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Abstract

The support operator method designs mimetic finite difference schemes by first constructing a discrete divergence
operator based on the divergence theorem, and then defining the discrete gradient operator as the adjoint operator
of the divergence based on the Gauss theorem connecting the divergence and gradient operators, which remains
valid also in the discrete case. When evaluating the discrete gradient operator, one needs to define discrete inner
products of two discrete vector fields. The local discrete inner product on a given triangle is defined by a 3× 3
symmetric positive definite matrixM defined by its six independent elements–parameters. Using the Gauss theorem
over our triangle, we evaluate the discrete gradient in the triangle. We require the discrete gradient to be exact for
linear functions, which gives us a system of linear equations for elements of the matrixM. This system, together
with inequalities which guarantee positive definiteness of the matrixM, results in a one parameter family of inner
products which give exact gradients for linear functions. The traditional inner product is a member of this family. The
positive free parameter can be used to improve another property of the discrete method. We show that accuracy of the
method for quadratic functions improves with decreasing this parameter, however, at the same time, the condition
number of the matrixM, which is the local matrix of the linear system for computing the discrete gradient, increases
to infinity when the parameter goes to zero, so one needs to choose a compromise between accuracy and solvability
of the local system. Our analysis has been performed by computer algebra tools which proved to be essential.
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1. Introduction

Themimetic finite difference methods [1–3] for discretizing partial differential equations take advantage
of the fact that most partial differential equations of importance in mathematical physics and engineering
can be formulated in terms of the invariant differential operators divergence, gradient, and curl. They
provide a systematic approach to spatial differencing of partial differential equations by constructing
discrete analogs of these invariant operators thatexactly satisfy discrete analogs of important differen-
tial and integral identities satisfied by the invariant continuum operators. From the discrete identities,
in direct analogy with the continuum, one can then deriveexact discrete conservation laws andexact
analogs of other important physical principles, which in turn assure the stability and robustness of these
methods.

For example, for discretizing the Laplace equation the main steps are: choose a discretization of the
scalar and vector fields; choose a discretization for the divergence (div); then choose discrete inner
products for discrete scalar and vector fields; and then use a discrete analog of theDivergence Theorem
to determine the discrete gradient (grad). The Divergence theorem says that:∫

Ω

div �v f dV +
∫
Ω

�v gradf dV =
∫
∂Ω

f �v · �ndS (1)

whereΩ is some smooth region,∂Ω the boundary of the region,�n an outward normal to the boundary,
f a smooth scalar function defined on the closure of the region, and�v a smooth vector field defined on
the closure of the region (see[2]). So, if f andg are scalar fields and if�v and �w are vector fields, then
relevant continuum inner products for scalars and vectors are:

〈f, g〉 =
∫
Ω

f g dV, 〈�v, �w〉 =
∫
Ω

�v · �wdV, (2)

and then (1) can be written as:

〈div �v, f 〉 + 〈�v, grad f 〉 =
∫
∂Ω

f �v · �ndS (3)

Previously, natural geometric ideas have been used to discretize these inner products, while standard
finite-volumes are used to discretize the divergence. The discrete analog of the gradient is derived from
the discrete analog of (3).

There are some theoretical and numerical results on how accuracy of the mimetic methods depends
on accuracy of the inner products,[4,5]. However, this question require additional investigations. In
particular, an important question is how the accuracy of the gradient depends on the accuracy of the inner
products and the accuracy of the divergence. Another important practical question is how definition of
the inner product affects the process of solving the linear system corresponding to mimetic discretization.

The global inner product in mimetic finite difference methods is assembled from inner products for
each cell. In this paper, we are considering an inner product for one triangular cell. We analyze how
the inner product affects the accuracy of the gradient and the condition number of the system of linear
equations for the gradient. From a formal point of view, the inner product is a symmetric positive definite
bilinear form. The analysis of the inner product is performed using symbolic manipulations.

The rest of the paper is organized as follows:Section 2introduces discretization of scalar and vector
functions on an unstructured triangular grid; inSection 3standard inner products are defined and weights
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Fig. 1. (a) Trianglei and quantities related to it. (b) ComponentsWkn, n = 1,2,3 of vector grid functionW kn , n = 1,2,3 are at
the center of edges as projections to the edge normals.

appearing in them are derived; inSection 4we analyze the general inner product; and inSection 5we
mention computer algebra tools used in our analysis.

2. Scalar and vector functions on a triangular grid

A triangular grid consists ofNt triangles. For numbering of the triangles, vertices and edges we will use
indicesi, j, k, respectively. Each triangle has three verticesjn, n = 1,2,3, three edgeskn, n = 1,2,3,
three midpoints of the edgesln, n = 1,2,3, and at the verticesjn the triangle has angleϕn between two
edgeskn−2 andkn−1 as shown atFig. 1(a). Wherever needed here and in the rest of the paper, cyclic
extension for triangle quantities indexing is assumed, so that, e.g. index 0 means 3 or index 4 means 1.
Each internal edge belongs to two triangles and each boundary edge belongs to only one triangle. The
grid hasNeb boundary edges andNe edges in total.

A scalar function is represented on a triangular grid by its value inside each trianglei and on each
boundary edgek. A vector function is represented at the center of each edge by its projection on the edge
normal as shown inFig. 1(b).

3. Standard inner products

The natural inner product of scalar functionsU,V on the spaceHC of scalar grid functions is defined
by:

(U, V)HC =
Nt∑
i=1

UiViVCi +
Neb∑
k=1

UkVkSk

whereUi, Vi are values of scalar functions in the trianglei, Uk, Vk are values at the center of boundary
edgek, VCi is the area of trianglei andSk is the length of the boundary edgek.

For the natural inner product of vector grid functionsA,B on the trianglei, we first move the normal
projections of the vectorsA,B on two edges of the triangle into their common vertex and define a
contribution from this vertexjJ to the inner product as:
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(A,B)jJ = AkJ−2BkJ−2 + AkJ−1BkJ−1 + (AkJ−2BkJ−1 + AkJ−1BkJ−2) cosϕJ

sin2ϕJ

The inner product at the trianglei is then given by:

(A,B)i = 1

VCi

3∑
J=1

(A,B)jJVNjJ (4)

whereVNjJ are the unknown weights in the trianglei associated with the vertexjJ . One can easily verify
that (4) really defines a inner product, it is symmetric, linear and positive forA = B �= 0.

3.1. General cell

Before proceeding to weightsVNjJ , let’s describe a general triangle on which we will be working. We
consider a general triangle with vertices(xl, yl), l = 1,2,3 with the following triangle quantities:

• weightsVNl, l = 1,2,3 of vertexl appearing in the inner product (4); we require the sum of these
weights to be the volume of the triangleV = VN1 + VN2 + VN3;

• edge lengthssl, l = 1,2,3 are given bysl =
√
(xl+2 − xl+1)2 + (yl+2 − yl+1)2 (with cyclic extension

x4 = x1, etc.);
• anglesϕl, l = 1,2,3 for which

cosϕl = (xl+1 − xl)(xl − xl+2)+ (yl+1 − yl)(yl − yl+2)

sl+1sl+2
;

• outer normals to the edgesnl, l = 1,2,3, nl = (nlx, nly)

nlx = yl+2 − yl+1

sl
, nly = xl+1 − xl+2

sl
;

• function valuesul, l = 1,2,3 at centers of edges;
• function value inside the triangleuc = (u1 + u2 + u3)/3.

3.2. Weights evaluation

The divergence theorem applied to our triangle:∫
V

div w dV =
∮
∂V

(w,n)dS

gives us the operator DIV of discrete divergence:

DIV w = 1

V

3∑
l=1

wlsl

The Gauss theorem applied to our triangle:∫
V

udiv wdV +
∫
V

(w, grad u)dV =
∮
u(w,n)dS (5)
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with traditional inner product (4) results in:

uc(w1s1 + w2s2 + w3s3)+ VN1

sin2ϕ1
[G2w2 +G3w3 + (G2w3 +G3w2) cosϕ1]

VN2

sin2ϕ2
[G1w1 +G3w3 + (G1w3 +G3w1) cosϕ2]

VN3

sin2ϕ3
[G1w1 +G2w2 + (G1w2 +G2w1) cosϕ3] = u1w1s1 + u2w2s2 + u3w3s3

(6)

whereGl = (grad u,nl), wl = (w,nl), l = 1,2,3 are projections ofgrad u andw to the outer normals
of the edges of the triangle. ThisEq. (6)holds for any vectorw, for anywl, l = 1,2,3 so the coefficient
of eachwl in (6) has to be zero:

(uc − u1)s1 + VN2

sin2ϕ2
(G1 +G3 cosϕ2)+ VN3

sin2ϕ3
(G1 +G2 cosϕ3) = 0

(uc − u2)s2 + VN1

sin2ϕ1
(G2 +G3 cosϕ1)+ VN3

sin2ϕ3
(G2 +G1 cosϕ3) = 0

(uc − u3)s3 + VN1

sin2ϕ1
(G3 +G2 cosϕ1)+ VN2

sin2ϕ2
(G3 +G1 cosϕ2) = 0

(7)

We require producing exact gradients for linear functionsu by our method. So, we try to find unknown
weightsVl, l = 1,2,3 so thatEq. (7)are fulfilled for two particular linear functionsu = X andu = Y (we
use capital(X, Y) to denote our coordinate system to distinguish from parametersx, y used later). For the
functionu = X, the exact values of the gradient projected on the outer normal areGl = nlx, l = 1,2,3;
the values ofu at the centers of edges areul = (xl+1 + xl+2)/2. After substitutions of these and the above
mentioned expressions for the normalsnl, edge lengthssl and anglesϕl into (7), we obtain a system
of three linear equations for the three weightsVNl with only six parametersxl, yl, l = 1,2,3. Doing
the same for the functionu = Y with gradient projectionsGl = nly, l = 1,2,3 gives us another three
linear equations for the weightsVNl. So, in total we have a system of six linear equations for the three
unknown weightsVNl, l = 1,2,3. Fortunately these equations are dependent, leaving after elimination
three linearly independent equations with unique solution:

VNl = 1

6
(x1(y2 − y3)+ x2(y3 − y1)+ x3(y1 − y2)) = V

3
, l = 1,2,3

So, the value of all the weights is the same, namely one-third of the volume of the triangle. At the
same time, the above requirement that the volume of the triangle is equal to the sum of the weights is
fulfilled automatically. Deriving the system of six linear equations and solving it is quite an easy task for
a computer algebra system.

4. General inner product of vector functions

We have the standard inner product for vector functions with the weights computed in the previous
section yielding the standard support operator (SO) method which is exact for linear functions. There
might, however, exist another inner product resulting in another SO method which is also exact for linear
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Fig. 2. General triangle and its local quantities.

functions and has better properties than the standard SO method. So, let’s try to derive a general inner
product which gives a SO method which is exact on linear functions.

A general discrete inner product of vector grid functionsA,B on a triangle can be written as:

(A,B)M = (M · A) · B (8)

whereM is a symmetric positive definite matrix:

M =



m11 m12 m13

m12 m22 m23

m13 m23 m33


 (9)

Applying the Gauss theorem(5) to our triangle as in the previous section, we obtain an analog of equation
(6) involving the matrixM elementsmln instead of coefficients involving the anglesϕl. As again this
equation is a linear combination of three components of the arbitrary vectorw, it has to hold for any
values of these components, so the three coefficients of these components must be zero giving us the
three equations:

(uc−u1)s1+V(m11G1 +m12G2 +m13G3) = 0,

(uc − u2)s2 + V(m12G1 +m22G2 +m23G3) = 0, (10)

(uc − u3)s3 + V(m13G1 +m23G2 +m33G3) = 0,

where againGl, l = 1,2,3 are projections of the gradientgrad u on the normals to the edges of the
triangle:Gl = (grad u,nl), l = 1,2,3. In the following, we will use a special Cartesian coordinate
system(X, Y) to describe our general triangle shown inFig. 2 as simply as possible. First we choose
edge 3 as the longest edge of the triangle and put theX coordinate axis on this edge, so that the vertex
3 is above theX-axis, i.e. it has positiveY coordinate. Now we put the left vertex 1 on theX-axis
at the origin. In such a moved and rotated coordinate system, the three vertices of the triangle have
coordinates(0,0), (X2,0), (X3, Y3). For the remaining three parameters defining the triangle, we denote
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X3 = x, Y3 = y,X2 = z, so that the triangle has vertices(0,0), (z,0), (x, y). From our construction, it
follows that 0≤ x ≤ z,0 < y ≤ z (z is the length of the longest edge). The volume of this triangle is
V = yz/2, the edge lengths ares1 =

√
(x− z)2 + y2, s2 =

√
x2 + y2, s3 = z and the outer normals are

n1 = (y/s1, (z− x)/s1),n2 = (−y/s2, x/s2),n3 = (0,−1).
Using the above values in (10) withuc being the average of the three valuesul, l = 1,2,3 on the edges,

we obtain for the two linear casesu = X andu = Y the system:

−(x+ z)s1 + 3yz(m11n1x +m12n2x) = 0

(−x+ 2z)s2 + 3yz(m12n1x +m22n2x) = 0

(2x− z)+ 3y(m13n1x +m23n2x) = 0

−ys1 + 3z(m11n1x(z− x)−m12n2xx−m13y) = 0

−ys2 + 3z(m12n1x(z− x)−m22n2xx−m23y) = 0

2y + 3(m13n1x(z− x)−m23n2xx−m33y) = 0

with additional constraints defining parameterss1, s2, n1x, n2x:

s21 − (x− z)2 − y2 = 0

s22 − x2 − y2 = 0

n2
1x(y

2 + (x− z)2)− y2 = 0

n2
2x(y

2 + x2)− y2 = 0

So, we have a system of six linear equations for the six unknownsm11,m12,m13,m22,m23,m33. One of
the equations in this system is linearly dependent on the others and the system has the general solution:

m11 = ((x− 2z)x+ y2 + z2)(x+ z)s2 + 3m12s1y
2z

3s2y2z

m13 = −((y + z)(y − z)+ x2)s1s2 + 3m12y
2z2

3s2y2z

m22 = −(x2 + y2)(x− 2z)s1 + 3m12s2y
2z

3s1y2z

m23 = −(x2 − 2xz + y2)s1s2 + 3m12y
2z2

3s1y2z

m33 = ((x− z)x+ y2 + z2)s1s2 + 3m12y
2z2

3s1s2y2

(11)

with m12 remaining as a free parameter. Again, deriving and solving this system is an easy task for
computer algebra. One does need to be careful using additional constraints, and making the final results
compact is a bit tricky.

The matrixM (9) has to be positive definite, otherwise (8) would not be an inner product. The Sylvester
criterion for positive definiteness of the matrixM produces the inequalities:

m11 > 0

m11m22 −m2
12 > 0

m11m22m33 + 2m12m23m13 −m22m
2
13 −m11m

2
23 −m33m

2
12 > 0
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We substitute the above general solution into these three inequalities, which after simplification involving
the definitions ofs1 ands2, factorize. Leaving out positive factors, the simplified inequalities are:

x+ z+ 3M12z > 0 (12)

−(x+ z)(x− 2z)+ 9M12z
2 > 0 (13)

−y2 − (x+ z)(x− 2z)+ 9M12z
2 > 0 (14)

whereM12 = m12y
2/(s1s2). It is obvious that the third inequality implies the second one (14)⇒ (13). To

prove that the second inequality implies the first one (13)⇒ (12), we have used quantifier elimination1

by QEPCAD[6,7] which proved that:

∀M12∀x∀z[(13) ∧ (0 ≤ x ≤ z) ∧ z > 0] ⇒ (12)

is true. We now have (14)⇒ (13)⇒ (12), so all three inequalities hold if and only if the third inequality
(14) holds. The inequality (14) defines a minimal valuemmin

12 of the parameterm12, so we have (M12 =
m12y

2/(s1s2)):

m12 > m
min
12 = s1s2

9z2

(
1 + (x+ z)(x− 2z)

y2

)

We introduce a positive parameter:

d = m12 −mmin
12 > 0

yielding a family of inner products depending on the parameterd > 0 which all produce an exact
gradient for linear functions. We can try to use this free parameter to improve some other property of
the support operator method defined by this inner product. The standard support operator (SSO) inner
product described in theSection 3belongs to this family with:

mSSO
12 = s1s2

3z2

(
1 + x(x− z)

y2

)

which gives us the corresponding value of the parameterd:

dSSO= 2s1s2
9z2

(
1 + x2 − xz + z2

y2

)

1 Quantifier elimination (QE) is a procedure which transforms the formula:

Q1x1 ∈ R,Q2x2 ∈ R, . . . ,Qkxk ∈ R, F(x1, . . . , xm),

wherem ≥ k, Qi, i = 1, . . . , k are quantifiers∀ (for all) or ∃ (there exists) andF is an arbitrary logical combination of
polynomial equations and inequalities in the real variablesx1, · · · , xm, into the equivalent formula which does not contain any
quantifier and contains only non-quantified variablesxk+1, · · · , xm and is again a logical combination of polynomial equations
and inequalities.
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4.1. Better accuracy

The first property which we would like to improve by changing the parameterd is the accuracy, and
one improvement in the accuracy would be the exact resolution of gradients of higher order terms starting
with quadratic functions. We have tried to repeat our analysis with the matrix elements (11) for two
quadratic functionsu = X2, u = Y2 and a bilinear functionu = XY, however, we found that there is no
inner product in our family which would be exact for quadratic or bilinear functions. So there is no inner
product which would allow the SO method to exactly resolve the gradients of both linear and quadratic
functions.

On the other hand, we can try to improve the approximation error of the SO method. We know the
exact gradientGe and we can symbolically evaluate the approximate gradientGa from equations derived
from the Gauss theorem (10) with matrixM elements given by (11). The gradient error isR = Ge − Ga,
and we evaluate its norm in the inner product (8) given by matrixM with elements (10) as:

||R||2M = (R,R)M = (M · R) · R

To simplify the formulas, we will here and in the following consider a special case of our triangle with
z = 1, so the triangle vertices are(0,0), (1,0), (x̂, ŷ) with the longest edge on theX-axis (i.e., we scale
the triangle(0,0), (z,0), (x, y) by 1/z, so thatx̂ = x/z, ŷ = y/z) and in the following we will skip the
hats overx, y, so that our triangle now is(0,0), (1,0), (x, y) with 0 ≤ x ≤ 1,0 < y ≤ 1. Any triangle
can be transformed to this triangle by translation, rotation and scaling.

For the quadratic functionu = X2, the norm of the gradient error, after performing all the necessary
symbolic computation, is:

||R||2M = 1

36s21s2y
2
{36ds1y

4 + s2[3(3(9y2 + 2 + 2s22)s
2
2 − (57y2 + 23)y2)s21

−(s42 − 2s22 + 4y2 + 1)(9s22 − 85y2)]}
The gradient error is linear in the parameterd with a positive coefficient for this parameter, so it is linearly
increasing withd. For the quadratic functionu = Y2, we get a similar result with the gradient error norm
||R||2M increasing linearly withd. For the bilinear functionu = XY, the gradient error is:

||R||2M = (s22 − 3y2)(s21 − 3y2)+ 6y2

4y2

and does not depend on the parameterd. In general, the parameterd > 0 is positive and to achieve better
accuracy on quadratic functions (i.e., better approximation of second derivatives), we should choose very
smalld.

4.2. Condition number of the local matrix

Solving the equations (10) for the gradient componentsGl, l = 1,2,3, we need to invert the matrixM
(11). Let us look at the condition number of the matrixM which should give us some measure of how
easy or hard it should be to numerically solve a linear system involvingM. The condition number ofM
is defined as:

C(M) = ||M|| · ||M−1||
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The condition number of any matrix is greater than or equal to one and will be big for an ill-conditioned
matrix. To evaluate the condition number, we use the matrix Frobenius norm:

||M||2 =
∑
i,j

m2
ij

Now the issue is how the condition numberC(M) of the matrix (11) depends on the free parametersm12

andd? After performing all the necessary symbolic computation, we find:

||M||2 = a2d
2 + a1d + a0

||M−1||2 = b2

d2
+ b1

d
+ b0

C2(M) = (a2d
2 + a1d + a0)

(
b2

d2
+ b1

d
+ b0

)

where the coefficientsan, bn, n = 1,2,3 are rational functions depending only onx, y, s1 ands2 (we are
still using the triangle with vertices(0,0), (1,0), (x, y)). It is important to note that the coefficientsa2

andb2 are positive, so that for very small and very larged the condition number grows without bound. As
an example, we present the special case for the triangle withx = 0, y = 1, z = 1 for which the condition
number is:

C2(M) = 2

81
(324d2 + 9

√
2d + 53)

810d2 + 18
√

2d + 25

162d2

Fig. 3 shows for this triangle the dependence of the condition numberC2(M) on the free parameterd,
with the value of the parameterd for standard inner product of this triangledSSO = 4

√
2/9 ≈ 0.6285.

We see that for the traditional inner productC2(M)|d=dSSO ≈ 5.1 while C2(M) has minimum value
C2(M)|d=d0 ≈ 3.9 at d0 ≈ 0.27. So the matrix (11) is better conditioned ford0 than for dSSO and
according to the accuracy analysis in the previous section it should also produce a more accurate solution.

Fig. 3. Dependence of the condition numberC2(M) on the free parameterd for the triangle with vertices(0,0), (1,0), (0,1)
with the value ofdSSO for the standard inner product marked.
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Numerical solution of the linear system involvingM behaves best for a minimal condition numberC(M).
To minimizeC(M), we can try to solve:

dC2(M)

dd
= 0

for the free parameterd, however, it does not have a symbolic solution. The second derivative ofC2(M)

is:

d2C2(M)

dd2
= 4c0 + 12s1s2c1d + 17496y4c4d

4

2187d4s41s
4
2y

4
(15)

with coefficientsc0, c1 andc4 being reasonably dense polynomials inx andy only, with total degrees
20, 16 and 8, respectively, which cannot be factored. Using quantifier elimination by QEPCAD, we have
proved that for anyx, y all three coefficientsc0, c1, c4 are non-negative, and asd > 0, also the second
derivative (15) is always non-negative. Therefore, the first derivative is monotonically increasing from
negative to positive values and has one rootd0 for d > 0. This means that the condition numberC2(M)

has only one local minimum ford > 0 which will be its global minimum (ford > 0) and numerical
minimization ofC2(M) must converge to this global minimum.

5. Computer algebra aspects

Computer algebra systems have allowed us to perform tedious algebra during our analysis. Simple
tasks which we performed, such as simplification, substitution or solution of a system of linear equations
are supported by any general computer algebra system (we have used Reduce[8] and Maple[9]).

More complicated is the treatment of inequalities which are not supported well in general computer
algebra systems yet. Many problems involving inequalities as equivalence of inequalities or proving
inequalities can be easily stated as quantifier elimination (QE) problems as mentioned earlier. We have
used this approach in our analysis and quantifier elimination has provided us sufficient capabilities for
treating inequalities. For QE, we have used the program Quantifier Elimination by Partial Cylindrical
Algebraic Decomposition (QEPCAD), written by Hong and co-workers[6,7], which is the best complete
QE program implemented up to now. The only problem with using this general QE program is its very
high complexity (it is double exponential in the number of variables) which limits its usage to problems
involving only few variables. However, we often succeeded in transforming our QE problems into QE
problems with less variables which were solvable by QEPCAD. More information on QE can be found
in [10] and on its applications in[11].

6. Conclusion

We have shown that the weights in the standard inner product of vector grid functions need to be
equal to one-third of the volume of the triangle, otherwise the support operator method will not produce
exact gradients for linear functions. The general inner product of vector grid functions has been proposed
and analyzed. The requirement of producing exact gradients for linear functions by the support operator
method restricts the general inner product to a one parameter family of inner products. The positive



66 R. Liska et al. / Mathematics and Computers in Simulation 67 (2004) 55–66

free parameter can be used to improve another property of the discrete method. We have shown that the
accuracy of the method for quadratic functions improves with a decrease in this parameter, however, at
the same time, the condition number of the matrixM, the local matrix of the linear system for computing
the discrete gradient, increases to infinity when the parameter goes to zero. On the other hand, there exists
a unique minimum of the condition number for which the matrixM will be conditioned best from the
family of inner products.

We have shown that by choosing an appropriate inner product, the accuracy and the condition number
of the local system of equations for the gradient can be improved when compared with the standard
inner product. However, a more important issue for us is not how much the gradient improves, but how
much the inner product can improve the accuracy of the solution of Laplace’s equation and how it will
affect properties of the global system of linear equations. Another question for us is what is the best way
to create a vector inner product for a quadrilateral in 2D and logical bricks in three dimensions. These
questions will be addressed in our future work by using a combination of numerical and analytical tools.
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