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Abstract

We derive a cell-centered 2-D diffusion differencing scheme for arbitrary quadri-

lateral meshes in r-z geometry using a local support-operator method. Our method

is said to be local because it yields a sparse matrix representation for the diffusion

equation, whereas the traditional support-operator method yields a dense matrix rep-

resentation. The diffusion discretization scheme that we have developed offers several

advantages relative to existing schemes. Most importantly, it offers second-order ac-

curacy even on meshes that are not smooth, rigorously treats material discontinuities,

and has a symmetric positive-definite coefficient matrix. The only disadvantage of

the method is that it has both cell-centered and cell-edge scalar unknowns as op-

posed to just cell-center scalar unknowns. Computational examples are given which

demonstrate the accuracy and cost of the new scheme relative to existing schemes.
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1 Introduction

The diffusion equation that we seek to solve can be expressed in the following general form:

∂φ

∂t
−
−→
∇·D

−→
∇φ = Q , (1)

where t denotes the time variable, φ denotes a scalar function that we refer to as the

intensity, D denotes the diffusion coefficient, and Q denotes the source or driving function.

It is sometimes useful to express Eq. (1) in terms of a vector function,
−→
F , that we refer to

as the flux:

−→
F = −D

−→
∇φ . (2)

We have taken the terms “intensity ” and “flux” from the radiative transfer literature [1],

but we have not explicitly considered the radiative diffusion equation because the subject

of this paper relates to essentially any type of diffusion problem.

We define a cell-centered diffusion discretization scheme as one that numerically ex-

presses the integral of Eq. (1) over each spatial cell. In particular, substituting from Eq. (2)

into Eq. (1) and integrating that equation over a cell volume, we obtain:

∫
V

∂φ

∂t
dV +

∮
∂V

−→
F ·

−→
n dA =

∫
V
Q dV , (3)

where V denotes the cell volume, ∂V denotes the cell surface, and
−→
n denotes the outward-

directed unit surface normal. Note that we used the divergence theorem to convert the

4



second integral in Eq. (3) from a volume integral to a surface integral. In physical terms,

Eq. (3) generally represents a statement of particle or energy conservation over the cell.

Thus we can simply state that cell-centered schemes (as we define them) are conservative

over each mesh cell.

If one considers only non-orthogonal meshes with material discontinuities, existing

vertex-centered diffusion discretizations are generally more advanced than cell-centered

discretizations. This is primarily so because of the enormous success of Galerkin finite-

element methods [2] and variants of those methods. Nonetheless, there are applications for

for which cell-centered schemes appear to yield superior accuracy relative to vertex-centered

schemes. For instance, when coupling diffusion calculations with cell-centered hydrodynam-

ics calculations, a cell-centered diffusion scheme is highly desirable because it avoids the

excessive numerical dissipation which can occur with vertex-centered diffusion schemes [3].

Our new scheme was developed with coupled radiation-diffusion/hydrodynamics applica-

tions in mind.

The following could be said of an ideal cell-centered diffusion scheme for 2-D quadrilat-

eral meshes:

1. It gives second-order accuracy on both smooth and non-smooth meshes either with

or without material discontinuities.
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2. It has only cell-centered intensity unknowns.

3. It has a local stencil.

4. It has a symmetric positive-definite matrix representation for the diffusion equation,

i.e., a positive-definite “diffusion matrix.”

A local stencil is loosely defined to have coupling only between points that are spatially

“close” in some sense. Cell-centered schemes such as those of Kershaw [4] and Pert [5],

satisfy properties 2 through 4, but do not satisfy item 1. The scheme of Morel, Dendy,

Hall, and White [6] satisfies properties 1 and 3, but does not satisfy properties 2 and 4. In

particular, it has cell-edge intensity unknowns in addition to cell-center intensity unknowns,

and it has an asymmetric diffusion matrix. The scheme of Van Beek, Van Nooyen, and

Wesseling [7] satisfies properties 2 and 3, but not 1 and 4. In particular, it is non-convergent

whenever the transverse component of the flux is discontinuous across a material interface.

In addition, its diffusion matrix is asymmetric. The support-operator scheme of Shashkov

and Steinberg [8] (derived only in x-y geometry) satisfies properties 1,2, and 4, but does not

satisfy property 3. Their scheme has a dense diffusion matrix, which arises from a dense

gradient matrix multiplied by a local divergence matrix. This difficulty can be circumvented

for time-dependent calculations by transforming the dense equations into a local form in

which the unknowns are the normal components of the flux located at cell faces. For
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steady-state calculations, Shashkov and Steinberg recommend that the dense intensity-

based system be solved using a conjugate-gradient approach. This would initially appear

to require the multiplication of a vector and a dense matrix during each conjugate-gradient

iteration. However, Shashkov and Steinberg show that this dense matrix-vector multiply

can be effectively performed by solving a sparse diagonally-dominant SPD matrix system.

This suggests a nested conjugate-gradient solution process: an outer conjugate gradient

process solves the dense intensity-based system, and an inner conjugate-gradient process

solves the sparse system associated with the dense matrix-vector multiply required for

each outer conjugate-gradient iteration. Although this approach would probably be much

more efficient than actually performing a dense matrix-vector multiply, it could nonetheless

be quite expensive relative to simply solving a sparse SPD matrix representation for the

diffusion equation.

The purpose of this paper is to use the support-operator approach [8] to derive a cell-

centered diffusion discretization scheme for arbitrary quadrilateral meshes in r-z geometry.

As previously indicated, the traditional cell-centered support-operator methodology used

by Shashkov and Steinberg [8] leads to a dense diffusion matrix on non-orthogonal grids.

Here we introduce a new variant of the cell-centered support-operator methodology which

always leads to a local diffusion stencil at the expense of additional cell-edge intensity

unknowns. Hence we refer to this new variant as a “local” support-operator method. We
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stress that the local cell-center/cell-edge system that we obtain is equivalent to the dense

cell-center system obtained with the traditional support-operator methodology in the sense

that both systems yield the same the cell-centered intensity solution. Thus our new diffusion

scheme represents a generalization to r-z geometry of the X-Y geometry scheme of Shashkov

and Steinberg [8]. Interestingly, our new scheme is very similar to the scheme of Morel,

Dendy, Hall, and White [6]. In particular these schemes have the same unknowns, the same

cell-center stencil, and nearly the same cell-edge stencil (7-point for Morel, et.al., versus

9-point for the new scheme.) Of course, the significant difference between the schemes is

that our new scheme has a symmetric positive-definite diffusion matrix whereas that of

Morel, Dendy, Hall, and White [6] has an asymmetric diffusion matrix. The similarity

between the schemes suggests that one could the construct a multigrid preconditioner for

our scheme based upon the multigrid solution technique of Morel, Dendy, Hall, and White

[6]. Indeed, we have developed such a preconditioner, and it is later shown that it performs

quite well.

In summary, our new diffusion discretization scheme has the following properties:

• It gives second-order accuracy on both smooth and non-smooth meshes either with

or without material discontinuities.

• It has both cell-centered and cell-edge intensity unknowns.
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• It has a local stencil.

• It has a symmetric positive-definite matrix representation for the diffusion operator.

Note that it satisfies ideal properties 1, 3, and 4, but not 2. We know of no cell-centered

scheme that satisfies all four ideal properties. We believe that our new scheme has the best

combination of ideal properties of any previous scheme.

The remainder of this paper is organized as follows. We next explain the central theme

of the support-operator method, describe our local methodology, and apply it to the simple

case of a rectagular mesh in r-z geometry. This is followed by a derivation of our method

for general quadrilateral meshes in r-z geometry. Our multigrid-preconditioned solution

technique for logically-rectangular meshes is then described. Finally, computational results

are given, followed by a summary and recommendations for future work.

2 The Support-Operator Method

In this section we describe the support-operator method. It is convenient at this point

to define a modified gradient operator given by −D
−→
∇ . The diffusion operator of interest

is given by the product of the divergence operator and the modified gradient operator:

−
−→
∇·D

−→
∇ . The support-operator method is based upon the following three facts:

9



• Given appropriately defined scalar and vector inner products, the divergence and

modified gradient operators are adjoint to one another.

• The adjoint of an operator varies with the definition of its associated inner products,

but is unique for fixed inner products.

• The product of an operator and its adjoint is a self-adjoint positive-definite operator.

The mathematical details relating to these facts are given in Reference 8. Our support-

operator method can be described in the simplest terms as follows:

1. Define discrete scalar and vector inner products that approximate the analytic inner

products on a single arbitrary cell.

2. Define the discrete version of the divergence operator on a single arbitrary cell.

3. Use the adjoint property to define the discrete version of the modified gradient oper-

ator on a single arbitrary cell.

4. Obtain the global matrices by connecting adjacent mesh cells in such a way as to

ensure that the adjoint relationship is maintained over the whole grid. This simply

amounts to enforcing continuity of intensity and flux at the cell interfaces.

5. Combine the divergence matrix and the modified gradient matrix to obtain the dif-

fusion matrix.
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To make this process concrete, we generate the diffusion matrix for a rectangular mesh in

r-z geometry. Our first step is to define the discrete unknowns. The global coordinate and

mesh indexing is illustrated in Fig. 1. The local mesh indexing (local to each cell) is shown

in Fig. 2. Each mesh cell is assumed to be homogeneous, but material properties may vary

between cells. As shown in Fig. 3, the intensities (scalars) are defined to exist at both cell

center: (φCi,j), and cell edge: (φRi,j, φ
B
i,j, φ

L
i,j, φ

T
i,j). Note that the use of local indices implies

that a quantity is uniquely associated with a single cell. Thus, for instance, one should

not necessarily assume that φRi,j = φLi+1,j. As shown in Fig. 4, the vectors are defined in

terms of surface-normal components located at the midpoints of the cell faces: (fRi,j, f
B
i,j,

fLi,j, f
T
i,j,). For instance, fRi,j denotes the dot product of

−→
F with the outward-directed unit

surface normal located at the center of the right edge of cell i, j. The other surface-normal

vector components are defined analogously. Since it takes two components to define a full

vector, the full vectors are considered to be located at the cell corners: (
−→
F

RB

i,j ,
−→
F

BL

i,j ,
−→
F

LT

i,j ,

−→
F

TR

i,j ). As shown in Fig. 5, each corner vector has surface-components located on the two

faces that share that corner, .e.g.,

−→
F

RB

i,j =
(
fRi,j, f

B
i,j

)
. (4)

The other corner vectors are defined analogously.
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As explained in Reference 8, the adjoint relationship between the modified gradient and

divergence operators is embodied in the following integral identity:

∮
∂V
φ
−→
H ·

−→
n dA−

∫
V
D−1

−→
H ·D

−→
∇φ dV =

∫
V
φ
−→
∇·
−→
H dV , (5)

where φ is an arbitrary scalar function,
−→
H is an arbitrary vector function, V denotes a

volume, ∂V denotes its surface, and
−→
n denotes the outward-directed unit normal associated

with that surface. The vector
−→
H has the same mesh locations as the flux vector

−→
F , but is

not necessarily equal to −D
−→
∇φ. We stress that the function φ at this point represents an

arbitrary scalar function, and not necesssarily the solution of the diffusion equation. The

next step in our support-operator method is to discretize Eq. (5) over a single arbitrary

cell in a special manner. Specifically, we explicitly discretize all but the modified gradient

operator, which is expressed in an implicit form consistent with our choice of discrete

unknowns. We assume indices of i, j for the arbitrary cell, but suppress these indices

whenever possible in the discrete approximation to Eq. (5) that follows. We first discretize

the surface integral:

∮
∂V
φ
−→
H ·

−→
n dA ≈ φRhRAR + φBhBAB +

φLhLAL + φThTAT , (6)
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where AR denotes the face area associated with the right face of the cell:

AR = 2πri+ 1
2
∆z , (7)

(the remaining face areas are defined analogously) and where

∆z = zj+ 1
2
− zj− 1

2
. (8)

Next we approximate the modified gradient volumetric integral:

∫
V
−D−1

−→
H ·D

−→
∇φ dV ≈ D−1

{(−→
H

RB
·
−→
F

RB
)
V RB +(−→

H
BL
·
−→
F

BL
)
V BL +

(−→
H

LT
·
−→
F

LT
)
V LT +

(−→
H

TR
·
−→
F

TR
)
V TR

}
, (9)

where
−→
F denotes −D

−→
∇φ, and V RB denotes the volumetric weight associated with the

right-bottom corner:

V RB =
1

4
∆r∆z 2πri+ 1

2
, (10)

∆r = ri+ 1
2
− ri− 1

2
. (11)

The volumetric weight associated with each corner consists of one-fourth the Cartesian cell

volume multiplied by 2π times the value of the radius at that corner. These corner weights

do not represent “true” volumes in any sense, but they do sum to the total cell volume:

V RB + V BL + V LT + V TR = V = π
(
r2
i+ 1

2
− r2

i− 1
2

)
∆z = 2πri∆r∆z . (12)
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where

ri =
1

2

(
ri− 1

2
+ ri+ 1

2

)
. (13)

We choose these weights simply because they give us better properties than other more

straightforward choices. The choice of weights is one of the many free parameters in the

support-operator method. The remaining volumetric weights are defined in analogy with

Eq. (10).

Finally, we approximate the divergence volumetric integral:

∫
V
φ
−→
∇·
−→
H dV = φC

[
hRAR + hBAB + hLAL + hTAT

]
. (14)

Equations (6), (9), and (14) are certainly not unique, but they are fairly straightforward.

For instance, Eq. (6) represents a face-centered second-order approximation to a surface

integral. Equation (9) represents a corner-based volumetric integral consisting of a dot-

product contribution from each pair of corner vectors. Equation (14) is a particularly simple

second-order approximation which gives all of the weight to the cell-center value of φ while

using a surface-integral formulation for
−→
∇·
−→
H that is analogous to the surface-integral used

in Eq. (6).

Note that Eqs. (6), (9), and (14) define the discrete inner products discussed in Ref-

erence 8. Thus discretizing the fundamental integral identity expressed by Eq. (5) defines

the discrete inner products associated with the adjoint relationship. We can now use this
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relationship to solve for the modified gradient operator components by substituting from

Eqs. (6), (9), and (14) into Eq. (5) and requiring that the resulting discretized identity

hold for all discrete
−→
H and φ values. More specifically, we obtain an equation for the mod-

ified gradient component on a given face by setting the component of
−→
H on that face to

unity while setting the components on all other faces to zero. For instance, setting hR = 1,

hB = 0, hL = 0, hT = 0, we obtain an equation for fR, which when solved yields:

fR = −2D

∆r

(
φR − φC

)
. (15)

Equation (15) represents a standard expression for fR that is exact when φ is lineary depen-

dent upon r. Similar expressions are obtained for the other face components. Substituting

these expressions into the discrete volume-integrated divergence operator that appears on

the right side of Eq. (14) yields the discrete diffusion operator for a single cell:

∫
V
−
−→
∇·D

−→
∇φ dV ≈ − 2D

∆r

[(
φR − φC

)
AR −

(
φC − φL

)
AL
]

− 2D

∆z

[(
φT − φC

)
AT −

(
φC − φB

)
AB

]
. (16)

Combining expression (16) with standard point spatial discretizations for the time deriva-

tive and the source, we obtain the spatially-discrete diffusion equation:

V
∂

∂t
φC − 2D

∆r

[(
φR − φC

)
AR −

(
φC − φL

)
AL
]
−

2D

∆z

[(
φT − φC

)
AT −

(
φC − φB

)
AB

]
= QCV , (17)
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Equation (17) represents the equation for cell centers. To obtain the equations for the

cell-edge intensities, we “connect” the cells in such a way that our discrete version of Eq. (5)

holds over the entire mesh. It is not difficult to see that this requirement will be met if the

surface integral in Eq. (5) is made to cancel between cells, resulting in a surface integral

over the outer mesh boundary. This can be achieved by making the surface-normal fluxes

and the intensities continuous across cell interfaces. For instance, considering the right face

of cell i, j, we require that:

φRi,j = φLi+1,j , (18)

and that

fRi,j = −fLi+1,j . (19)

Note that a “-” occurs within Eq. (19) because the surface normals associated with fRi,j

and fLi+1,j are opposite in sign. Enforcing continuity of the intensities leaves us with one

intensity unknown at each edge. Thus we can now uniquely refer to a cell-edge intensity in

terms of its cell-edge index, i.e., the intensity at the right face of cell i, j and the left face

of cell i + 1, j can now be uniquely referenced as φi+ 1
2
,j. In addition, we can now neglect

the superscript “C” for the cell-center intensities. The continuity-of-flux equation at each

cell edge serves as the equation for the intensity at that edge. However, to maintain both
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symmetry of the matrix and positive diagonal elements, we re-express Eq. (19) as follows:

− Ai+ 1
2
,jf

R
i,j − Ai+ 1

2
,jf

L
i+1,j = 0 , (20)

where

Ai+ 1
2
,j = ARi,j = ALi+1,j . (21)

Evaluating Eq. (20) in terms of the intensities, we obtain the equation for φi+ 1
2
,j:

Ai+ 1
2
,j2Di,j

∆zi

(
φi+ 1

2
,j − φi,j

)
−
Ai+ 1

2
,j2Di+1,j

∆zi+1

(
φi+1,j − φi+ 1

2
,j

)
= 0 . (22)

The continuity-of-flux equation at an interface on the outer boundary of the grid is analo-

gous to Eq. (20). However, there is only one real cell adjacent to the interface rather than

two. The normal flux component associated with cell ‘outside’ of the grid is given by an

expression derived from the analytic boundary conditions. For instance, let us consider

Eq. (20) evaluated at an interface on the right boundary of the mesh:

− AI+ 1
2
,jf

R
I,j − AI+ 1

2
,jf

L
I+1,j = 0 , (23)

where I denotes the maximum index of i. Cell I + 1, j does not exist, so we use the

standard extrapolated boundary condition (standard in the radiation and neutron diffusion

literature) to obtain an expression for fLI+1,j. This condition takes the following form at

the boundary:

φ+ de
−→
∇φ ·

−→
n = φe , (24)
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where de denotes the extrapolation distance, φe denotes the extrapolated intensity value,

and
−→
n denotes the outward-directed unit normal vector. Note from Eq. (24) that this

extrapolated condition is equivalent to a Robin or mixed condition. Recognizing that

D
−→
∇φ ·

−→
n plays the role of gLI+1,j, we use Eq. (24) to obtain the desired expression:

fLI+1,j =
Di,j

de

(
φe − φi+ 1

2
,j

)
. (25)

Using Eqs. (15), (23), and (25), we obtain the equation for φI+ 1
2
,j:

AI+ 1
2
,j

[
2DI,j

∆zI

(
φI+ 1

2
,j − φI,j

)
− DI,j

de

(
φe − φI+ 1

2
,j

)]
= 0 . (26)

A typical value for de is 2D. This yields the Marshak boundary condition [1]. Note that

if de = 0, one obtains the Dirichlet boundary condition with the boundary intensity given

by φe. Furthermore, in the limit as de →∞, one obtains the Neumann condition.

Note from Eq. (22) that the continuity-of-flux equation for cell edges interior to the mesh

relates the cell-edge intensity to the two adjacent cell-center intensities. Similarly note from

Eq. (26) that the continuity-of-flux equation for cell edges on the outer boundary relates the

cell-edge intensity to the only adjacent cell-center intensity and the extrapolated boundary

intensity. Using these relationships to eliminate the edge intensities from Eq. (16) results in

the standard 5-point cell-centered diffusion scheme. For instance, the following expression
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is obtained for the normal flux on the right face of cell i, j:

fRi,j = −Di+ 1
2
,j

(φi+1,j − φi,j)
∆ri+ 1

2

, (27)

where

−Di+ 1
2
,j =

{(
∆ri
Di

+
∆ri+1

Di+1

)
1

∆ri + ∆ri+1

}−1

, (28)

and

∆ri+ 1
2

=
1

2
(∆ri + ∆ri+1) . (29)

Note that Eq. (27) contains only cell-center intensities. Further note that the definition

for the cell-edge diffusion coefficient arises directly from the process of eliminating the cell-

edge intensities. Thus we see that the method defines the cell-edge diffusion coefficient in

terms of a specific averaging of the adjcent cell-center diffusion coefficients. In the case of a

uniform mesh, this averaging reduces to the expected harmonic averaging. It is well known

that the standard 5-point diffusion operator is symmetric positive-definite and has many

desirable properties [9].

3 The New Scheme

In this section we derive our new quadrilateral diffusion discretization scheme. The proce-

dure is analogous to that for the orthogonal-mesh case. Note that the r and z coordinates
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carry full two-dimensional indices rather than the one-dimensional indices associated with

an orthogonal mesh. A coordinate pair is assigned to each vertex in the mesh.

We again approximate Eq. (5) using a discrete approximation. For the case of a gen-

eral quadrilateral, the general form of the discrete surface integral is identical to Eq. (6).

However, the expressions for the face areas are slightly more complex than those of the

orthogonal case. For instance:

ARi,j = 2π

(
ri+ 1

2
,j− 1

2
+ ri+ 1

2
,j+ 1

2

2

)
‖−→r i+ 1

2
,j+ 1

2
− −→r i+ 1

2
,j− 1

2
‖ , (30)

where

−→
r = (r, z) , (31)

and where the symbol “‖ · ‖” denotes the Euclidian vector norm. The other cell areas are

defined in analogy with Eq. (30).

For the case of a general quadrilateral, the general form of the discrete modified gradient

volumetric integral is identical to Eq. (9). However, there are two important differences in

the definitions of certain quantities. First, since vectors are expressed in terms of normal

surface components and the mesh is generally non-orthogonal, the dot product of two

vectors cannot be taken in the standard way. In particular, in the orthogonal case, we can

define the dot product in terms of the following inner product:

−→
H

TR
·
−→
F

TR
=
〈−→
H

TR
,
−→
F

TR
〉

= hTfT + hRfR . (32)
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However, to take the dot product in the general non-orthogonal case, one must multiply

either
−→
H or

−→
F by a particular SPD matrix, denoted by S, before performing the inner

product:

−→
H

TR
·
−→
F

TR
=

〈
STR

−→
H

TR
,
−→
F

TR
〉

=
〈−→
H

TR
,STR

−→
F

TR
〉

= sTRT,Th
TfT + sTRT,Rh

TfR + sTRR,Th
RfT + sTRR,Rh

RfR , (33)

where sTRT,R = sTRR,T . The S matrix is completely defined by the angle formed by the sides

of the corner asssociated with the two vector components. This angle is depicted in Fig. 6

for the top-right corner. In particular,

STR =
1

sin2(ΘTR)

 1 cos(ΘTR)

cos(ΘTR) 1

 . (34)

Note that this matrix is invariant to the ordering of the surface-normal vector components.

The S matrix is derived in Appendix A.

The second significant difference between the rectangular and quadrilateral cases arises

in the volumetric weights assigned to each corner. In the orthogonal case, each corner

weight is defined to be one-quarter of the cell area mutiplied by 2π times the radius at that

cell corner. For the quadrilateral case, we define each corner weight as one-quarter of the

area defined by the parallelogram associated with that corner multiplied by 2π times the

radius at that corner. The parallelgram associated with the top-right corner is illustrated in
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Fig. 7. The parallelograms associated with the other corners are analogously defined. Since

these weights for the quadrilateral case do not necessarily sum to the total cell volume,

we normalize them to ensure that they do so. For instance, the unnormalized volumetric

weight for the top-right corner is given by

Ṽ TR =
1

4

[(−→
r i− 1

2
,j+ 1

2
− −→r i+ 1

2
,j+ 1

2

)
·
(
r̂i+ 1

2
,j− 1

2
− r̂i+ 1

2
,j+ 1

2

)]
2πri+ 1

2
,j+ 1

2
, (35)

where r̂ denotes a right-handed 90-degree rotation of the vector
−→
r = (r, z):

r̂ = (z,−r) . (36)

The remaining volumetric weights are defined in analogy with Eq. (35). The normalized

volumetric weight for the top-right corner is given by

V TR = Ṽ TR V/
(
Ṽ TR + Ṽ RB + Ṽ BL + Ṽ LT

)
, (37)

where V denotes the true volume of cell i, j:

V =
[(−→
r i− 1

2
,j+ 1

2
− −→r i+ 1

2
,j+ 1

2

)
·
(
r̂i+ 1

2
,j− 1

2
− r̂i+ 1

2
,j+ 1

2

)]
π

3

(
ri− 1

2
,j+ 1

2
+ ri+ 1

2
,j+ 1

2
+ ri+ 1

2
,j− 1

2

)
+

[(
r̂i− 1

2
,j+ 1

2
− r̂i− 1

2
,j− 1

2

)
·
(−→
r i+ 1

2
,j− 1

2
− −→r i− 1

2
,j− 1

2

)]
π

3

(
ri+ 1

2
,j− 1

2
+ ri− 1

2
,j− 1

2
+ ri− 1

2
,j+ 1

2

)
. (38)

Note that all of the corner weights are multiplied by the normalization factor appearing in

Eq. (37).
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It would seem that more straightforward corner weights could be chosen that would

not require renormalization. However, we found the choice of corner weights critical to

obtaining certain important properties. In particular, we found no other choice of weights

that gave us both second-order accuracy on non-smooth meshes and spherically-symmetric

solutions on spherically-symmetric r − z meshes. See Appendix C for a demonstration of

the spherically-symmetric properties of our scheme.

It is important to note that the expression given for the unnormalized corner weight

in Eq. (35) gives a negative weight when the corner angle, ΘRT , is greater than π. In this

case, the cell is re-entrant and the corner volume is in fact negative. Negative weights can

result in a diffusion matrix that is not positive-definite. To avoid this difficulty, we simply

substitute the absolute value of the corner volume for the true corner volume in Eq. (35):

Ṽ TR =
1

4

∣∣∣(−→r i− 1
2
,j+ 1

2
− −→r i+ 1

2
,j+ 1

2

)
·
(
r̂i+ 1

2
,j− 1

2
− r̂i+ 1

2
,j+ 1

2

)∣∣∣ 2πri+ 1
2
,j+ 1

2
. (39)

This procedure plays the role of the “parallelogram fixup” used in the MDHW scheme, but

it is much simpler and just as effective.

For the case of a general quadrilateral, the general form of the discrete divergence

volumetric integral is identical to that of Eq. (14). However, as previously noted for Eq. (6),

the definition of the areas is given by Eq. (30) rather than Eq. (7).

To obtain expressions for the surface-normal components of the discrete gradient oper-
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ator, we now proceed exactly as in the rectangular-mesh case. In particular, we substitute

from Eqs. (6), (9), and (14) (using the quadrilateral-case definitions for the components of

these equations) into Eq. (5), and then obtain an equation for the modified gradient com-

ponent on a given face by setting the component of
−→
H on that face to unity while setting

the components on all other faces to zero. In the orthogonal case, four independent linear

equations for the modified gradient components were obtained. However, in the quadri-

lateral case, four coupled linear equations are obtained. It can be shown that this 4 × 4

system is non-singular as long as the quadrilateral is not degenerate, i.e., as long as it does

not have coincident vertices or corner angles equal to 180 degrees. Nonetheless, solutions

can be obtained for degenerate cases simply by taking appropriate limits. For instance,

equations for triangles are easily obtained. A triangle is viewed as a quadrilateral with one

face of zero area. The unknowns associated with such a degenerate face completely decou-

ple from the other unknowns, allowing one to arbitrarily define the degenerate unknowns

while leaving the other unknowns unaffected.

We solve the 4 × 4 system for the modified gradient components numerically rather

than analytically, thus we cannot give explicit expressions for them. However, we can

symbolically represent them in terms of the following 4 × 5 matrix (which we calculate
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numerically):



fR

fB

fL

fT


=



FR,R . . . FR,C

FT,R . . . FT,C





φR

φB

φL

φT

φC



, (40)

In the general case, the matrix F is full.

The conditions for connecting cells are identical to those of the orthogonal case: con-

tinuity of intensity and flux across cell interfaces. Continuity of the intensity leads to a

unique intensity at each cell edge. The equation for each cell-edge intensity expresses the

continuity of flux. For the quadrilateral case, the flux-continuity equation has the same

general form as Eq. (20), but the area elements are given by Eq. (30) rather than Eq. (7),

and the modified gradient components are given by Eq. (40) rather than Eq. (15). Since

the extrapolated boundary condition given in Eq. (24) is analytic, it can be applied to

quadrilaterals as well as rectangles to obtain the normal flux component on a boundary

face. For instance, Eq. (25) is valid on both rectangles and quadrilaterals. The point dis-

cretizations for the time derivative and source terms used in Eq. (17) are also used in the

quadrilateral case. This completes the specification of our quadrilateral-mesh scheme.

As previously demonstrated, the cell-edge intensities on a rectangular mesh can be
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eliminated via the continuity-of-flux equations to obtain a 5-point cell-centered diffusion

scheme. Unfortunately, in the quadrilateral case this process yields a cell-centered diffusion

scheme that has a full coefficient matrix. This is the same cell-centered scheme that one

would obtain by applying the standard support-operator method of Shashkov and Steinberg

[8] in conjunction with our definitions for the discrete inner products.

Our quadrilateral scheme yields a 5-point stencil for the cell-center equations and a

9-point stencil for the cell-edge equations. These stencils are illustrated in Figs. (8) and

(9) respectively.

4 Solution of the Equations

We use a multigrid-preconditioned conjugate-gradient [10] method to solve our discrete

diffusion equation. The preconditioner is based upon an approximate 5-point cell-center

diffusion operator. As previously discussed, our cell-center/cell-edge system of equations

can be reduced to a 5-point cell-center system when the mesh is orthogonal. This is possible

because each cell-edge intensity becomes a function only of the two cell-centered intensities

adjacent to it, and thus can be locally eliminated. This reduced edge/center coupling

actually occurs whenever the corner S-matrices are diagonal, but they are diagonal only

when the mesh is orthogonal. Taking this fact into account, we obtain our approximate cell-
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center system simply by setting the off-diagonal elements of the corner S-matrices to zero,

and then eliminating the cell-edge unknowns. In the preconditioning step, we do not fully

solve this approximate system, but rather perform a set number of V-cycles using Dendy’s

black-box multigrid algorithm [11]. When the mesh is orthogonal, the “approximate”

system is actually exact, but as the mesh becomes increasingly skewed, it becomes less

accurate. Nonetheless, as shown in the next section, this method performs extremely well

on moderately skewed meshes and fairly well on highly skewed meshes.

It is useful to consider certain details which arise when deriving and solving our ap-

proximate cell-center operator. Let us assume that our full cell-center/cell-edge equations

are expressed in terms of the following matrix equation:

A
−→
ξ =

−→
η , (41)

where A is the coefficient matrx,
−→
ξ is the solution vector, and

−→
η is the source vector.

The preconditioning step in the conjugate-gradient method consists of solving a matrix

equation of the following form [10]:

Ã
−→
δξ =

−→
δη , (42)

where Ã denotes the approximation to A (called the preconditioner) and
−→
δη denotes a

residual. The matrix appearing in Eq. (42) consists of the full cell-center/cell-edge system

modified with the diagonal approximation for the corner S-matrices. As can be seen from
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Eq. (20), the cell-edge (continuity of flux) equations associated with our scheme normally

do not contain sources. However, the cell-edge equations associated with Eq. (42) will have

sources arising from the residual vector. Thus when the 5-point cell-center precondition-

ing system is derived from Eq. (42) by eliminating the cell-edge components of
−→
δξ , one

must include the cell-edge residual components in the elimination process. Furthermore,

after the V-cycles have been carried out to obtain the cell-center components of
−→
δξ , one

must use these components together with the cell-edge equations to calculate the cell-edge

components of
−→
δξ .

5 Computational Results

In this section we present computational results which demonstrate the accuracy of our

method and the efficiency of our solution technique. The method of Morel, Dendy, Hall,

and White [6] (MDHW) was computationally compared with several existing cell-centered

Lagrangian-mesh diffusion differencing schemes in Reference 6. The accuracy of this

method was clearly superior to that of the other schemes, but it was also significantly

more expensive. Our method has the same unknowns as the MDHW scheme, the same

cell-centered stencil, and nearly the same cell-edge stencil (our scheme has a 9-point edge

stencil while the MDHW method has a 7-point edge stencil.) Nonetheless, our method
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is less expensive than the MDHW scheme because we use conjugate-gradient iterations

rather than fine-mesh line relaxations to solve our equations. The cost of solving the

MDHW equations is dominated by the cost of performing such relaxations. We are able

to use the conjugate-gradient solution technique because our coefficient matrix is SPD.

The MDHW equations cannot be solved with the conjugate-gradient technique because

the MDHW scheme has an asymmetric coefficient matrix.

We have performed many of the calculations that appear in Reference 6, but we have

also performed several calculations relating to the convergence of our scheme on spherical

meshes. The first set of calculations that we performed relate to the the accuracy of

our scheme on highly skewed mesh. We consider the Kershaw-mesh problem given in

Reference 6. A 10 × 10 Kershaw mesh is shown in Fig. 10. The following equation was

solved:

− 1

r

∂

∂r

[
rD

∂φ

∂r

]
− ∂

∂z

[
D
∂

∂z
φ

]
= 0 , (43)

for r ∈ [0, 1], z ∈ [0, 1]. The problem has reflective boundaries along r = 0 and r = 1,

a Marshak vacuum boundary along z = 1 and a unit extrapolated Marshak boundary

condition along z = 0. The solution to this problem is a linear function of z [6]. Although

the MDHW scheme yields the exact solution to this problem, our scheme does not. We

were unable to define inner product weights that would enable our method to yield exact
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linear homogeneous solutions while maintaining all the other desirable properties of our

scheme. Nonetheless, one would expect our scheme to converge to the exact solution as

the mesh is refined. The intensity contours from our support-operator method are shown

in Fig. 11. The exact contours are constant in r, but the support-operator contours are

not constant. Rather they show some mesh distortion. However, the same calculation was

repeated with a 48× 48 mesh. This mesh is shown in Fig. 12. The corresponding intensity

contours are shown in Fig. 13. The contours appear to be constant in r. This qualitatively

demonstrates the convergence of our method on highly shewed meshes.

The second set of calculations addresses the accuracy of our method on highly distorted

meshes with re-entrant cells. We solve the same problem defined above for the first set

of calculations. A single calculation is performed on the 32 × 32 Shestakov mesh referred

to in Reference 6. This mesh is shown in Fig. 14. It is clearly both highly skewed and

highly distorted. It contains several cells that are re-entrant, and thus have negative corner

volumes. In accordance with Eq. (39), we substitute the absolute value of a negative

weight for the true weight, and then renormalize all four of the cell weights so that they

sum to the correct volume. This is the analogue of the “parallelogram fixup” defined for

the MDHW scheme. Our scheme, like the MDHW scheme, is non-convergent on meshes

with re-entrant cells. This “fixup” procedure is simply intended to make the scheme more

robust. The intensity contours are shown in Fig. 15. These contours are nearly constant in
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r. This represents a very good result considering the fact that some of the mesh cells are

re-entrant.

The third set of calculations addresses the convergence of our method on grids that are

mildly distorted. Cylindrical random grids were used for similar purposes in Reference 6.

We have used spherical random grids to demonstrate that our method converges on meshes

containing triangles as well as quadrilaterals. These random grids were generated by moving

each mesh vertex to a random position on a circle centered about the original vertex

position. The radius of each circle was roughly one-fifth of the cell width. The 2-D r − z

equivalent of the following 1-D equation was solved:

− 1

R2

∂

∂R

[
R2D

∂φ

∂R

]
= a+ bR2 , (44)

for R ∈ [0, 1], where R denotes the spherical radius, i.e., R = r2 + z2, D denotes a region-

dependent diffusion coefficient, and a = b = 1. The problem domain consists of a two

region sphere illustrated in Fig. 16. The inner region is defined by 0 < R < 0.5, and the

outer region is defined by 0.5 < R < 1.0. The diffusion coefficient is 1 in the inner region

and 2 in the outer region. There are reflective boundary conditions along z = 0 and r = 0,

and a Marshak vacuum boundary condition along R = 1. The analytic solution to this

problem is:

φ1 = a
(

1

3
+

1

24D1

+
1

8D2

)
+ b

(
2

5
+

1

320D1

+
3

64D2

)
− aR2

6D1

− bR4

20D1

, (45)
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φ2 = a
(

1

3
+

1

6D2

)
+ b

(
2

5
+

1

20D2

)
− aR2

6D2

− bR4

20D2

, (46)

where φ1 and φ2 respectively denote intensity solutions in the inner and outer regions, and

D1 and D2 similarly denote the diffusion coefficients in the inner and outer regions.

Calculations were performed using our scheme on several randomly distorted grids. For

instance , a 10 × 10 spherical random grid is shown in Fig. 17 and a 20 × 20 spherical

random grid is shown in Fig. 18. The relative L2 error norm is plotted in Fig. 19 for each

calculation as a function of radial cell width. This relative norm consists of the standard

L2 norm of the cell-centered intensity errors divided by the L2 norm of the cell-centered

intensity solution. The error dependence expected with second-order convergence is also

plotted in Fig. 19. The computed errors clearly agree with the expected errors, indicating

that our scheme is second-order accurate on these randomly distorted spherical meshes

that contain both a material discontinuity and triangular cells.

The fourth set of calculations is primarily intended to address the accuracy of our

scheme relative to the MDHW scheme as a function of the mesh distortion. We performed

calculations for a problem defined in Reference 6. The following equation was solved:

− ∂

∂z

[
D
∂φ

∂z

]
= qz2 , (47)

for r ∈ [0, 1], z ∈ [0, 1], where q is a constant. There are reflective boundary conditions

along r = 0 and r = 1, and Marshak vacuum boundaries along z = 0 and z = 1. The
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diffusion coefficient has a value of unity throughout the problem. The analytic solution to

this problem is:

φ = a+ bz + cz4 , (48)

where

a =
q

6

[
1 + 8D

1 + 4D

]
, (49)

b =
q

12D

[
1 + 8D

1 + 4D

]
(50)

c = − q

12D
. (51)

We have computed the solution to this problem using our support-operator scheme and the

MDHW scheme on a 48× 48 orthogonal mesh, a 48× 48 random mesh, a 48× 48 Kershaw

mesh, and a 32 × 32 Sheshtakov mesh. The relative L2 errors for these calculations are

given in Table I. The support-operator and MDHW methods give the same error on the

orthogonal mesh because they are identical on such meshes. They give comparable errors

on all of the other meshes. This is similar to the results obtained by Steinberg and Shashkov

when comparing their support-operator method with the MDHW method in x−y geometry

[8].

We also used the fourth set of calculations to compare the iterative convergence rate

of our multigrid-preconditioned conjugate-gradient solution technique with the MDHW

multigrid solution technique. The iterations required to converge the support-operator and
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multigrid solution techniques are given in Table II. The solutions were considered converged

when the L2 norm of the residual vector divided by the L2 norm of the source vector was

less than 10−6. It can be seen from Table II that mixed results were obtained. In two

cases the support-operator scheme took fewer iterations and in two other cases the MDHW

scheme took fewer iterations. Neither scheme ever took more than twice the iterations

required by the other. Thus, the two schemes appear to be roughly comparable in terms

of iterative convergence rate.

The support-operator and MDHW solution techniques significantly differ only in that

the support-operator scheme uses a conjugate-gradient iteration in place of the line re-

laxations used in the MDHW scheme. The multigrid components of the two schemes are

essentially identical. Because the support-operator and MDHW calculations had to be

performed on different computers (a SUN workstation and a CRAY-YMP respectively,)

a direct timing comparison between these two methods is difficult. Nonetheless, when

one considers the particularly expensive nature of the line relaxations used in the MDHW

scheme [6], it is clear that a conjugate-gradient iteration [10] must be significantly less

costly. In support of this statement, we note that for the fourth set of calculations, only

about one-third of the total solution time for our support-operator method was spent doing

conjugate-gradient iterations, while over four-fifths of the total solution time of the MDHW

scheme was spent doing line relaxations.
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It is important to note from Table II that the iterative convergence rates for both our

support-operator method and the MDHW method degrade as the mesh becomes increas-

ingly distorted. This is not surprising since both methods use an approximate 5-point pure

cell-centered diffusion operator to improve the iterative convergence rate, and these oper-

ators are highly inaccurate on distorted meshes relative to the fine-mesh schemes. Thus a

more accurate preconditioner might significantly improve the performance of our solution

technique on highly distorted meshes.

6 Summary and Future Work

We have developed a new “local” version of the support-operator method and applied it

to the discretization of the diffusion operator on quadrilateral meshes. This local scheme

yields a sparse banded diffusion matrix in contrast to the standard support-operator ap-

proach of Shashkov and Steinberg [8], which yields a dense diffusion matrix. However,

the local approach requires edge intensity unknowns in addition to the cell-centered in-

tensity unknowns, and thus is more costly than pure cell-centered schemes. However, our

support-operator scheme yields a sparse banded symmetric positive-definite diffusion ma-

trix, and converges with second-order accuracy even on grids that are not smooth and

contain material discontinuities. We are unaware of any pure cell-centered scheme that has
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these properties. In addition, our scheme conserves energy over each spatial cell, yields

spherically-symmetric solutions on spherically-symmetric r − z grids, and is sufficiently

robust to provide a conservative solution even on meshes that contain re-entrant cells (

e.g., boomerang and bowtie cells [6].) The only restriction on the re-entrant cells is that

they must have a positive total volume. We believe that this extraordinary set of desirable

properties makes our scheme a valuable alternative to traditional diffusion discretization

schemes.

In the future we intend to investigate the solution of the system which results from

eliminating the cell-centered intensity unknowns in our equations. This could significantly

reduce the CPU time associated with our scheme. We also intend to investigate new ap-

proximate diffusion discretizations for preconditioning our support-operator equations. Our

intent is to find a preconditioner that suffers less degradation as the mesh becomes increas-

ingly distorted. An obvious candidate would be a 9-point pure cell-centered discretization.

Finally, we intend to investigate the generalization of our quadrilateral-mesh method to

3-D hexahedral meshes.
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Appendix A

In this appendix we derive the matrix S that is defined in Eq. (34). We begin by considering

the top-right corner of the quadrilateral shown in Fig. 6. The flux vector associated with

this corner is expressed in terms of its components with respect to the top-face and right-

face normals:

−→
F =

(−→
F ·

−→
n
T
,
−→
F ·

−→
n
R
)

=
(
fT , fR

)
. (52)

Note that the superscript “TR” for the vector
−→
F has been suppressed in Eq. (52) for

simplicity. It is trivial to relate the standard r and z components of
−→
F to the normal

components. In particular:

GF̄ =
−→
F , (53)

where

G =

 nTr nTz

nRr nRz

 , (54)

F̄ =

 fr

fz

 , (55)

−→
F =

 fT

fR

 , (56)
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and where a subscript “r” denotes an r-component and a subscript “z” denotes a z-

component. The vector F̄ is said to be in the r − z basis, while the vector
−→
F is said

to be in the face-normal basis. Inverting G in Eq. (53), we get

F̄ = G−1
−→
F . (57)

By definition, the dot product of any two r-z basis vectors, F̄ and H̄, is given by

F̄ · H̄ = frhr + fzhz . (58)

It follows from Eqs. (57) and (58) that

F̄ · H̄ = G−1
−→
F ·G−1

−→
H , (59)

where
−→
H is the face-normal counterpart of H̄. Using the inner product defined in Eq. (32),

we can re-express Eq. (59) as follows:

F̄ · H̄ =
〈−→
F ,

[
G−1

]t
G−1

〉 −→
H

=
〈[
G−1

]t
G−1

−→
F ,

−→
H

〉
, (60)

where a superscript “t” denotes the matrix transpose. Comparing Eqs. (33) and (60), it is

evident that

STR =
[
G−1

]t
G−1 . (61)

Equation (34) can be obtained from Eqs. (54) and (61) after tedious but straightforward

algebraic manipulations.
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Appendix B

In this appendix we demonstrate that the coefficient matrix which arises from our dis-

cretization method is Symmetric Positive Definite (SPD). For simplicity, we ignore the

contributions from the time-derivative term. If standard temporal differencing (e.g., fully-

implicit or Crank-Nicholson) is used, this term will not affect the positive-definite character

of the matrix because it contributes only to the diagonal elements.

Before we begin the demonstration we need to prove that the null space of a sum

of matrices having Cholesky decompositions is the intersection of the null spaces of the

individual matrices. Let M be such a sum, Mc, each having a Cholesky decomposition,

M =
∑
c

Mc ,

=
∑
c

LcLtc , (62)

where Lc is a real lower triangular matrix with non-negative diagonals. The inner product

of M with a vector x is then,

xtMx =
∑
c

xtMcx ,

=
∑
c

xtLcLtcx ,

=
∑
c

ytcyc ,

≥ 0 . (63)
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The only way the equality can be satisfied is if each term in the sum is itself equal to zero,

and therefore each yc is the zero vector. This implies that x is in the null space of every

Mc since,

Mcx = LcLtcx ,

= Lcyc ,

= 0 . (64)

In addition Eq. (63) demonstrates thatM is Symmetric Positive Semidefinite (SPS). If the

intersection of the null spaces are the empty set then the inequality in Eq. (63) becomes

strictly greater, and M is SPD.

We begin the demonstration by considering the submatrix equation associated with a

single quadrilateral:

M
−→
φ =

−→
b . (65)

In this case M is a real 5× 5 matrix operating on

−→
φ =



φR

φB

φL

φT

φC



∈ R5×1. (66)
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We first consider only the matrix equation for a single-cell mesh with reflective boundary

conditions, and show that matrix for this system has a Cholesky decomposition. We then

show that the matrix arising from a multi-cell mesh with reflective boundary conditions is

also SPS, and determine the null space of this matrix. When the contributions from the

vacuum boundaries are finally included, the resulting matrix will be shown to be SPD, by

demonstrating that the vacuum boundary contributions reduce the null space of the matrix

to the empty set.

There are several assumptions that must be made. The first is that the corner weights

defined by Eq. (37) are positive. The second assumption is that all of the face areas defined

by Eq. (30) are positive. All of these assumptions are valid if the quadrilaterals are non-

degenerate. Our diffusion matrix is also SPD with certain types of degenerate cells, e.g.,

triangles, but we do not consider such cells here.

Consider the matrix formed by the weighted sum of the S-matrices defined in Eq. (34):

S = V TRSTR + V RBSRB + V BLSBL + V TLSLT . (67)

Under the assumptions described above, S is a real 4 × 4 SPD matrix, as is its inverse,

S−1. This matrix operates on the space of real 4-vectors representing the surface-normal

components of vector quantities, e.g. (fR, fB, fL, fT ).

We will define the matrix arising from the single-cell mesh, M, in terms of two other
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matrices,

A =



AR

AB

AL

AT


∈ R4×1 , (68)

and

W =



AR 0 0 0

0 AB 0 0

0 0 AL 0

0 0 0 AT


∈ R4×4 . (69)

Using these definitions, Eq. (40) becomes

−→
F = DS−1 [−W ,A]

−→
φ . (70)

The expression, [−W ,A], is a 4× 5 real matrix.

The diffusion equation integrated over one cell is

∫
V

−→
∇ ·

−→
F dV = Q , (71)

or equivalently, ∮
∂V

−→
F · n̂ dA = Q . (72)

42



In discrete form, this equation is

ARfR + · · ·+ ATfT = Q . (73)

In block matrix form, the diffusion equation expressed in terms of φ becomes

DAtS−1 [−W ,A]φ = Q . (74)

Reflective boundary conditions can be expressed in the following form for each face of

the quadrilateral:

− ARfR = 0 . (75)

This equation can be written in block matrix form as

DWS−1 [W ,−A]
−→
φ =

−→
0 , (76)

where
−→
0 is a 4-vector.

Expressed together, Eqs. (76) and (74) represent five equations with five unknowns,

D

 WS
−1W −WS−1A

−AtS−1W AtS−1A

 −→φ =


−→
0

Q

 . (77)

This is the form for the matrix M defined in Eq. (65). We will now show that this matrix

has a Cholesky decomposition and determine its null space.
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To demonstrate the matrix from Eq. (77),

M = D

 WS
−1W −WS−1A

−AtS−1W AtS−1A

 , (78)

has a Cholesky decomposition, we rely on the fact that any SPD matrix may be written as

a product of a lower-triangular matrix with positive diagonals and its transpose [12]. The

matrix S−1 is SPD and can be expressed as,

S−1 = LSLS t , (79)

with LS having positive diagonal elements.

This matrix,M can be shown to be the product of the following lower-triangular matrix,

LM =

 WLS
−→
0

−AtLS 0

 , (80)

and its transpose. Since W is a positive diagonal matrix, the product WLS is lower-

triangular with positive diagonals; therefore, LM is lower-triangular with 4 positive diago-

nals and 1 zero diagonal. This demonstrates that M has a Cholesky decomposition.

We will now show that the null space of M has dimension 1 by finding all solutions

(
−→
b , ν) to the equation

M


−→
b

ν

 =


−→
0

0

 . (81)
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These solutions form the null space of M,

null(M) = span


 W

−1A

1


 , (82)

= span





1

...

1




∈ R5×1 . (83)

To determine that the matrix resulting from a multi-cell mesh with reflective boundary

conditions is SPS, we will extend matrixM from one cell to the full N-dimensional solution

space by adding zero entries on the rows and columns representing unknowns not contained

in the cell. We will label this matrix by the cell index, c,

M∈ R5×5 −→Mc ∈ RN×N . (84)

We define Bc as the set of the indices for the unknowns contained by the c’th cell,

Bc ≡ { i : (Mc)i,j 6= 0 for some j } . (85)

The null space ofMc contains any vector with the same value at the columns indicated by

Bc,

null(Mc) = span
{

[a1, a2, . . . , aN ]t : ai = 1 for i ∈ Bc

}
. (86)

In order to assemble the single-cell matrices, Mc, into the total N × N matrix, M, we

impose current continuity conditions between adjoining interior faces. Consider two cells,
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the right side of the first cell adjoining the left side of the second cell. Separately each cells’

matrix equations for this face are

−AR1 fR1 = 0 , (87)

−AL2 fL2 = 0 . (88)

When these equations are added together, noting that the shared face areas are identical,

AR1 = AL2 , we arrive at the current continuity condition,

−AR1 fR1 − AL2 fL2 = 0 , (89)

fR1 + fL2 = 0 . (90)

Therefore, the entire matrix is the sum of the single-cell matrices,

M =
∑
c

Mc . (91)

This matrix is SPS, since the sum of matrices with Cholesky decompositions is guaranteed

to be SPS.

The null space of a sum of matrices with Cholesky decompositions is the intersection

of the cell matrix null spaces,

null(M) =
⋂
c

null(Mc) . (92)
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Since the union of all of the Bc is the set from 1 to N,

⋃
c

Bc = {1, 2, . . . , N} , (93)

the null space of M contains all vectors with the same value in all of its columns,

null(M) = span





1

...

1




∈ RN×1 . (94)

Now consider that there is at least one cell, v, that contains a vacuum boundary face,

and without loss of generality we will assume that this face is the rightmost face. The

vacuum boundary conditions for this cell can be expressed in the following form,

ARv
(
λRv φ

R
v − fRv

)
= 0 . (95)

Although it might not be obvious, this form is equivalent to that expressed in Eq. (24).

For instance, the Marshak boundary condition is obtained if λRv = 1/2.

This cell will contribute an additional term to the sum in Eq. (91),

M =
∑
c

Mc +M′
v . (96)

This extra matrix contains a ARv λ
R
v term on the diagonal for the unknown on the vacuum
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face, i.e.

M′
v =



0 0 0

0 ARv λ
R
v 0

0 0 0


∈ RN×N . (97)

The matrix, M′
v, with all zeros except for one positive value on the vacuum face

unknown diagonal, obviously has a Cholesky decomposition. It’s null space contains all

vectors with a zero on the vacuum face column. It is obvious that this null space is disjoint

from the intersection of the null spaces of the matrices forming the sum in Eq. (91), and

therefore

null(M) =
⋂
c

null(Mc)
⋂

null(M′
v) , (98)

= ∅ , (99)

the empty set. Using the proof from earlier in the appendix we have demonstrated that

M is SPD.

Appendix C

In this appendix we demonstrate that our new solution method preserves the spherical

symmetry of a solution on a spherically symmetric mesh. A spherically-symmetric r-z

mesh is illustrated in Fig. 10. The mesh coordinates are labeled with the i axis in the θ̂
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direction and the j axis in the R̂ direction, with

R =
√
r2 + z2 . (100)

In order to demonstrate that this scheme perserves a spherically symmetric solution we

will show that the new scheme admits a solution with cell-centered intensities independent

of the i coordinate, i.e.,

φCi,j = φCj , (101)

and that these symmetric intensities lead to fluxes, fi,j, independent of i, having only radial

components, i.e.

fBi,j = fBj ,

fTi,j = fTj ,

fRi,j = 0 ,

fLi,j = 0. (102)

To establish the above relations we must first show that the factor used to scale the

volumetric weights in Eq. (37) is independent of i,

Wi,j =
Vi,j

Ṽ TR
i,j + Ṽ RB

i,j + Ṽ BL
i,j + Ṽ LT

i,j

, (103)

= Wj . (104)
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The unnormalized volumetric weights for the corners are related to the parallelepiped

volumes, V , by

Ṽ TR
i,j = 2πri+ 1

2
,j+ 1

2
VTRi,j , (105)

Ṽ RB
i,j = 2πri+ 1

2
,j− 1

2
VRBi,j , (106)

Ṽ BL
i,j = 2πri− 1

2
,j− 1

2
VBLi,j , (107)

Ṽ LT
i,j = 2πri− 1

2
,j+ 1

2
VLTi,j . (108)

Due to the regularity of this mesh the parallelpiped volumes are simply related,

VTRi,j = VLTi,j = Vj+ 1
2

, (109)

VRBi,j = VBLi,j = Vj− 1
2

, (110)

where

Vj− 1
2

=
Rj− 1

2

Rj+ 1
2

Vj+ 1
2

, (111)

and the expression for the volumetric weight scaling factor Eq. (103) is,

Wj =
1

6

R2
j− 1

2

+Rj− 1
2
Rj+ 1

2
+R2

j+ 1
2

R2
j− 1

2

+R2
j+ 1

2

, (112)

where Eq. (40) was substituted for Vi,j.

There are two sets of equations that we will examine. The first set is used to find an

expression for fTi,j from cell i, j and its top neighbor, cell i, j + 1. This expression will be
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found to be independent of i for a spherically-symmetric problem. The second set is used to

find an expression for fRi,j from cell i, j and its right neighbor, cell (i+1, j). This expression

will be found to be zero for a spherically-symmetric problem. Due to current continuity

we will not need to examine fBi,j, nor fLi,j. These expressions will be derived referring to

Fig. 20.

To derive an expression for fTi,j we use the φT equation for cell i, j and the φB equation

for cell i, j + 1:

V LT
i,j

sin2 α

(
fTi,j + cosα fLi,j

)
+

V TR
i,j

sin2 α

(
fTi,j + cosα fRi,j

)
= −DATi,j

(
φTi,j − φCi,j

)
(113)

V BL
i,j+1

sin2 γ

(
fBi,j+1 + cos γ fLi,j+1

)
+
V RB
i,j+1

sin2 γ

(
fBi,j+1 + cos γ fRi,j+1

)
= −DABi,j+1

(
φBi,j+1 − φCi,j+1

)
. (114)

The sin2 α and sin2 γ terms arise from the form of the S−1 matrix.

We now rely on the continuity between neighbor cells, i.e.

φBi,j+1 = φTi,j , (115)

fBi,j+1 = −fTi,j , (116)

and geometric relations between the two cells,

sin γ = sinα , independent of i, (117)
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to eliminate the cell-edge unknown, φTi,j, from the equations. In doing so we assume that

the intensities and volume scaling factors depend only on j, and that fL = fR = 0:

Wj +Wj+1

sin2 α
Vj+ 1

2
fTi,j = −1

2
D‖∆−→r j+ 1

2
‖
(
φCj+1 − φCj

)
, (118)

with

‖∆−→r j+ 1
2
‖ = ‖−→r i+ 1

2
,j+ 1

2
− −→r i− 1

2
,j+ 1

2
‖ , independent of i. (119)

We have used Eqs. (21), (30), (104), (105)–(108), and (109) to arrive at Eq. (118). It is

clear that fTi,j depends only on j:

fTi,j = fTj . (120)

Now that we have shown that the first set of equations, with the assumption of radial

fluxes, yields spherically-symmetric fluxes, we will demonstrate that spherically-symmetric

fluxes yield radial fluxes for the second set of equations.

To derive an expression for fRi,j we use the φR equation for cell i, j and the φL equation

for cell i+ 1, j, respectively:

V TR
i,j

sin2 α

(
fRi,j + cosα fTi,j

)
+

V RB
i,j

sin2 β

(
fRi,j + cos β fBi,j

)
= −DARi,j

(
φRi,j − φCi,j

)
, (121)

V LT
i+1,j

sin2 α

(
fLi+1,j + cosα fTi+1,j

)
+
V BL
i+1,j

sin2 β

(
fLi+1,j + cos β fBi+1,j

)
= −DALi+1,j

(
φLi+1,j − φCi+1,j

)
. (122)
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We now rely on the continuity between neighbor cells, i.e.

φLi+1,j = φRi,j , (123)

fLi+1,j = −fRi,j , (124)

and geometric relations between the two cells,

sin β = sinα , independent of i, (125)

V LT
i+1,j = V TR

i,j , (126)

V BL
i+1,j = V RB

i,j , (127)

to eliminate fLi+1,j and the cell-edge unknowns, φRij and φLi+1 j, from equations (121) and (122).

In doing so we will assume that the intensities, φCi,j, volume scaling factors, Wi,j, and ra-

dial fluxes, fTi,j and fBi,j, depend only on j (independent of i). Equations (121) and (122)

become,

2

sin2 α

[
V TR
i,j + V RB

i,j

]
fRi,j = −DARi,j

(
φCi+1,j − φCi,j

)
, (128)

= −DARi,j
(
φCj − φCj

)
, (129)

= 0 . (130)

Since factor in front of fRi,j is non-zero, we must conclude that

fRi,j = 0 , (131)
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which implies that a spherically symmetric initial solution results in a radial flux.

We have succeeded in demonstrating that the new method, on a regular spherical r-z

mesh, preserves a spherical solution that consists of fluxes with only radial components.
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Table I: Comparison of Support-Operator and MDHW Accuracy.

Mesh SO Error MDHW Error

48× 48 orthogonal 4.72× 10−5 4.72× 10−5

48× 48 random 4.31× 10−5 4.38× 10−5

48× 48 Kershaw 2.23× 10−4 2.19× 10−4

32× 32 Shestakov 6.78× 10−4 7.50× 10−4
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Table II: Iterative Convergence Comparison of Support-Operator and MDHW Schemes.

Mesh SO Iterations MDHW Iterations

48× 48 orthogonal 3 6
48× 48 random 11 8
48× 48 Kershaw 59 84

32× 32 Shestakov 94 50
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Figure Captions

1. Global Coordinate and Mesh Indexing. The global indexing for mesh cell i, j is

illustrated. Vertices are marked by circles and carry half-integer indices. Face centers

are marked by squares and carry both integer and half-integer indices. Cell centers are

marked by a triangle and carry integer indices. The fundamental mesh coordinates lie

at the vertices. If the mesh is orthogonal, the r-coordinates need carry only the index

i and the z-coordinates need carry only the index j, but if the mesh is non-orthogonal,

both indices are required for each coordinate pair.

2. Local Mesh Indexing. Corners are denoted by TR (Top-Right), RB (Right-Bottom),

BL (Bottom-Left), and LT (Left-Top). Faces are denoted by R (Right), B (Bottom),

L (Left), and T (Top). Note that local indexing can accomodates multiple unknowns

at the same location. For instance, the intensity on the right face of cell i, j need not

necessarily be equal to the intensity on the left face of cell i+ 1, j.

3. Locations of Intensity Unknowns. The intensity unknowns are located at cell centers

and face centers.
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4. Locations of Vector Component Unknowns. One vector component is located at each

face center and represents the dot product of the flux vector with the outward-directed

face normal vector.

5. Effective Locations of Complete Flux Vectors. Full flux vectors are considered to

be located at cell corners and are composed of the components on the two faces

associated with each corner. This is illustrated for the top-right corner vector, which

is composed of the top-face and right face flux components.

6. S-Matrix Angle. The angle appearing in the S-matrix for the top-right corner is

illustrated.

7. Corner Parallelogram. The parallelogram associated with the top-right corner of a

quadrilateral overlays that quadrilateral.

8. Cell-Center Stencil. The lightly-colored circle marks the location of the cell-center

intensity to which this equation corresponds.

9. Cell-Edge Stencil. The lightly-colored circle marks the location of the cell-edge in-

tensity to which this equation corresponds.

10. 10× 10 Kershaw Mesh.

11. Intensity Contours for 10× 10 Kershaw Mesh. The exact contours are constant in r.
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12. 48× 48 Kershaw Mesh.

13. Intensity Contours for 48× 48 Kershaw Mesh. The exact contours are constant in r.

14. 32× 32 Shestakov Mesh.

15. Intensity Contours for 32 × 32 Shestakov Mesh. The exact contours are constant in

r.

16. Spherical Test Problem Domain.

17. 10× 10 Random Spherical Mesh. Note that the interface between material regions is

not distorted.

18. 20× 20 Random Spherical Mesh. Note that the interface between material regions is

not distorted.

19. Error Versus Radial Cell Width.

20. Spherically-Symmetric Mesh.
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Figure 1: JCP: Morel, Roberts, and Shashkov, “A Local Support-Operator Diffusion Dis-
cretization Scheme for Quadrilateral r-z Meshes.”
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Figure 2: JCP: Morel, Roberts, and Shashkov, “A Local Support-Operator Diffusion Dis-
cretization Scheme for Quadrilateral r-z Meshes.”
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Figure 3: JCP: Morel, Roberts, and Shashkov, “A Local Support-Operator Diffusion Dis-
cretization Scheme for Quadrilateral r-z Meshes.”
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Figure 4: JCP: Morel, Roberts, and Shashkov, “A Local Support-Operator Diffusion Dis-
cretization Scheme for Quadrilateral r-z Meshes.”
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Figure 5: JCP: Morel, Roberts, and Shashkov, “A Local Support-Operator Diffusion Dis-
cretization Scheme for Quadrilateral r-z Meshes.”
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Figure 6: JCP: Morel, Roberts, and Shashkov, “A Local Support-Operator Diffusion Dis-
cretization Scheme for Quadrilateral r-z Meshes.”
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Figure 7: JCP: Morel, Roberts, and Shashkov, “A Local Support-Operator Diffusion Dis-
cretization Scheme for Quadrilateral r-z Meshes.”
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Figure 8: JCP: Morel, Roberts, and Shashkov, “A Local Support-Operator Diffusion Dis-
cretization Scheme for Quadrilateral r-z Meshes.”
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Figure 9: JCP: Morel, Roberts, and Shashkov, “A Local Support-Operator Diffusion Dis-
cretization Scheme for Quadrilateral r-z Meshes.”
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Figure 10: JCP: Morel, Roberts, and Shashkov, “A Local Support-Operator Diffusion
Discretization Scheme for Quadrilateral r-z Meshes.”
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Figure 11: JCP: Morel, Roberts, and Shashkov, “A Local Support-Operator Diffusion
Discretization Scheme for Quadrilateral r-z Meshes.”
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Figure 12: JCP: Morel, Roberts, and Shashkov, “A Local Support-Operator Diffusion
Discretization Scheme for Quadrilateral r-z Meshes.”
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Figure 13: JCP: Morel, Roberts, and Shashkov, “A Local Support-Operator Diffusion
Discretization Scheme for Quadrilateral r-z Meshes.”
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Figure 14: JCP: Morel, Roberts, and Shashkov, “A Local Support-Operator Diffusion
Discretization Scheme for Quadrilateral r-z Meshes.”
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Figure 15: JCP: Morel, Roberts, and Shashkov, “A Local Support-Operator Diffusion
Discretization Scheme for Quadrilateral r-z Meshes.”
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Figure 16: JCP: Morel, Roberts, and Shashkov, “A Local Support-Operator Diffusion
Discretization Scheme for Quadrilateral r-z Meshes.”
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Figure 17: JCP: Morel, Roberts, and Shashkov, “A Local Support-Operator Diffusion
Discretization Scheme for Quadrilateral r-z Meshes.”
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Figure 18: JCP: Morel, Roberts, and Shashkov, “A Local Support-Operator Diffusion
Discretization Scheme for Quadrilateral r-z Meshes.”
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Figure 19: JCP: Morel, Roberts, and Shashkov, “A Local Support-Operator Diffusion
Discretization Scheme for Quadrilateral r-z Meshes.”
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Figure 20: JCP: Morel, Roberts, and Shashkov, “A Local Support-Operator Diffusion
Discretization Scheme for Quadrilateral r-z Meshes.”
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