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SUMMARY

Lagrangian hydrodynamics of strength-free materials continues to present open issues, even in one dimen-
sion. We focus on the problem of closing a system of equations for a two-material cell under the assumption
of a single velocity model. There are several existing models and approaches, each possessing different
levels of fidelity to the underlying physics and each exhibiting unique features in the computed solutions.
We consider three models that take different approaches to breaking the assumption of instantaneous
pressure equilibration in the mixed-material cell. The first of these is the well-known method of Tipton, in
which a viscosity-like pressure relaxation term is coupled with an otherwise isentropic pressure update to
obtain closed-form expressions for the materials’ volume fractions and corresponding sub-cell pressures.
The second is the physics-inspired, geometry-based pressure relaxation model of Kamm and Shashkov,
which is based on an optimization procedure that uses a local, exact Riemann problem. The third model is
the unique aspect of this paper, inspired by the work of Delov and Sadchikov and Goncharov and Yanilkin.
This sub-scale dynamics approach is motivated by the linearized Riemann problem to initialize volume
fraction changes, which are then modified, via the materials’ SIEs, to drive the mixed cell toward pressure
equilibrium. Each of these approaches is packaged in the framework of a two-step time integration scheme.
We compare these multi-material pressure relaxation models, together with corresponding pure-material
calculations, on idealized, two-material problems with either ideal-gas or stiffened-gas equations of state.
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1. INTRODUCTION

Multi-material Lagrangian hydrodynamics of strength-free materials continues to present open
issues. We focus on the problem of closing a system of equations for a two-material cell under the
assumption of a single velocity model. We do not consider Eulerian-frame multi-material models
(e.g. [1, 2]) or the front-tracking approach (e.g. [3]). We assume that the constituents in these
multi-material cells are distinct. Such mixed cells arise in Arbitrary Lagrangian–Eulerian (ALE)
methods [4] with several materials, where the flow field is projected onto a new mesh during the
remap phase, thus rendering a Lagrangian step with a mixed cell unavoidable. We assume that
separate material properties are maintained for each material in a multi-material cell, together
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with the materials’ volume fractions; these values can be used to reconstruct material interfaces
inside a mixed cell. The main challenge is to accurately assign the thermodynamic states of the
individual materials’ components together with the nodal forces that such a zone generates, despite
a lack of detailed information about the velocity distribution within such cells. In particular, for the
calculation of both the equation of state (EOS) and the resulting pressure forces, the calculation
of the internal energy is of paramount importance.

Of the several existing models for this problem, we consider three. Such models form one part
of an overall numerical scheme for solutions to the governing conservation laws. The method of
Tipton [5] is an explicit relaxation model. This approach posits a viscosity-like term that is added
to the pressure of each material in a mixed cell. By enforcing equality of all materials’ augmented
pressures and preservation of volume, explicit solutions for the volume changes are obtained,
with which the states of the mixed cell constituents are updated. The pressure relaxation method
of Kamm and Shashkov [6] is a sub-cell dynamics approach that is based on the instantaneous
pressure-equlibration model of Després and Lagoutière [7], in which the materials’ change in heat
in the mixed cell is assumed equal. Kamm and Shashkov (K&S) replace the instantaneous pressure
equilibration with a relaxation procedure based on an optimization problem that uses the solution
of a local Riemann problem. Another class of methods, using approximate sub-scale dynamics
(SSD), is motivated by the work of Delov and Sadchikov [8] and Goncharov and Yanilkin [9]. One
estimates the velocity of the sub-cell interface between materials, which suggests an approximation
for the volume change of each material. Using this result, the internal energy for each material
is updated separately from its own pdV equation. This internal energy update contains an energy
exchange term between the mixed cell materials, which allows some flexibility in the nature of
the pressure relaxation.

This paper is structured as follows. Section 2 contains a brief review of the basic 1D Lagrangian
hydrodynamics equations and the predictor–corrector schemes we employ to obtain solutions.
In Section 3, we describe the three distinct pressure-relaxation models to be examined: Tipton,
K&S, and SSD. A specification of the test problems and the results for this method are provided
in Section 4, which also contains comparisons with the results of pure-material calculations.
We summarize our findings and conclude in Section 5.

2. ONE-DIMENSIONAL LAGRANGIAN HYDRODYNAMICS

The partial differential equations governing the conservation of momentum and internal energy,
written in the Lagrangian frame of reference, are (see, e.g. Caramana et al. [10]):

�(du/dt)+∇P=0, (1)

�(dε/dt)+P∇ ·u=0. (2)

In these equations, u is the velocity and P= P(�,ε) is the thermodynamic pressure, where ε is
the specific internal energy (SIE) and � is the specific volume, which is given by the inverse of
the mass density � of the fluid. The mass of a fluid parcel is constant, so that � is the volume of
that parcel divided by its mass. In this section, subscripts denote spatial position and superscripts
indicate temporal indexing. In our staggered-mesh discretization, cell-centers (at index i+ 1

2 ) are
associated with cell masses Mi+1/2, cell volumes Vi+1/2, and thermodynamic state variables, such
as density �i+1/2, specific volume �i+1/2, SIE εi+1/2, pressure pi+1/2, and sound speed cs,i+1/2.
The vertices of cell i are associated with edge positions xi and xi+1, edge velocities ui and ui+1,
and node-centered control volume masses mi and mi+1. The volumes are determined from the
edge positions, which evolve according to the trajectory equation,

dxi/dt=ui . (3)

We assume that we have the necessary information to completely specify all state variables at time
tn and seek to update the solution to time tn+1≡ tn+�t , where �t is the timestep. We present two
numerical schemes for integrating the pure-material equations. These schemes are stable under
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the usual constraints, e.g. on the CFL number. Both are nominally second-order accurate in both
space and time for smooth initial conditions and sufficiently short times; the methods invariably
degenerate to first order as discontinuous flow features develop. In the first phase of both methods,
the assignment of the pressure is based on an adiabatic relation, which is more efficient than an
EOS call. The full EOS call in the second phase is retained, to ensure thermodynamic consistency,
conservation, and accuracy at the updated time.

2.1. A two-step algorithm

An integrator based on a two-step method is used in our implementation of Tipton’s and SSD
approaches. Here, certain quantities are first updated to the half-timestep level (H), and then all
flow field quantities are updated to the full timestep (F).

Half -timestep Full-timestep

un+1
i =uni − �t

mi
(pn+1/2

i+1/2 − pn+1/2
i−1/2 ), (4)

xn+1/2
i = xni +(�t/2)·uni , xn+1

i = xni +(�t/2)·(uni +un+1
i ), (5)

V n+1/2
i+1/2 = xn+1/2

i+1 −xn+1/2
i , V n+1

i+1/2= xn+1
i+1 −xn+1

i , (6)

�n+1/2
i+1/2 =V n+1/2

i+1/2 /Mi+1/2, �n+1
i+1/2=V n+1

i+1/2/Mi+1/2, (7)

εn+1
i+1/2=εni+1/2− pn+1/2

i+1/2 �V n+1
i+1/2/Mi+1/2, (8)

pn+1/2
i+1/2 = pni+1/2−

(cns,i+1/2)
2

�ni+1/2

�V n+1/2
i+1/2

V n
i+1/2

, pn+1
i+1/2=P(�n+1

i+1/2,ε
n+1
i+1/2). (9)

In (8F) and (9H ), the change in volume is �V n+ j
i+1/2≡V n+ j

i+1/2−V n
i+1/2 with j=1 or 1

2 , respectively.

2.2. A predictor–corrector algorithm

Our implementation of Kamm and Shashkov’s method uses the following predictor–corrector
(P-C) method, which conserves the momentum and total energy.

Predictor Corrector

un+1,�
i =uni − �t

mi
(pni+1/2− pni−1/2), un+1

i =uni − 1

2

�t

mi
(pni+1/2+ pn+1,�

i+1/2

−pni−1/2− pn+1,�
i−1/2), (10)

un+1/2,�
i = 1

2 (u
n
i +un+1,�

i ), un+1/2
i = 1

2
(uni +un+1

i ), (11)

xn+1,�
i = xni +�t ·un+1/2,�

i , xn+1
i = xni +�t ·un+1/2

i , (12)

V n+1,�
i+1/2 = xn+1,�

i+1 −xn+1,�
i , V n+1

i+1/2= xn+1
i+1 −xn+1

i , (13)

�n+1
i+1/2=V n+1

i+1/2/Mi+1/2, (14)

εn+1
i+1/2=εni+1/2−

1

2

�t

Mi+1/2
(pni+1/2+ pn+1,�

i+1/2)

×(un+1/2
i+1 −un+1/2

i ), (15)

pn+1,�
i+1/2 = pni+1/2−

(cns,i+1/2)
2

�ni+1/2

�V n+1,�
i+1/2

V n
i+1/2

, pn+1
i+1/2=P(�n+1

i+1/2,ε
n+1
i+1/2). (16)

In (16), the change in volume is �V n+1,�
i+1/2 ≡V n+1,�

i+1/2 −V n
i+1/2.
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2.3. Artificial viscosity model

The pressure in these methods (e.g. in (4F), (8F), (10) and (15)) is augmented by an artificial
viscosity to provide additional numerical dissipation, e.g. at shock waves. To calculate the artificial
viscosity qni+1/2, the classical linear-plus-quadratic model, active only in compression, is evaluated
for right-going waves as:

qni+1/2=
{
0 if uni+1−uni �0,

−�1�
n
i+1/2c

n
s,i+1/2(u

n
i+1−uni )+�2�

n
i+1/2(u

n
i+1−uni )

2 otherwise,
(17)

where �1 (∼1) and �2 (∼0.1) are the coefficients of the linear and quadratic contributions, respec-
tively, and �ni+1/2≡1/�ni+1/2. While more sophisticated artificial viscosity models certainly exist
(see, e.g. [11]), the simple model of (17) is sufficient for demonstration purposes.

3. TWO-MATERIAL PRESSURE RELAXATION MODELS

In this section, we describe three different closure models that relax the constituent pressures to
equilibrium in a mixed cell. That is, given an initial state with a discrepancy between the pressures
of material 1 and material 2, we seek a model with which to update the individual materials’
pressures such that the difference between these values approaches zero as time increases, in the
absence of any external forcing.

Conceptually, there is a relaxation operator R that takes as input the thermodynamic states of
the constituent materials at time tn together with values for the overall specific volume and SIE at
time tn+1. This operator returns the states of the individual materials updated to time tn+1 and an
estimate of an updated common cell pressure:

R(�n1,ε
n
1 ,�

n
2,ε

n
2 ;�n+1,εn+1)= [�n+1

1 ,εn+1
1 ,�n+1

2 ,εn+1
2 ; pn+1]. (18)

We now describe different approaches that, in effect, model the relaxation operator R.

3.1. Tipton’s model

For Tipton’s pressure relaxation method [5] with two materials, the pressure of each material is
first updated with an adiabatic approximation (as in (9H )), which includes that material’s unknown
volume change, �V n+1/2

k :

pn+1/2
k = pnk −[(cns,k)

2/�nk ](�V
n+1/2
k /V n

k ), (19)

where here and in the following, subscripts indicate the material, and not the cell index. A third
unknown is the overall half-timestep pressure, pn+1/2, which is identical for all the materials. It
is assumed to equal the sum of each material’s pressure and a unique relaxation term:

pn+1/2= pn+1/2
k +Rn+1/2

k , k=1,2. (20)

The second term on the RHS of (20) is posited to have the following form:

Rn+1/2
k =−(cns,k/�

n
k )(L

n/�t)(�V n+1/2
k /V n

k ), (21)

where Ln is a characteristic length for the mixed cell (e.g. the overall cell size). The above three
relations can be combined into the following equation, for k=1,2:

pn+1/2= pnk − B̃n
k (�V

n+1/2
k /V n

k ) where B̃n
k ≡�ni [(c

n
s,k)

2/�nk ][1+Ln/(cns,k�t)]. (22)
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To close this model, one enforces that the sum of the (unknown) volume changes of all materials
equals the overall volume change of the mixed cell, V n+1/2, which is known from the half-timestep
update (using the expression in (6H ) as �V n+1/2):

�V n+1/2
1 +�V n+1/2

2 =�V n+1/2. (23)

The equalities in (22) and (23) form a linear system of equations in the unknowns �V n+1/2
1 ,

�V n+1/2
2 , and pn+1/2. This system has the closed-form solution, for k=1,2:

�V n+1/2
k = V n

k

B̃n
k

[(pnk − p̄n)+ B̄n(�V n+1/2/V n)], pn+1/2= p̄n− B̄n(�V n+1/2/V n), (24)

where the barred values are the volume-fraction-averaged quantities given by

p̄n ≡
2∑

k=1

(
f nk pnk
B̃n
k

)/
2∑

k=1

(
f nk
B̃n
k

)
and B̄n ≡

[
2∑

k=1

(
f nk
B̃n
k

)]−1

, (25)

with fk as the volume fraction of the kth material. In (24), two mechanisms contribute to �V n+1/2
k :

(i) the difference between the kth material pressure and the ‘averaged’ pressure given by p̄n , and
(ii) the overall volume change of the cell. The kth material volume is related to the overall cell
volume by the volume fraction, i.e. Vk = fkV . This leads to the relation:

� f n+1/2
k = f nk [(p

n
k − p̄n)/B̃n

k ]+ f nk [(B̄
n/B̃n

k )−1](�V n+1/2/V n). (26)

To update to tn+1, we invoke the final assumption, namely, that the individual materials’ volume
changes at tn+1= tn+�t= tn+2 ·(�t/2) equal twice the half-timestep values:

� f n+1
k =2� f n+1/2

k and f n+1
k = f nk +� f n+1

k . (27)

The materials’ volumes, volume changes, and densities are evaluated as:

V n+1
k = f n+1

k V n+1, �V n+1
k =V n+1

k −V n
k and �n+1

k =Mk/V
n+1
k . (28)

As in the overall cell case, the SIE for each material is obtained from the updated pdV work:

εn+1
k =εnk − pn+1/2�V n+1

k /Mk . (29)

Finally, the individual pressures are evaluated consistently with full EOS calls:

pn+1
k =Pk(�

n+1
k ,εn+1

k ). (30)

3.2. Kamm and Shashkov’s model

The approach of Kamm and Shashkov (K&S) models the sub-cell dynamics of the mixed cell
through the local Riemann problem in the multi-material cell over one timestep. The following
description is for a single timestep; a full explanation for a two-step time integrator is given in
[6]. Let the mixed cell be identified by the index imix. The interface between the materials is
determined by the local volume fraction of, say, material 1, given by f1:

xnintfc= xnimix
+ f1(x

n
imix+1−xnimix

)∈ [xnimix
, xnimix+1]. (31)

The two states in this cell at tn are given by:

(�,ε, p,u)=
{
(�1,ε1, p1,u1) if xnimix

<x<xnintfc,

(�2,ε2, p2,u2) if xnintfc<x<xnimix+1.
(32)

The obvious and the simplest choice for the materials’ velocities in 1D is

u1=uimix and u2=uimix+1. (33)
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The exact solution to this one-cell Riemann problem at time tn+1 can be computed for polytropic
gases [12], for stiffened gases [13], and for more general EOS [14].

The key assumption of the K&S approach is as follows: obtain a single updated (i.e. at tn+1)
pressure for each material in the mixed cell that minimizes the discrepancy between that value and
the pressure given by the Riemann problem solution in that material. This relation is expressed
mathematically in the mixed cell as the following optimization requirement:

min

{�n+1
1 ,εn+1

1 ,�n+1
2 ,εn+1

2 }
(‖pn+1

1 − pRP1 ‖2+‖pn+1
2 − pRP2 ‖2). (34)

This problem is subject to the following constraints:

F1≡c1�
n+1
1 +c2�

n+1
2 −�n+1=0, (35)

F2≡c1ε
n+1
1 +c2ε

n+1
2 −εn+1=0, (36)

F3≡εn+1
1 −εn1 +P1(�

n+1
1 −�n1)−[εn+1

2 −εn2 +P2 (�
n+1
2 −�n2)]=0, (37)

where ck is the mass fraction of material k. These equations represent, respectively, the conservation
of mass, balance of internal energy, and equality of the change of heat. The pressures in (37)
are written as Pk to indicate the freedom to specify pnk , p

n+1
k , or 1

2 (p
n
k + pn+1

k ) for this value, as
discussed by Kamm and Shashkov [6]. In (34), pRPk is the pressure, in material k, related to the
solution of the Riemann problem. Reference [6] gives the details on how to obtain solutions to this
optimization problem, together with the motivation as to why this approach can lead to pressure
relaxation.

3.3. Sub-scale dynamics model

An alternate, approximate SSD approach is inspired by the work of Delov and Sadchikov [8] and
Goncharov and Yanilkin [9]. In 1D, the velocity of the sub-cell interface between the materials,
uintfc,§ is given by the linearized Riemann-solver approximation as:

uintfc=
�1cs,1u

−
1 +�2cs,2u

+
2 +(p1− p2)

�1cs,1+�2cs,2
, (38)

where we have superscripted the flow velocities with ‘−’ and ‘+’ to emphasize that these values
are to the immediate left and right of the interface, respectively. Assuming that the velocity varies
linearly within the cell (so that it is continuous at the interface), it is easily shown that

u−
1 =u+

2 = f2u1+ f1u2, (39)

where the unsuperscripted velocities on the RHS of (39) are the values at the cell edges, i.e.
u1=uimix and u2=uimix+1. We substitute these quantities into (38) and simplify to obtain

uintfc= f2u1+ f1u2+ p1− p2
�1cs,1+�2cs,2

. (40)

The corresponding volume changes of the materials in a mixed cell are given by:

�V1= (uintfc−u1)�t, �V2= (u2−uintfc)�t . (41)

§The quantity uintfc is the velocity of the interface, and not the flow velocity at the interface.
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Substituting (40) into (41) provides the following expressions for the volume changes:

�V1= f1�V + p1− p2
�1cs,1+�2cs,2

�t, �V2= f2�V − p1− p2
�1cs,1+�2cs,2

�t, (42)

where the volume change of the entire cell over the timestep, �V , is substituted for (u2−u1)�t .
Prompted by this result, we write the mixed-cell predictor volume update as

�V n+1/2
1 = f n1 �V n+1/2+ pn1 − pn2

�n1+�n2
(�t/2), �V n+1/2

2 = f n2 �V n+1/2− pn1 − pn2
�n1+�n2

(�t/2), (43)

where �n
k =�nk c

n
s,k , k=1,2. We update the materials’ volumes, volume fractions, and pressures:

V n+1/2
k =V n

k +�V n+1/2
k , f n+1/2

k = V n+1/2
k

V n+1/2 , pn+1/2
k = pnk − (cns,k)

2

�nk

�V n+1/2
k

V n
k

. (44)

The overall cell pressure is the volume-fraction weighted sum of the individual pressures.
In the corrector step, the velocities are computed from (4F) using this overall pressure. The values

at tn+1 of the overall cell positions and volume are calculated as in (5F), (6F). The individual
volume changes of the materials are assigned similar to (43), but with volume fractions and
pressures from (44) and the full timestep, �t . The corrector volumes and volume fractions are
calculated in a manner similar to (44); the values of V n+1

k are used to update the specific volumes
�n+1
k as in (7). Motivated by the assumption that each material obeys its own isentropic relation,
we update the individual SIEs as

m1dε1=−pn+1/2
1 f n+1/2

1 �V n+1− p�,n+1/2
1,2

pn+1/2
1 − pn+1/2

2

�n+1/2
1 +�n+1/2

2

�t, (45)

m2dε2=−pn+1/2
2 f n+1/2

2 �V n+1+ p�,n+1/2
1,2

pn+1/2
1 − pn+1/2

2

�n+1/2
1 +�n+1/2

2

�t . (46)

Here, p�,n+1/2
1,2 represents an interfacial pressure term, which we model with the star-state pressure

of the standard acoustic Riemann problem [15]:

p�,n+1/2
1,2 = �n+1/2

2 pn+1/2
1 +�n+1/2

1 pn+1/2
2

�n+1/2
1 +�n+1/2

2

− �n+1/2
1 �n+1/2

2

�n+1/2
1 +�n+1/2

2

(un+1
imix+1−un+1

imix
). (47)

To complete the corrector step, the individual materials’ pressures are updated with calls to the
respective equations of state, as in (30).

The model in (45)–(47) differs significantly from Tipton’s method: each material’s SIE is updated
through its own pressure, and the second addends on the RHS of (45), (46) can be interpreted
as de facto ‘energy exchange’ terms. There is significant flexibility in specifying these quantities;
Equations (45)–(47) are just one possible model. Alternatively, for example, one could enforce the
positivity of each material’s SIE.

4. TEST PROBLEMS AND RESULTS

We consider two different test problems from the compressible flow literature with which to
evaluate the methods described above. We consider only problems with exact solutions, so that we
can compare, qualitatively and quantitatively, the different methods’ errors.

In the mixed-cell test problems, the mesh has Nx zones, each of initial dimension 1/(Nx +1),
with the exception of a single multi-material zone, which is of initial width 2/(Nx +1). In that
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multi-material zone, the mass and volume fractions are assigned to be consistent with the initial
conditions, with the initial material interface located at the geometric center of the cell. We compare
the results with a pure-material calculation, i.e. with no mixed cell, in which all cells are initially
the same width; these calculations contain one more cell than the multi-material calculations: the
multi-material zone is split into two equal-sized pure-material zones for a total of Nx +1 zones,
each of width 1/(Nx +1).¶ Insofar as all models are different approximations to the underlying
continuous equations, it is plausible that the numerical solutions of the multi-material model could
be closer to the exact solution than the pure Lagrangian calculations. All problems were run with
the same value of CFL constant, equal to 0.5.‖ In the K&S results, an absolute L1 convergence
tolerance for Newton’s method of at least 10−10 was imposed in the modified Sod shock tube
problem of Section 4.1 and 10−7 in the dimensional water–air shock tube problem of Section 4.2.
We provide snapshots of the computed and exact flow fields at the final time together with the time-
histories of the material properties in the multi-material cell or, in the pure-material calculation,
adjacent to the interface.

4.1. The modified Sod shock tube

We consider the modified shock tube problem variant introduced by Barlow [16] (see also [5]),
with the following non-dimensional initial conditions and a final time of tfinal=0.2:

(�,�,ε, p,u)=
{
(2,1,2,2,0) if 0<x<0.5,

(1.4,0.125,2,0.1,0) if 0.5<x<1,
(48)

where p= (�−1)�ε. The mixed cell initially contains both of these distinct states.
Figure 1 contains the snapshots of the results at the final time for all the methods. The pressure

results are quite similar, whereas the Tipton method results have a slightly less accurate rarefaction
tail, greater density undershoot and more significant SIE overshoot at the contact. The SSD approach
is notable both for the well-behaved density contact and the modest SIE overshoot at the contact.
The K&S results fall somewhere between those results. All the methods are found to converge at
very nearly first order in the L1 norm for this problem.

The plots of the time-histories for all methods are shown in Figure 2. The nature of the pressure-
equilibration varies, with the SSD calculation equilibrating the quickest. The final values of density
and SIE differ slightly among the methods, with the SSD final values being the best of the multi-
material methods, followed by K&S, and then Tipton. The SSD time-histories are perhaps closest
to those of the pure-material calculation.

4.2. Water–air shock tube

The water–air shock tube is a standard problem for multi-material compressible flow [17]. It tests
inherently compressible flow features, uses a slightly more complicated and stiffer EOS than
the standared polytropic gas, and possesses a directly computable solution. The thermodynamic
properties of water in this problem are given by the stiffened-gas EOS:

p= (�−1)�ε−�p∞. (49)

¶ It is not necessary that these methods be used either with mixed cells that are larger than the non-mixed cells or
with the interface in the geometric middle of the mixed cell. We have set up the test problems in the manner
described above in order to compare, as closely as possible, to the corresponding pure-material calculations.

‖Kamm and Shashkov [6] state that, for the modified Sod problem, the results appear to be insensitive to the CFL
values less than or equal to 0.5; at higher values of the CFL number, numerical instabilities were seen.
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Figure 1. Results for the modified Sod shock tube problem on [0,1] at t=0.2 for (from left to right)
pressure, mass density, and SIE, with (from top to bottom) Tipton’s method (99 zones), the K&S method
(99 zones), the SSD method (99 zones), and the pure-cell calculation (100 zones). The computed results
are the solid line, the exact solution is the dashed line, and the values corresponding to the individual

materials in the mixed cell are indicated with the bullets.

The initial conditions for the water–air shock tube problem, in mks units, are:

(�, p∞,�,ε, p,u)=
{
(4.4,6×108,103,1.07×106,109,0) if 0<x<0.7,

(1.4,0,50,5×104,106,0) if 0.7<x<1,
(50)

with a final time of tfinal=2.2×10−4 s. The multi-material cell is initially centered at x=0.7.
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Figure 2. Time-history plots for the modified Sod shock tube problem of the (from left to right) pressure,
the mass density, and SIE, with (from top to bottom) Tipton’s method (99 zones), the K&S method
(99 zones), the SSD method (99 zones), and the pure-cell calculation (100 zones). The top three rows are
for two materials in the mixed cell; the bottom row is for the cells immediately adjacent to the material
interface. The solid line indicates the left material (material 1), the dotted line represents the right material

(material 2), and the bullets represent the exact solution at the final time.

Figure 3 shows the final-time snapshots for all the methods. The pressure snapshots are similar,
with the exception of a slight ‘bump’ in the pressure at the tail of the rarefaction for Tipton.
The SSD result has the smallest density undershoot at the contact, whereas the K&S result has,
next to the pure-material calculation, the best SIE behavior at the contact. As in the previous
problem, all the results are found to converge at very nearly first order in the L1 norm.
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Figure 3. Results for the water–air shock tube problem on [0,1] at t=2.2×10−4 for (from left to right)
pressure, mass density, and SIE with (from top to bottom) Tipton’s method (249 zones), the K&S method
(249 zones), the SSD method (249 zones), and the pure-cell calculation (250 zones). The computed results
are the solid line, the exact solution is the dashed line, and the values corresponding to the individual

materials in the mixed cell are indicated with the bullets.

The time-histories for all the methods are shown in Figure 4. The K&S method equilibrates
monotonically in all quantities, the SSD approach undershoots slightly in material 1 pressure and
density, and Tipton exhibits the greatest under- and overshoots (including negative pressures, as in
the pure-material case). All calculations, except Tipton, are monotonic in material 2 (air). The pure
material final values are the closest to the exact values, followed by SSD, K&S, and Tipton,
although it is unclear if the SSD results have completely equilibrated.
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Figure 4. Time-history plots for the water–air shock tube problem on [0,1] for (from left to right)
pressure, mass density, and SIE with (from top to bottom) Tipton’s method (249 zones), the K&S method
(249 zones), the SSD method (249 zones), and the pure-cell calculation (250 zones). The solid line
indicates the left material (material 1), the dotted line represents the right material (material 2), and the

bullets represent the exact solution at the final time.

5. SUMMARY AND CONCLUSIONS

We have addressed the problem of closing the system of equations for a two-material cell under
the single velocity, single pressure assumption in one-dimensional Lagrangian hydrodynamics.
The materials in the mixed cells are treated as distinct, presenting the problem of how to assign
the thermodynamic states of the individual materials together with the nodal forces that this zone
generates. We considered three approaches. Tipton’s method [5] is an explicit relaxation scheme
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with a viscosity-like term added to the pressure of each material, which uses the equality of
all materials’ augmented pressures to determine the states of the mixed cell constituents. Kamm
and Shashkov [6] base their sub-cell model on that of Després and Lagoutière [7], but break the
assumption of instantaneous pressure equilibration with a sub-cell dynamics model that uses an
optimization approach related to a local Riemann problem. The unique contribution of this work is
the SSD approach, motivated by the work of Delov and Sadchikov [8] and Goncharov and Yanilkin
[9], which uses the individual materials’ energy equations, mediated by an energy exchange term.
These methods were implemented in two-step integration schemes that conserve the momentum
and total energy.

The results for two test problems are shown and compared with exact solutions and corresponding
pure-material calculations (with no mixed cell). The mixed-cell solutions exhibit slight over- or
undershoots in SIE and density (more noticeable in the water–air shock problem). Overall, the SSD
results are closest to the exact solution snapshots, whereas the K&S solutions are closer to the pure-
material snapshots than those of Tipton’s method. On both problems, mixed cell pressure histories
for all the methods evolve smoothly—but not necessarily monotonically—toward equilibrium. In
the other fields, for modified Sod the oscillations in the time-histories for SSD and Tipton are
comparable and less than those of K&S, whereas the water-air shock tube shows the SSD and
K&S results to be comparably monotonic.

The SSD results show sufficient promise to warrant further development. There are other 1D
test problems on which these methods should be evaluated, including higher Mach number flows
and cases with very small initial volume fractions. We are devising methods based on the SSD
approach for multi-material cells in higher dimensions; the 2D Lagrangian hydrodynamics version
has been tested and will soon be submitted for publication (Harrison et al., in preparation, 2010).
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