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Abstract

The support operator method designs mimetic finite difference schemes by first constructing a discrete divergence
operator based on the divergence theorem, and then defining the discrete gradient operator as the adjoint operatol
of the divergence based on the Gauss theorem connecting the divergence and gradient operators, which remains
valid also in the discrete case. When evaluating the discrete gradient operator, one needs to define discrete inner
products of two discrete vector fields. The local discrete inner product on a given triangle is definedxbg a 3
symmetric positive definite matrid defined by its six independent elements—parameters. Using the Gauss theorem
over our triangle, we evaluate the discrete gradient in the triangle. We require the discrete gradient to be exact for
linear functions, which gives us a system of linear equations for elements of the #Matfikis system, together
with inequalities which guarantee positive definiteness of the madriresults in a one parameter family of inner
products which give exact gradients for linear functions. The traditional inner product is a member of this family. The
positive free parameter can be used to improve another property of the discrete method. We show that accuracy of the
method for quadratic functions improves with decreasing this parameter, however, at the same time, the condition
number of the matrin/, which is the local matrix of the linear system for computing the discrete gradient, increases
to infinity when the parameter goes to zero, so one needs to choose a compromise between accuracy and solvability
of the local system. Our analysis has been performed by computer algebra tools which proved to be essential.
© 2004 Published by Elsevier B.V. on behalf of IMACS.

PACS 02.30.Jr; 02.60.Lj; 02.70.Bf

Keywords: Support operator; Mimetic finite difference method; Triangular grid

* Corresponding author.
E-mail addresses: liska@siduri.fifi.cvut.cz (R. Liska), shashkov@lanl.gov (M. Shashkov), ganzha@in.tum.de (V. Ganzha).
URLSs: http://www-troja.fijfi.cvut.cz*liska, http://cnls.lanl.gowtshashkov.

0378-4754/$30.00 © 2004 Published by Elsevier B.V. on behalf of IMACS.
doi:10.1016/j.matcom.2004.05.008



56 R. Liska et al./ Mathematics and Computersin Smulation 67 (2004) 55-66

1. Introduction

Themimetic finite difference methods[1-3] for discretizing partial differential equations take advantage
of the fact that most partial differential equations of importance in mathematical physics and engineering
can be formulated in terms of the invariant differential operators divergence, gradient, and curl. They
provide a systematic approach to spatial differencing of partial differential equations by constructing
discrete analogs of these invariant operators ¢kadtly satisfy discrete analogs of important differen-
tial and integral identities satisfied by the invariant continuum operators. From the discrete identities,
in direct analogy with the continuum, one can then deexext discrete conservation laws aesact
analogs of other important physical principles, which in turn assure the stability and robustness of these
methods.

For example, for discretizing the Laplace equation the main steps are: choose a discretization of the
scalar and vector fields; choose a discretization for the divergence (div); then choose discrete inner
products for discrete scalar and vector fields; and then use a discrete analo@ofetigence Theorem
to determine the discrete gradiegt#d). The Divergence theorem says that:

/divﬁde—i-/?)gradde:/ fv-ndS 1)
2 2 082

wheres2 is some smooth regions2 the boundary of the region, an outward normal to the boundary,
f a smooth scalar function defined on the closure of the regiony @ansimooth vector field defined on
the closure of the region (s¢2]). So, if f andg are scalar fields and if andw are vector fields, then

relevant continuum inner products for scalars and vectors are:

o= [ reav. @)= [ 3-pav @)
2 2
and then (1) can be written as:
(divv, f) + (v, grad f) = fo-ndS 3)
082

Previously, natural geometric ideas have been used to discretize these inner products, while standar
finite-volumes are used to discretize the divergence. The discrete analog of the gradient is derived from
the discrete analog of (3).

There are some theoretical and numerical results on how accuracy of the mimetic methods depend:
on accuracy of the inner productgl,5]. However, this question require additional investigations. In
particular, an important question is how the accuracy of the gradient depends on the accuracy of the inne
products and the accuracy of the divergence. Another important practical question is how definition of
the inner product affects the process of solving the linear system corresponding to mimetic discretization.

The global inner product in mimetic finite difference methods is assembled from inner products for
each cell. In this paper, we are considering an inner product for one triangular cell. We analyze how
the inner product affects the accuracy of the gradient and the condition number of the system of linear
eqguations for the gradient. From a formal point of view, the inner product is a symmetric positive definite
bilinear form. The analysis of the inner product is performed using symbolic manipulations.

The rest of the paper is organized as follo®8sction 2introduces discretization of scalar and vector
functions on an unstructured triangular gridSaction 3tandard inner products are defined and weights
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Fig. 1. (a) Triangle and quantities related to it. (b) ComponeWts, n = 1, 2, 3 of vector grid functioW ., n = 1, 2, 3 are at
the center of edges as projections to the edge normals.

appearing in them are derived; 8ection 4we analyze the general inner product; and&action 5we
mention computer algebra tools used in our analysis.

2. Scalar and vector functionson atriangular grid

A triangular grid consists a¥; triangles. For numbering of the triangles, vertices and edges we will use
indicesi, j, k, respectively. Each triangle has three vertiges: = 1, 2, 3, three edge&”, n = 1, 2, 3,
three midpoints of the edgés n = 1, 2, 3, and at the verticeg' the triangle has anglg" between two
edgesk”—2 andk"~! as shown aFig. 1(a) Wherever needed here and in the rest of the paper, cyclic
extension for triangle quantities indexing is assumed, so that, e.g. index 0 means 3 or index 4 means 1.
Each internal edge belongs to two triangles and each boundary edge belongs to only one triangle. The
grid hasNg, boundary edges anld, edges in total.

A scalar function is represented on a triangular grid by its value inside each triaagteon each
boundary edgeé. A vector function is represented at the center of each edge by its projection on the edge
normal as shown ifrig. 1(b)

3. Standard inner products

The natural inner product of scalar functiotisV on the spac&lC of scalar grid functions is defined
by:

Nt Neb
(U Ve = Y _U;VNCi + > U ViSi
i=1 k=1

whereU;, V; are values of scalar functions in the trianglé/,, V; are values at the center of boundary
edgek, VC; is the area of triangleands;, is the length of the boundary edge

For the natural inner product of vector grid functiofisB on the triangle, we first move the normal
projections of the vectord, B on two edges of the triangle into their common vertex and define a
contribution from this vertex’ to the inner product as:
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AkJ—ZBkJ—Z + Akj—lBkJ—l + (AkJ—ZBk/—l + Akj—lBkJ—Z) COS@J
sin2¢p’

(A, B);y =

The inner product at the triangles then given by:

1

3
(A, B); = e ;(A, B) sVNs (4)

whereVN;, are the unknown weights in the trianglassociated with the vertgX. One can easily verify
that (4) really defines a inner product, it is symmetric, linear and positivd fer B £ 0.

3.1. General cell

Before proceeding to weightéN;,, let's describe a general triangle on which we will be working. We
consider a general triangle with verticgs, y;), I = 1, 2, 3 with the following triangle quantities:

e weightsVN,, I = 1, 2, 3 of vertex/ appearing in the inner product (4); we require the sum of these
weights to be the volume of the triangle= VN; + VN, + VN3;

e edge lengths;, [ = 1, 2, 3 are given by, = /(x;32 — x11)2 + (Vir2 — yi1)? (With cyclic extension
X4 = X1, etc.);

e anglesy;, I =1, 2, 3 for which

(o1 — x0) O — xp42) + Vi — YD — Yi42) |
cosy; = :

$141514-2

e outer normals to the edges [ = 1, 2, 3, n; = (nix, niy)

Yi+2 = i+l Xi41 — X422
Ix = ) nly = ’
S S

e function valuesy;, I = 1, 2, 3 at centers of edges;
o function value inside the triangle. = (u1 + up + u3)/3.

3.2. Wkights evaluation
The divergence theorem applied to our triangle:

/dindeyg (w, n)dS
v v

gives us the operator DIV of discrete divergence:

13
DIVw=— w;s
V; 181

The Gauss theorem applied to our triangle:

/udiv de—I—f(w, grad u)dV = ygu(w, n)dsS (5)
1% 1%
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with traditional inner product (4) results in:

VN,
uc(wis1 + woso + wasz) + sin2<p [Gowa + Gawz 4+ (Gows + G3wz) COSe1]
1
VN,
sin2¢p,
VN3
sin2¢p3

[Giw1 + Gaws + (Giwsz + G3w;y) COSys] (6)

[lel + Gows + (Grwo + Gowy) COS(pg] = uq1w181 + Uoswasz + uzwsass

whereG,; = (grad u, n)), w;, = (w, n;), [ = 1, 2, 3 are projections ofrad u andw to the outer normals
of the edges of the triangle. Thi. (6)holds for any vectow, for anyw;, I = 1, 2, 3 so the coefficient
of eachw;, in (6) has to be zero:

VN2 VN3
(e — up)s1 + . (G1+ G3 cosypy) + p (G1+ G, cosp3) =0
2 3

sin? sin?
N N
(1 — u2)s2 + sinsz -(Gz+ Gs cospy) + Sinzf’ps(Gz + G1 cOSg3) =0 ()

N
(e — uz)sz + jp (G3+ G, cosypy) +
1

VN, (G3 + G1 COSpy) = 0
sin2 L 1 COSp2) =

sin2

We require producing exact gradients for linear functiers/ our method. So, we try to find unknown
weightsV;, [ = 1, 2, 3so thatg. (7)are fulfilled for two particular linear functions= X andu = Y (we

use capital X, Y) to denote our coordinate system to distinguish from parameterssed later). For the
functionu = X, the exact values of the gradient projected on the outer normaaten), [ = 1, 2, 3;

the values ofi at the centers of edges are= (x;;1 + x;1.2) /2. After substitutions of these and the above
mentioned expressions for the normaljs edge lengths; and anglesy, into (7), we obtain a system

of three linear equations for the three weigkfts; with only six parameters;, y;,I = 1, 2, 3. Doing

the same for the functiom = Y with gradient projections;; = nyy, [ = 1, 2, 3 gives us another three
linear equations for the weightéN,. So, in total we have a system of six linear equations for the three
unknown weightd/N,, I = 1, 2, 3. Fortunately these equations are dependent, leaving after elimination
three linearly independent equations with unique solution:

1 %4
VN, = é(xl(yZ — y3) +x2(y3 — y1) + x3(y1 — y2)) = §’l =123

So, the value of all the weights is the same, namely one-third of the volume of the triangle. At the
same time, the above requirement that the volume of the triangle is equal to the sum of the weights is
fulfilled automatically. Deriving the system of six linear equations and solving it is quite an easy task for
a computer algebra system.

4. General inner product of vector functions

We have the standard inner product for vector functions with the weights computed in the previous
section yielding the standard support operator (SO) method which is exact for linear functions. There
might, however, exist another inner product resulting in another SO method which is also exact for linear
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Fig. 2. General triangle and its local quantities.

functions and has better properties than the standard SO method. So, let’s try to derive a general inne
product which gives a SO method which is exact on linear functions.
A general discrete inner product of vector grid functiehsB on a triangle can be written as:

(A,B)y =(M-A)-B (8)
whereM is a symmetric positive definite matrix:

mi1 mip Mmi3
M= | mip myp my3 9

miz m23 mas3

Applying the Gauss theore(B) to our triangle as in the previous section, we obtain an analog of equation
(6) involving the matrixM elementsn), instead of coefficients involving the angles As again this
eqguation is a linear combination of three components of the arbitrary vectibthas to hold for any
values of these components, so the three coefficients of these components must be zero giving us th
three equations:

(uc—u1)s1+V(imi11G1 + m12Go + m13Gs) = 0,
(e — uz)s2 + V(m12G1 + maGo 4+ ma3Gsz) = 0, (10)
(e — uz)s3 + V(imaG1 + mo3Go + m33Gz) =0,

where againG;,/ = 1, 2, 3 are projections of the gradiegtad u on the normals to the edges of the
triangle: G, = (gradu, n)),l = 1, 2, 3. In the following, we will use a special Cartesian coordinate
system(X, Y) to describe our general triangle shownFiy. 2 as simply as possible. First we choose
edge 3 as the longest edge of the triangle and puktkbeordinate axis on this edge, so that the vertex

3 is above theX-axis, i.e. it has positivd’ coordinate. Now we put the left vertex 1 on tieaxis

at the origin. In such a moved and rotated coordinate system, the three vertices of the triangle have
coordinateg0, 0), (X», 0), (X3, Y3). For the remaining three parameters defining the triangle, we denote
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X3 =x, Y3 =y, X, = z, so that the triangle has verticés 0), (z, 0), (x, y). From our construction, it
follows that 0< x < z,0 < y < z (z is the length of the longest edge). The volume of this triangle is
V = yz/2, the edge lengths ase = /(x — 2)2 + y2, s2 = /x2 + y2, s3 = z and the outer normals are

ni = (y/sla (Z - x)/S]_), n; = (_y/SZa X/SZ), n3 = (O’ _1)
Using the above values in (10) with being the average of the three valugd = 1, 2, 3 on the edges,
we obtain for the two linear casas= X andu = Y the system:

—(x 4 2)s1 + 3yz(myni + maono) =0

(—x + 27)s2 + 3yz(maony, + moona,) =0

(2x — 2) + 3y(myanic + moznz) =0

—Ys1 + 3z(miana(z — x) — magnax —magy) =0

—YS + 3z(mion1(z — x) — maznax — mozy) =0

2y + 3(myan1,(z — x) — magnax — mazy) =0
with additional constraints defining parametersso, ny,, no.:

si—(x—z)z—y2:0

s% — x> —y*=0

nf, (¥’ +(x—27?—y*=0

n3 (y>+x%) —y>=0
So, we have a system of six linear equations for the six unknewnsni,, mi3, moo, mos, maz. One of
the equations in this system is linearly dependent on the others and the system has the general solution:
(= 229)x + * 4 29 (x + 2)52 + Bmaps1)y’z

mii

352y%z
—((y + 2)(y — 2) + x%)s152 + 3m1py?z?
miz = 5
3s2y°z
—(x? + y?)(x — 22)s1 + 3m1252y°z
mopo = (11)
3S1y22
—(x? = 2x2+ y?)s152 + 3m12y°z?
3S1y Z
((x — 2)x + y? + 225182 + 3m12y%2?
maz =

3s152)?

with m1, remaining as a free parameter. Again, deriving and solving this system is an easy task for
computer algebra. One does need to be careful using additional constraints, and making the final results
compact is a bit tricky.
The matrixM (9) has to be positive definite, otherwise (8) would not be an inner product. The Sylvester
criterion for positive definiteness of the mati#k produces the inequalities:
nip > 0
mi1moo — miz >0

2 2 2
M11MoMm33 + 2m1omozmy3 — MooMis — M11M5ss — mMazmi, > 0
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We substitute the above general solution into these three inequalities, which after simplification involving
the definitions ok, ands,, factorize. Leaving out positive factors, the simplified inequalities are:

x+2z+3Mpz >0 (12)
—(x4+2)(x —27) + M1, > 0 (13)
—y? — (x+2)(x — 22) + M1z > 0 (14)

whereM1» = m12y?/(s152). It is obvious that the third inequality implies the second one £4)13). To
prove that the second inequality implies the first one £&3}12), we have used quantifier elimination
by QEPCAD]I6,7] which proved that:

VM1VxVzZ[(LY A0 <x<z2)Az>0]= (12

is true. We now have (143> (13) = (12), so all three inequalities hold if and only if the third inequality
(14) holds. The inequality (14) defines a minimal vatg" of the parameteti;,, S0 we have M1 =

m12y?/(s152)):

min _ 5152 <1+ (x+2)(x — ZZ))

Mz > Myp = 92 32

We introduce a positive parameter:

d=mp—m7y' >0

yielding a family of inner products depending on the paraméter O which all produce an exact
gradient for linear functions. We can try to use this free parameter to improve some other property of
the support operator method defined by this inner product. The standard support operator (SSO) innel
product described in th&ection 3elongs to this family with:

o= (1 57)
which gives us the corresponding value of the paraméter

4SSO _ 25152 14 X2 — xz+ 72
- 972 yz

! Quantifier elimination (QE) is a procedure which transforms the formula:
01x1 € R, Q2x2 € R, ..., Owxx € R, Flxy,..., Xm),

wherem >k, Q;,i = 1,..., k are quantifiers/ (for all) or 3 (there exists) and- is an arbitrary logical combination of
polynomial equations and inequalities in the real variables- - , x,,, into the equivalent formula which does not contain any
quantifier and contains only non-quantified variablgs, - - - , x,, and is again a logical combination of polynomial equations
and inequalities.
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4.1. Better accuracy

The first property which we would like to improve by changing the paraméteithe accuracy, and
one improvement in the accuracy would be the exact resolution of gradients of higher order terms starting
with quadratic functions. We have tried to repeat our analysis with the matrix elements (11) for two
quadratic functions = X2, u = Y2 and a bilinear functiom = XY, however, we found that there is no
inner product in our family which would be exact for quadratic or bilinear functions. So there is no inner
product which would allow the SO method to exactly resolve the gradients of both linear and quadratic
functions.

On the other hand, we can try to improve the approximation error of the SO method. We know the
exact gradienG® and we can symbolically evaluate the approximate gradiéritom equations derived
from the Gauss theorem (10) with matix elements given by (11). The gradient erroRis= G° — G?,
and we evaluate its norm in the inner product (8) given by matriwith elements (10) as:

IIR|3, = (R,R)yy = (M -R)-R

To simplify the formulas, we will here and in the following consider a special case of our triangle with
z = 1, so the triangle vertices a(®, 0), (1, 0), (x, y) with the longest edge on thé-axis (i.e., we scale
the triangle(0, 0), (z, 0), (x, y) by 1/z, so thatt = x/z, y = y/z) and in the following we will skip the
hats overx, y, so that our triangle now i€, 0), (1, 0), (x, y) with0 < x < 1,0 < y < 1. Any triangle
can be transformed to this triangle by translation, rotation and scaling.

For the quadratic function = X2, the norm of the gradient error, after performing all the necessary
symbolic computation, is:

1
IR|[3, = W{Sadsly“ + 52[3(3(9y* + 2+ 25%)s5 — (57y* + 23)y°)s7
1

— (53 — 255 + 4y* + 1)(9s5 — 85y7)]}
The gradient error is linear in the parametevith a positive coefficient for this parameter, so itis linearly

increasing withi. For the quadratic functiom = Y2, we get a similar result with the gradient error norm
|| R||3, increasing linearly withi. For the bilinear functiom = XY, the gradient error is:

, (53— 3y?) (s — 3y?) + 6)?
IRIZ, = e

and does not depend on the paramétén general, the parametér> 0 is positive and to achieve better
accuracy on quadratic functions (i.e., better approximation of second derivatives), we should choose very
smalld.

4.2. Condition number of the local matrix

Solving the equations (10) for the gradient componéhts = 1, 2, 3, we need to invert the matrid
(11). Let us look at the condition number of the matyikwhich should give us some measure of how
easy or hard it should be to numerically solve a linear system involMng@he condition number af/
is defined as:

C(M) = [|M]|- [IM7Y|
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The condition number of any matrix is greater than or equal to one and will be big for an ill-conditioned
matrix. To evaluate the condition number, we use the matrix Frobenius norm:

2 2
M7= "m}
ij

Now the issue is how the condition numh@g/) of the matrix (11) depends on the free parameters
andd? After performing all the necessary symbolic computation, we find:

[|M||? = apd? + a1d + ao

by by
MY2=—"+=+b
1M1 = 22+ 2 4 by .
C2(M) = (apd? + ard + ao) (—di + —dl + bo)

where the coefficients,, b,, n = 1, 2, 3 are rational functions depending only oy, s; ands, (we are
still using the triangle with vertice€, 0), (1, 0), (x, y)). It is important to note that the coefficients
andb, are positive, so that for very small and very latbine condition number grows without bound. As
an example, we present the special case for the trianglewitt, y = 1, z = 1 for which the condition
number is:

81042 + 18V/2d + 25
16242

Fig. 3 shows for this triangle the dependence of the condition nuraBeir) on the free parametet,

with the value of the parametérfor standard inner product of this triangl€5° = 44/2/9 ~ 0.6285.

We see that for the traditional inner product(M)|,_ssso ~ 5.1 while C?(M) has minimum value
C?(M)|4=4, ~ 3.9 atdy ~ 0.27. So the matrix (11) is better conditioned féy than for 455° and
according to the accuracy analysis in the previous section it should also produce a more accurate solution

2
CA(M) = a1 (324d% + 9v/2d + 53)

10

C*(M)

3

0 01 02 03 04 05 06 0.7 08 09 1
d 4SSO

Fig. 3. Dependence of the condition numig&(M) on the free parametet for the triangle with verticeg0, 0), (1, 0), (0, 1)
with the value of75SCfor the standard inner product marked.
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Numerical solution of the linear system involvii behaves best for a minimal condition numlggn?).
To minimizeC(M), we can try to solve:

dC?(m)

dd

for the free parametet, however, it does not have a symbolic solution. The second derivativé(af)
is:

0

dZCZ(M) _ 4cg + 125150c1d + 1749@4C4d4
ddz 2187d4s1s5y*

(15)

with coefficientscg, c1 andc4 being reasonably dense polynomialsxiand y only, with total degrees

20, 16 and 8, respectively, which cannot be factored. Using quantifier elimination by QEPCAD, we have
proved that for any, y all three coefficientsyg, c1, c4 are non-negative, and ds> 0, also the second
derivative (15) is always non-negative. Therefore, the first derivative is monotonically increasing from
negative to positive values and has one wiofor d > 0. This means that the condition numig&i( M)

has only one local minimum faf > 0 which will be its global minimum (fol > 0) and numerical
minimization of C2(M) must converge to this global minimum.

5. Computer algebra aspects

Computer algebra systems have allowed us to perform tedious algebra during our analysis. Simple
tasks which we performed, such as simplification, substitution or solution of a system of linear equations
are supported by any general computer algebra system (we have used [B¢cmcEMaplg9]).

More complicated is the treatment of inequalities which are not supported well in general computer
algebra systems yet. Many problems involving inequalities as equivalence of inequalities or proving
inequalities can be easily stated as quantifier elimination (QE) problems as mentioned earlier. We have
used this approach in our analysis and quantifier elimination has provided us sufficient capabilities for
treating inequalities. For QE, we have used the program Quantifier Elimination by Partial Cylindrical
Algebraic Decomposition (QEPCAD), written by Hong and co-work@y8], which is the best complete
QE program implemented up to now. The only problem with using this general QE program is its very
high complexity (it is double exponential in the number of variables) which limits its usage to problems
involving only few variables. However, we often succeeded in transforming our QE problems into QE
problems with less variables which were solvable by QEPCAD. More information on QE can be found
in [10] and on its applications ifi1].

6. Conclusion

We have shown that the weights in the standard inner product of vector grid functions need to be
equal to one-third of the volume of the triangle, otherwise the support operator method will not produce
exact gradients for linear functions. The general inner product of vector grid functions has been proposed
and analyzed. The requirement of producing exact gradients for linear functions by the support operator
method restricts the general inner product to a one parameter family of inner products. The positive
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free parameter can be used to improve another property of the discrete method. We have shown that th
accuracy of the method for quadratic functions improves with a decrease in this parameter, however, at
the same time, the condition number of the maMixthe local matrix of the linear system for computing

the discrete gradient, increases to infinity when the parameter goes to zero. On the other hand, there exisi
a unigue minimum of the condition number for which the matxwill be conditioned best from the
family of inner products.

We have shown that by choosing an appropriate inner product, the accuracy and the condition numbel
of the local system of equations for the gradient can be improved when compared with the standard
inner product. However, a more important issue for us is not how much the gradient improves, but how
much the inner product can improve the accuracy of the solution of Laplace’s equation and how it will
affect properties of the global system of linear equations. Another question for us is what is the best way
to create a vector inner product for a quadrilateral in 2D and logical bricks in three dimensions. These
guestions will be addressed in our future work by using a combination of numerical and analytical tools.
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