S12 ASη)(i, j+1/2) =
∑

k=± 1
2 ;l=0,1

(−1)k+
1
2+l

V (i+k, j+1/2)
(i, j+l )

sin2 ϕ
(i+k, j+1/2)
(i, j+l )

× cosϕ(i+k, j+1/2)
(i, j+l ) ASη(i+k, j+l ). (4.11)

The operatorsS11, S22, andS33 are diagonal, and the stencils for the operatorsS12 andS21

are shown in Fig. 4.
The relationship between the natural and formal inner products in

0
H N is

(U,V) 0
H N
= [NU,V ] 0

H N
,
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FIG. 4. The stencils of the componentsS12 and S21 of the symmetric positive operatorS that connects the
natural and formal inner products (EA, EB)HS = [S EA, EB]HS .

whereN : H N→ H N is a symmetric positive operator in the formal inner product, and

(NU )n = V NnUn, n ∈ 0
H N

The operatorL :HL→HL, which connects the formal and natural inner products in
HL (similar to operatorS for spaceHS), is symmetric and positive and can be written in
block form as

L EA =

L11 L12 0

L21 L22 0

0 0 L33


ALξ

ALη

ALζ

=
L11ALξ + L12ALη

L21ALξ + L22ALη

L33ALζ

 . (4.12)

The operatorsL11, L22, andL33 are diagonal, and the stencils for the operatorsL21 and
L12 are the same as for the operatorsS12 andS21 (see Fig. 4). Explicit expressions for these
operators are presented in [11].

Natural discrete inner products satisfy the axioms of inner products, that is, they are true
inner products and not just approximations of the continuous inner products. Also, discrete
spaces are Euclidean spaces.

5. DISCRETE OPERATORS

In this section we consider the discretization of the spatial operators in Maxwell’s curl
equations, (3.7a), (3.7b), and the divergence-free conditions, (3.2b), and (3.8).

5.1. Discretization ofcurl EE. The discrete analog ofcurl EE in (3.7a) must act on the
discrete electric field, which belongs toHL, where on each edge we have one component of
the electric field, which is the orthogonal projection ofEE onto the direction of the edge. For
this situation it is natural to use the coordinate invariant definition of thecurl EE operator
based on Stokes’ circulation theorem,

(En, curl EE) = lim
S→0

∮
L(
EE, El ) dl

S
. (5.1)

HereSis the surface spanning (based on) the closed curveL , En is the unit outward normal to
S, andEl is the unit tangential vector toL. In the discrete case the faces of the grid cells will be
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the surfacesS in Eq. (5.1) and the “curve”L will be formed by edges of the corresponding
face. The range of values of this discrete curl will be the normal components ofcurl EE
given on the faces of the cells (orthogonal projections ofcurl EE onto the directions of the
normals to the cell faces).

Because we are using the normal components ofEB on the cell faces to describe the mag-
netic flux (spaceHS), the discrete analogs of both sides of (3.7a) belong to the same discrete
space. This construction preserves a discrete analog of Faraday’s law of electromagnetic
induction locally for each face.

Using the discrete analog of Eq. (5.1), we obtain expressions for components of vector
ER= (RSξ, RSη, RSζ )T =CURL EE, where the discrete natural curl

CURL :HL→ HS,

and

RSξi, j+1/2 = E Lζi, j+1− E Lζi, j

lηi, j+1/2
, RSηi+1/2, j = −E Lζi+1, j − E Lζi, j

lξi+1/2, j
,

(5.2)

RSζi+1/2, j+1/2 = {(E Lηi+1, j+1/2lηi+1, j+1/2− E Lηi, j+1/2lηi, j+1/2)

−{(E Lξi+1/2, j+1lξi+1/2, j+1− E Lξi+1/2, j lξi+1/2, j )}/Sζi+1/2, j+1/2

(see [10] for details).
The expressions forRSξ and RSη contain only theE Lζ component of EE and the

expression forRSζ contains only theE Lξ and E Lη components. This fact allows us to
introduce discrete analogs of the TM and TE modes.

The operator CURL can be presented in(3× 3) block form as

CURL=
 0 0 R13

0 0 R23

R31 R32 0

 , (5.3)

where

(R13E Lζ )i, j+1/2 = E Lζi, j+1− E Lζi, j

lηi, j+1/2
, (R23E Lζ )i+1/2, j = −E Lζi+1, j − E Lζi, j

lξi+1/2, j
,

(R31E Lξ)i+1/2, j+1/2 = −E Lξi+1/2, j+1lξi+1/2, j+1− BLξi+1/2, j lξi+1/2, j

Sζi+1/2, j+1/2
, (5.4)

(R32E Lη)i+1/2, j+1/2 = E Lηi+1, j+1/2lηi+1, j+1/2− E Lηi, j+1/2lηi, j+1/2

Sζi+1/2, j+1/2
.

This structure of the CURL will be used to derive the discrete adjoint operatorCURL.

5.2. Discretization of1
ε

curl EB
µ

. Because of our choice of primary variables, to discretize
Eq. (3.7b), we must derive a discrete approximation for the compound operatorεcurlµ

def=
1
ε

curl 1
µ

. Note that ifε andµ are discontinuous and the grid is nonsmooth, then it is not
possible to separate them from thecurl in the discrete approximation.
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BecauseEE ∈HL and EB∈HS the discrete analog ofεcurlµ must haveHS as its domain
andHL as its range. To construct the discrete operator with the complimentary domain
and range we will use a modification of the identity (1.3) responsible for the conservation
of electromagnetic energy. If we consider the identity (1.3) in the subspace of vectorsEA
where the surface integral in (1.3) on the right-hand side vanishes and modify it to form the
operatorεcurlµ, we have∫

V

1

µ
(curl EE, EB) dV =

∫
V
ε

(
EE, 1

ε
curl

EB
µ

)
dV. (5.5)

That is,εcurlµ= curl ∗ in these weighted inner products.
In the discrete case, the modified inner product inHS, (·, ·)1/µHS , uses the weight 1/µ and

the modified inner product in the spaceHL, (·, ·)εHL, uses the weightε. These modified
inner products are defined in [15] whenε andµ are general SPD tensors.

The compound discrete adjoint curl,εCURLµ :HS→HL is defined as

εCURLµ
def= CURL∗ = (Lε)−1 · CURL† · S 1

µ , (5.6)

whereS1/µ corresponds to the modified inner product in the spaceHS, andLε corresponds
to the modified inner product in the spaceHL. By definition

(εCURLµ EB, EE)εHL = (CURL EE, EB)
1
µ

HS . (5.7)

Note that for such definition ofεCURLµ both sides of the discrete analog of Eq. (3.7b) are
in the same space.

Although CURL is a local operator, the operatorεCURLµ is nonlocal. We can determine
EC= εCURLµ EB by solving the system of linear equations

Lε EC= CURL† · S 1
µ EB, (5.8)

with the local operatorsLε and CURL† ·S 1
µ .

Using Eq. (5.4) note

CURL† =


0 0 R†31

0 0 R†32

R†13 R†23 0

 , (5.9)

where (
R†31BSζ

)
i+1/2, j = −lξi+1/2, j

(
BSζi+1/2, j−1/2

Sζi+1/2, j−1/2
− BSζi+1/2, j+1/2

Sζi+1/2, j+1/2

)
(
R†32BSζ

)
i, j+1/2 = lηi, j+1/2

(
BSζi−1/2, j+1/2

Sζi−1/2, j+1/2
− BSζi+1/2, j+1/2

Sζi+1/2, j+1/2

)
,

(
R†13BSξ

)
i, j
=
(

BSξi, j−1/2

lηi, j−1/2
− BSξi, j+1/2

lηi, j+1/2

)
,

(
R†23BSη

)
i, j
= −

(
BSηi−1/2, j

lξi−1/2, j
− BSηi+1/2, j

lξi+1/2, j

)
.

The details of the discretization can be found in [11].
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In this paper we consider problems where the tangential components ofEE are given on
the boundary. There are other types of boundary conditions, such as impedance boundary
conditions, where the tangential components [EH × En] must be approximated on the bound-
ary. For this case the boundary integral in the identity (1.3) does not vanish. The operator
curl EE is adjoint to the extended curl operator which iscurl EH in the interior and is the
tangential component ofEH on the boundary. For these types of boundary conditions we
must also introduce an inner product in the spaceHLwhich includes the boundary integral
(see [13]).

5.3. Discretization ofdiv EB. To discretizediv EB in the divergence-free condition (3.2b)
we use the coordinate invariant definition of thediv operator based on Gauss’ divergence
theorem,

div EB = lim
V→0

∮
∂V (
EB, En) dS

V
, (5.10)

whereEn is the unit outward normal to the boundary∂V . In the discrete case,V is the volume
of the grid cell and∂V is the set of faces of the cell.

The natural domain for the discrete operator is the spaceHS and the natural range is
HC,

DIV : HS→ HC, (5.11)

(DIV EB)(i+1/2, j+1/2)

= 1

V C(i+1/2, j+1/2)

{(
BSξ(i+1, j+1/2)Sξ(i+1, j+1/2) − BSξ(i, j+1/2)Sξ(i, j+1/2)

)
+ (BSη(i+1/2, j+1)Sη(i+1/2, j+1) − BSη(i+1/2, j )Sη(i+1/2, j )

)}
. (5.12)

The details can be found in [10], where it is also shown that DIV CURLEE≡ 0. Therefore,
the discrete analog of the divergence-free condition (3.2b) will hold in grid cells.

5.4. Discretization ofdiv ε EE. BecauseEE ∈HL, we construct the compound discrete
operatorDIV ε :HL→ H N to discretize divergence-free condition (3.8). To defineDIV ε

we consider the identity (1.4) in the subspace of scalar functions,H
0
, whereu(x, y)= 0,

(x, y)∈ ∂V , where the boundary term is zero, and modify the resulting identity by changing
EW to ε EW: ∫

V
ε( EW, grad u) dV = −

∫
V

u divε EW dV. (5.13)

That is, the operatordivε is the negative adjoint tograd in the inner products

(u, v) 0
H
=
∫

V
uv dV, and ( EA, EC)εH

def=
∫

V
ε( EA, EC) dV. (5.14)

We also will construct a discrete analog of the compound operatordivε as the negative
adjoint to the discretegrad. Because the domain of the discretedivε isHL, the range of
the discretegrad also must beHL.
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This discretegrad is derived using the identity where for any directionl given by the
unit vectorEl , the directional derivative can be defined as

∂u

∂l
= (grad u, El ), (5.15)

which is the orthogonal projection ofgrad u onto direction given byEl .
In the discrete case for a functionU ∈ H N, this relationship leads to the coordinate

invariant definition of the natural discrete gradient operator:

GRAD : H N→HL. (5.16)

The vector EG=GRADU is defined as

GLξi+1/2, j = Ui+1, j −Ui, j

lξi+1/2, j
, GLηi, j+1/2 = Ui, j+1−Ui, j

lηi, j+1/2
, GLζi, j = 0. (5.17)

The operatorDIV
ε
:HL→ H N is defined as

DIV ε def=−GRAD∗ = −N−1 ·GRAD† · Lε, (5.18)

whereN−1,GRAD†, andLε are local operators (see [11] for details). The stencil forDIV ε

is shown in Fig. 5.
To verify that Gauss’ law holds in the discrete case, we confirm thatDIV ε · εCURLµ= 0

by noting

DIV ε · εCURLµ = −N−1 ·GRAD† ·Lε · (Lε)−1 ·CURL† ·S 1
µ

= −N−1 ·GRAD† ·CURL† ·S 1
µ ,

and GRAD† ·CURL†≡ 0 (see [11]).
Because the range of values ofDIV ε is H N, the discrete analog of the divergence-free

condition (3.8) holds at the nodes.

FIG. 5. Stencil for the operatorDIV ε =−GRAD∗ : HL→
0

H N.
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6. FINITE-DIFFERENCE METHOD

6.1. Maxwell’s curl equations.We first consider the discrete space-continuous time
equations

∂ EB
∂t
= −CURL EE, (6.1a)

∂ EE
∂t
= εCURLµ EB, (6.1b)

where the discrete operators CURL andεCURLµ are defined in Subsections 5.1 and 5.2,
respectively.

To analyze the law of conservation of electromagnetic energy for Eqs. (6.1a), (6.1b), note
that the electric and magnetic part of the energy can be expressed in terms of our primary
variablesEE and EB as∫

V
( ED, EE) dV =

∫
V
ε( EE, EE) dV,

∫
V
( EB, EH) dV =

∫
V

1

µ
( EB, EB) dV.

The discrete analog of the electromagnetic energy is

Eh
E H =

1

2

[
( EE, EE)εHL + ( EB, EB)

1
µ

HL
]
. (6.2)

Taking the inner product(·, ·)1/µHS of EB with both sides of (6.1a) and similarly for (6.1b)
we obtain(

∂ EB
∂t
, EB
) 1

µ

HS
= −(CURL EE, EB)

1
µ

HS ,

(
∂ EE
∂t
, EE
)ε
HL
= (εCURLµ EB, EE)εHL.

By adding these two equations,

∂Eh
E H

∂t
= −(CURL EE, EB)

1
µ

HS + (εCURLµ EB, EE)εHL, (6.3)

and using (5.7), we note that the right side of this equation is zero. This corresponds to the
preservation of energy when the tangential component ofEE is zero on the boundary. For the
general case, in correspondence with (1.3), the right side of the equation will be equal to
a discrete approximation of corresponding the boundary integral. Thus the conservation of
electromagnetic energy for the discrete model is the result of the consistent and compatible
construction of the discrete curl operators.

The time discretization method

EBn+1− EBn

1t
= −CURL EEα1, (6.4a)

EEn+1− EEn

1t
= εCURLµ EBα2, (6.4b)

whereEEα1 =α1 EEn+1+ (1−α1) EEn and EBα2 =α2 EBn+1+ (1−α2) EBn, andtn=1tn, includes
both explicit and implicit methods.
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Traditionally, because system (1.1) is hyperbolic, either the stable explicit method (α1= 0
or α2= 0) or the explicit leapfrog method [20, 23] is used. For some problems, especially
those with strongly discontinuous coefficients, it is important to preserve energy. The only
scheme of form (6.4a), (6.4b) which preserves energy is the second order implicit midpoint
method (α1=α2= 0.5). Also, there are situations when the increased stability of an implicit
method is necessary to avoid taking extremely small time steps. This situation occurs when
computing the motion of fully electromagnetic particles in the implosion of a laser fusion
capsule [1].

To prove that the midpoint method is conservative take the inner product of Eq. (6.4a)
with EB0.5 and the second equation withEE0.5. We obtain(

Eh
E H

)n+1− (Eh
E H

)n

1t
= −(CURL EE0.5, EB0.5)

1
µ

HS +
(
εCURLµ EB0.5, EE0.5

)ε
HL. (6.5)

By construction, the right-hand side of this equation reduces to a discrete analog of a bound-
ary integral and guarantees the method is conservative. There is anO(1t) conservation error
for any other choice ofα’s.

The discrete form of the “divergence-free” conditions (3.8), (3.2b) is

DIV ε EEn = 0, (6.6a)

DIV EBn = 0, (6.6b)

whereDIV ε and DIV are defined by Eqs. (5.18) and (5.12), respectively.
To prove that if (6.6a), (6.6b) are satisfied initially, then they will be satisfied at later

times, we first apply DIV to both sides of Eq. (6.4a),

DIV EBn+1− DIV EBn

1t
= −DIV CURL EEα1 = 0. (6.7)

Therefore

DIV EBn+1 = DIV EB0 = 0. (6.8)

Similarly applyingDIV ε to (6.4b) and usingDIV ε
εCURLµ≡ 0,

DIV ε EEn+1 = DIV ε EE0 = 0. (6.9)

Therefore, if the discrete divergence-free conditions are satisfied initially they will hold
for later times.

Let us now consider TM and TE modes of our discrete equations (6.4a), (6.4b). The
TM-mode equations for theBSξ, BSη components of the magnetic flux and theE Lζ
component of the electric field are

BSξn+1− BSξn

1t
= −R13E Lζ α1,

BSηn+1− BSηn

1t
= −R23E Lζ α1,

Lε33
E Lζ n+1− E Lζ n

1t
= (R†13 · S

1
µ

11+ R†23 · S
1
µ

21

)
BSξα2 + (R†13 · S

1
µ

12+ R†23 · S
1
µ

22

)
BSηα2.
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The TE-mode equations for theBSζ component of the magnetic flux and theE Lξ, E Lη
components of the electric field are

BSζ n+1− BSζ n

1t
= −(R31 E Lξα1 + R32E Lηα1

)
,

Lε11
E Lξn+1− E Lξn

1t
+ Lε12

E Lηn+1− E Lηn

1t
= R†31S

1
µ

33BSζ α2,

Lε21
E Lξn+1− E Lξn

1t
+ Lε22

E Lηn+1− E Lηn

1t
= R†32S

1
µ

33BSζ α2.

7. SOLUTION PROCEDURE

Whenα1, α2 6= 0 then the integration method is implicit and on every time step we must
solve the system of linear equations (6.4a), (6.4b). This system can be written as

EBn+1 = −1tα1 CURL EEn+1+ EF B( EBn, EEn), (7.1)

Lε EEn+1 = 1tα2 CURL† · S 1
µ EBn+1+ EF E( EBn, EEn), (7.2)

where

EF B( EBn, EEn) = EBn −1t (1− α1)CURL EEn, (7.3)

EF E( EBn, EEn) = Lε EEn +1t (1− α2)CURL† · S 1
µ EBn, (7.4)

are known. We can easily eliminateEBn+1 and obtain a single second-order equation for
EEn+1,

A EEn+1 def= (Lε + (1t)2α1α2 CURL† · S 1
µ · CURL

) EEn+1 = EF( EBn, EEn), (7.5)

where

EF( EBn, EEn) = EF E( EBn, EEn)+1tα2 CURL† · S 1
µ EF B( EBn, EEn) (7.6)

is known. The operatorA defined by (7.5) is SPD, which follows from its structure and
properties of operatorsLε andS 1

µ .
Equation (7.5) contains both the TM and TE modes. The TM equation is a “scalar”

equation forE Lζ and can be solved effectively by any preconditioned iterative method
which takes advantage of SPD property. The TE equation is a block,(2× 2) SPD system
for E Lξ and E Lη with a structure very close to the system arising for the heat flux in
the heat conduction equation solved in [39, 15, 26], and one can use the iterative methods
described in these papers to solve this system.

Once (7.5) has been solved,EBn+1 is explicitly defined by (7.1). This solution procedure
guarantees that the discrete analog of Faraday’s law is satisfied exactly, independent of
how accurate (7.5) is solved (see [36] for a general discussion on violation of conservation
properties when solving difference equations by iterative methods).
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8. NUMERICAL EXAMPLES

In this section, we demonstrate the effectiveness of our approach for solving Maxwell’s
curl equations for the TE mode.

We integrate Maxwell’s curl equations with conservative mid-point method (α1=α2=
0.5) and a time step sufficiently small so the time errors are much smaller than the spatial
discretization errors. All the parameters in this subsection are given in MKS units and the
free space constants areε0= 8.85× 10−12 andµ0= 1.2566× 10−6.

8.1. Reflection and refraction at the boundary of two nonconducting media: Normal
incidence. The reflection and refraction of the pulse at the boundary of two nonconducting
media [32, pp. 382–385] are the one-dimensional problem when the incident pulse is normal
to the interface. We solve this problem in a 2-D rectangular domain [−1, 1]× [0, 1], where
interface between two media coincides with they axis. The permittivities in the “left” and
“right” media areε1= k1ε0, ε2= k2ε0, andµ=µ0 for both media. The indices of refraction
aren1=

√
k1, n2=

√
k2. In our calculations we tookk1= 1 andk2= 2.

The incident wave is

Einc
y (x, t) = Ainc

E g((t −√µ0ε1(x + 1)) ∗ 109), (8.1a)

Hinc
z (x, t) = Ainc

H g((t −√µ0ε1(x + 1)) ∗ 109), (8.1b)

whereg is the pulse function

g(s) =
{

1− cos(2πs), 0≤ s ≤ 1

0, elsewhere
, (8.2)

and the amplitudes are

Ainc
E = 0.5

√
µ0

ε1
, Ainc

H = Ainc
E n1

√
ε0

µ0
. (8.3)

This wave is generated by imposing boundary conditions forEy at x=−1

Ey|x=−1 = Ainc
E g(t ∗ 109). (8.4)

The incident wave reaches the boundary between the two materials at timet∗ =√µ0ε1=
3.3348∗ 10−9.

Until the transmitted or reflected waves reach the computational boundaries the exact
solution [32, pp. 382–385] for the “left” media,−1≤ x≤ 0, is the sum of incident wave
and reflected wave and for “right” media, 0≤ x≤ 1, is the transmitted wave.

The exact and 1-D approximate solutions(M = 129), which play the reference role
for 2-D computations, for the characteristic time moments are presented in Fig. 6. The
numerical method accurately approximates the pulse traveling in a homogeneous media
[t = 2× 10−9, (a)], during the interaction with the discontinuity [t = 4× 10−9, (b)] and the
shape and velocity of the transmitted and reflected waves [t = 6× 10−9, (c)].

In two dimensions, because this example is posed for the TE mode, the magnetic field
has just one componentHz which is measured in the center of the 2-D cell. Becauseµ

is also given in the center of the cell, we can easily extractHz from Bz=µHz, which is
our primary variable in the numerical method. Note thatEE≡ 0 at t = 0 and therefore the
divergence-free condition forED is satisfied.
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FIG. 6. Exact and 1-D approximate solutions for theHz component of magnetic field(M = 129) at (a)t =
2× 10−9, (b) t = 4× 10−9, and (c)t = 6= 10−9.

We solved this problem on both smooth and random grids, Fig. 7. The smooth grid is
obtained by the mapping of a uniform (ξ, η) grid in [−1, 1]× [0, 1] into the same compu-
tational spacex(ξ, η), y(ξ, η) by

x(ξ, η) = ξ + 0.1 sin(2πξ) sin(2πη), y(ξ, η) = η + 0.1 sin(2πξ) sin(2πη).

The nonsmooth grid (random grid) is obtained by moving nodes in a uniform square grid
in random directions and with a random amplitude equal to 20% of initial grid size.

To measure the accuracy of the 2-D calculations, we compare the values ofHz as a
function of time for the 1-D and 2-D calculations at a fixed position. In 1-D we plot the
solution at the cell center closest tox = 0.1. In 2-D we plot the solution at the cell center
closest to (0.1, 0). These values plotted in Fig. 8 demonstrate that behavior of 1-D and 2-D
solutions is close. In Fig. 9 the straight contour lines illustrate how well the 2-D approximate
solution forHz preserves the one-dimensional shape on the nonuniform smooth grid.

We also calculated the convergence rate in the discrete max andL2 norms on a sequence
of refined grids. The error forHz= H Sζ is defined as

ΨH
i+1/2, j+1/2 = H Sζi+1/2, j+1/2− H Sζ exact

(
xc

i+1/2, j+1/2, yc
i+1/2, j+1/2

)
, (8.5)

where(xc
i, j , yc

i, j ) is the geometrical center of the (i + 1/2, j + 1/2) cell. The norms ofΨH

are defined as

‖ΨH‖max= max
i, j
|ΨH

i, j |, ‖ΨH‖L2 =
√
(ΨH,ΨH )HC.

FIG. 7. Computational grids(33× 17); (a) smooth grid, (b) random grid.
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FIG. 8. ComponentHz as a function of time; approximate solution, — solid line; (a) 1-D case,M = 129,
(b) 2-D case, smoth grid,M = 129, N= 65; (c) 2-D case, random grid,M = 129, N= 65.

For EE= (E Lξ, E Lη) the errors are defined as

ΨE Lξ
i+1/2, j = E Lξi+1/2, j − E Lξexact

(
xξi+1/2, j , yξi+1/2, j

)
, (8.6a)

ΨE Lη
i, j+1/2 = E Lξi, j+1/2− E Lηexact

(
xηi, j+1/2, yηi, j+1/2

)
, (8.6b)

whereE LξexactandE Lηexactare projections of the exact solution to the edges and (xξi+1/2, j ,

yξi+1/2, j ) and (xηi, j+1/2, yηi, j+1/2) are the coordinates of the mid-points of the edges. The norms

for EΨE = (ΨE Lξ , EΨE Lη) are defined as

‖ EΨE‖max= max
i, j

[
max

(∣∣ΨE Lξ
i+1/2, j

∣∣, ∣∣ΨE Lη
i, j+1/2

∣∣)], ‖ EΨE‖L2 =
√
EΨE, EΨE)HL.

The errors att = 4× 10−9 in Table I show that theL2 and max norm convergence rates for
both smooth and random grids are between first and second order. Our convergence analysis
for the 1-D case (not presented here) is in close agreement with these 2-D results.

These results verify the effectiveness of the method for problems with discontinuous
coefficients on nonsmooth, nonorthogonal grids.

8.2. Scattering of a plane wave on perfect conductor.Our next example is an infinite
domain problem modeling the scattering of a plane wave on a perfect conductor [20, 23].

FIG. 9. Isolines ofHz at t = 4× 10−9, for smooth grid,M = 129, N= 65.
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TABLE I

The Errors for Wave Reflection and Refraction at the Boundary

of Two Nonconducting Media att = 4× 10−9

Smooth Grid Nonsmooth Grid
M/N Norm EH EE EH EE

33/17 L2 0.209 8.09E-2 0.199 8.26E-2
max 0.532 0.230 0.484 0.219

65/33 L2 9.13E-2 3.23E-2 9.19E-2 3.21E-2
max 0.307 0.110 0.250 0.105

129/65 L2 3.01E-2 8.57E-3 2.91E-2 8.42E-3
max 0.120 3.30E-2 0.106 3.38E-2

Conv. rate L2 1.60 1.91 1.65 1.93
max 1.35 1.73 1.23 1.63

Note.For each grid size in the top sub-row we present theL2 error, and in the bottom sub-
row we present the max error. In the very bottom we present the estimation for convergence
rate for both norms.

We consider a plane wave

EE(x, t) =
(

0
√
µ0/ε0g((t − (x + 0.1)

√
ε0µ0)109)

)
(8.7a)

Hz(x, t) = g((t − (x + 0.1)
√
ε0µ0)109) (8.7b)

incident to a perfectly conducting circular cylinder of radius 0.1 m centered at the origin.
Our media is “free space” withε= ε0 andµ=µ0. Here the impulseg(s) has the form

g(s) =
{

[exp(−10(s− 1)2)− exp(−10)]/[1− exp(−10)], 0≤ s ≤ 2

0 otherwise.

The numerical domain is an annulus with inner radius 0.1 m and outer radius 1.1 m.
Because the problem is symmetric about thex-axis, we solve the problem in the half domain
Ä={(x, y) ∈ (0.1<

√
x2+ y2< 1.1)× (y> 0)}. We define the tangential component of

EE to be zero on all boundaries except the surface of the inner cylinder, where we define
the tangential component ofEE to equal the tangential component of the incident wave (see
[20] for details). That is, we solve for the scattered (i.e., total minus incident) field. These
boundary conditions are valid untilt = 4 ns, when the boundary condition on the outer
cylinder starts to generate spurious reflections. The initial conditions correspond to the
time when the incident wave (traveling from left to right) just arrives at the inner cylinder.
Therefore, initially there are no scattered waves and the electric and magnetic fields are
zero, and therefore the divergence-free condition forED is satisfied.

The problem is solved on the uniform polar grid (see Fig. 10) with 31 nodes inr and
16 nodes inθ . In Fig. 11 the magnetic field is plotted as a function of time at the two
observation points indicated in Fig. 10. The results are almost identical with results in [23,
Fig. 7]. Similar to [23] we observe second order convergence in the spatial error.

In Fig. 12, we show the electric vector field att = 4 ns forM = 40, N= 64. The numerical
solution is free of spurious solutions and the divergence-free condition forED is satisfied
exactly at the internal nodes.
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FIG. 10. Grid and observation pointsA= (−0.115, 0.0121) andB= (0.259, 0233).

FIG. 11. Hz as a function of time at pointsA= (−0.115, 0.0121) andB= (0.259, 0233). Time is scaled to ns.

FIG. 12. Electric vector field att = 4 ns.
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9. DISCUSSION

We have constructed mimetic FDMs for both the TE and TM modes for 2-D Maxwell’s
curl equations on nonorthogonal, nonsmooth grids. Because the discrete operators were
derived using the discrete vector and tensor analysis developed in [10–13] they satisfy
discrete analogs of the main theorems of vector analysis. Because the FDMs satisfy these
theorems, they do not have spurious solutions and the “divergence-free” conditions for
Maxwell’s equations are automatically satisfied.

The tangential components of the electric field and the normal components of magnetic
flux used in the FDM are continuous even on discontinuities. This choice guarantees that
problems with strongly discontinuous coefficients are treated properly. Furthermore on
rectangular grids the method reduces to the analytically correct averaging for discontinuous
coefficients. We proved that the implicit mid-point time integration method is conservative
and leads to a SPD system of linear equations. On the arbitrary quadrilateral grid we have
verified that the convergence rate was between first and second order and demonstrated
robustness of the method in numerical examples.

The FDM is formulated in terms of coordinate invariant quantities such as lengths, areas,
volumes, and angles. The method can be used in any coordinate system by expressing these
quantities in terms of the particular coordinate system. Also, whenε, µ, andσ are tensors,
the method can be used by changing the form of theL andS the same way as it is done for
the heat equation with tensor conductivity in [15].

As mentioned in Subsection 5.2, the method can be adapted for impedance boundary
conditions and the resulting system of linear equations can also be proved to be SPD (the
proof is similar to the one given in [13]).

Although the extension to 3-D hexahedron grids is technically straightforward the details
are tedious and depend upon the shape chosen for faces of the 3-D grid cells. A standard way
of doing this is to map the hexahedron to reference cube using a tri-linear map. The extension
to unstructured grids is also straightforward once the cell, face, and edge are well defined.

The theoretical investigation of the stability and convergence of the FDM described in
this paper can be done using an approach similar to the energy method used in [8, 7, 6, 2,
9] for FDMs, or [24, 25] for finite element methods.

We are continuing to develop a discrete version of electromagnetic theory on general
grids by extending the discrete theory for uniform rectangular grids [5] based on discrete
vector analysis [10–13]. The approach will involve discrete scalar and vector potentials,
which can be introduced on the basis of the discrete version of orthogonal decomposition
theorems proved in [12].
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