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Abstract

In this paper we compare the performance of different methods for reconstructing
interfaces in multi-material compressible flow simulations. The methods compared
are a material-order-dependent Volume-of-Fluid (VOF) method, a material-order-
independent VOEF method based on power diagram partitioning of cells and the
Moment-of-Fluid method (MOF). We demonstrate that the MOF method provides
the most accurate tracking of interfaces, followed by the VOF method with the right
material ordering. The material-order-independent VOF method performs some-
what worse than the above two while the solutions with VOF using the wrong
material order are considerably worse.
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1 Introduction

Accurate simulation of multi-material and multi-phase flows requires effec-
tive tracking and management of material interfaces. Due to their ability to
strictly conserve the mass of different materials, volume-of-fluid (VOF) meth-
ods using interface reconstruction are widely used in such simulations [1-4].
Originally developed by Hirt and Nichols [5], VOF methods do not explicitly
track interfaces but rather track the volume of each material. The interface
between materials is first reconstructed in cells based on the material volume
fractions. Then the volume fluxes of each material between cells are estimated
from the geometric reconstruction and finally, the fluxes are used to compute
new volume fractions in each cell, in preparation for the next time step.

More recently, an interface tracking method has been devised based on track-
ing both the volume (zeroth moment) and centroid (ratio of first and zeroth
moment) of the materials in mesh cells. This new method, called the Moment-
of-Fluid (MOF) method [6], reconstructs interfaces more accurately than VOF
methods and is able to resolve interfacial features on the order of the local
mesh size whereas VOF methods do poorly in resolving features smaller than
3-4 times the local mesh size.

In this paper, we present a comparative study of different VOF methods and
the MOF method for complex compressible flow simulations involving more
than two materials. It is organized as follows: in Section 2, we present a brief
overview of the common material order-dependent VOF methods. We describe
the basic principle of each method and focus mainly on the Youngs’ VOF
method, which is implemented in most multi-material codes. We describe the
problems with cheosing the correct material ordering for such methods. In Sec-
tion 3, we describe the order independent VOF method based on the power
diagrams. In Section 4, the MOF material reconstruction method is described.
The slope of the material interface is not determined from the volume fractions
of the meighboring cells, but from the material centroids of the particular cell.
In Section 5, we briefly describe all steps of the ALE algorithm implemented
in our research multi-material code. We focus mainly on the propagation of
the material centroids needed for the MOF material reconstruction during the
Lagrangian and remapping steps of the algorithm. Coupling of the material re-
construction methods with a multi-material ALE code is described. Section 6
is the key part of the paper. It includes comparison of the described material
reconstruction methods in the context of particular multi-material hydrody-
namic simulations including typical phenomena appearing in real problems —
vortex, explosion, and a shock wave-material interaction. All numerical ex-
amples include more than 2 materials to emphasize key properties of each
method. Finally, we conclude the paper and review the material reconstruc-
tion methods in Section 7.
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2 VOF Methods with Nested Dissection (VOF-PLIC)

Early VOF methods used a straight line aligned with a coordinate axis to
partition the cell according to the material volume fractions. This is often
referred to as the simple line interface calculation (SLIC) originally due to
Noh and Woodward [7]. Youngs [8,9] extended the method to permit the
material interface to have an arbitrary orientation within the cell (called PLIC
or Piecewise Linear Interface Calculation by Rider and Kothe [3]). In Youngs’
method, the outward normal of the interface separating a material from the
rest of the cell is taken to be the negative gradient of the “volume fraction
function”. The “volume fraction function” is treated as a smooth function
whose cell-centered values are given by the cell-wise material volume fractions.
The interface is then defined by locating a line with the prescribed normal that
cuts off the correct volume of material from the computational cell.

Gradient based methods are in general first order accurate although they
may exhibit near second order accuracy on regular Cartesian grids. However,
there are extensions that make the reconstruetion second-order accurate for
general grids. The LVIRA technique by Pilliod and Puckett [10] tries to find an
extended straight line interface that cuts off the exact volume fraction in the
cell of interest and minimizes the error in matching the volume fractions in the
surrounding cells. LVIRA uses a minimization procedure with a gradient-based
normal as the initial guess. An alternative is the interface smoothing procedure
based on Swartz’s quadratically convergent procedure [11] for finding a straight
line that cuts off the right volume fractions from two arbitrary planar shapes? .
Mosso et.al [14] and Garimella et.al. [15] have used this procedure in slightly
different ways to devise interface smoothing procedures. For a given mixed cell,
Garimella et.al. compute a straight line cutting off the right volume fractions
from the cell and each of its mixed cell neighbors by the Swartz method. The
normals of these different straight lines are then averaged to give a smoothed
interface normal for the cell.

VOEF-PLIC techniques have been successfully used to accurately simulate two-
phase (or two-material) flows and free-surface flows in two and three dimen-
sions. However, their application to flows involving three or more materials
that come closer than the mesh spacing and even form junctions has been
mostly ad hoc. Examples of such phenomena are flows of immiscible fluids
(e.g. oil-water-gas), inertial confinement fusion, armor-antiarmor penetration
and powder metallurgical simulation of multiple materials.

The most common extensions of PLIC to cells with more than two materials

1 This is commonly known as the “ham-sandwich” or Steinhaus problem|[12,13]
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(e)

Fig. 1. Nested dissection interface reconstruction for three materials in the order
ACB: (a) the first (A) material is removed leaving a smaller available polygon, (b)
the second (C) material is removed from the available polygon, (c) the remaining
available polygon is assigned to material B, (d) the resulting partitioning of the
computational cell. (e)-(g) show the same procedure but the materials are processed
in a different (CAB) order leading to a different reconstruction (h).

(multi-material cells)?, is to process materials one by one leading to a re-
construction that is strongly dependent on the order in which the materials
are processed. Of the different ways to sequentially partition a cell, one of
the most general and accurate ways is called the “nested dissection” method
[6], where each material is separated from the others in a specified order. In
the method, a pure polygon (or polyhedron) representing the first material is
marked out from the cell, leaving a mixed polygon for the remaining materi-
als. Then, a polygon representing the second material is marked out from the
mixed polygon and the process continues until the last material is processed.
This method is illustrated in Figure 1 and described in detail in [6,16,17].
Clearly, such an order dependent method can easily place materials in wrong
locations in the cells if the chosen order of processing is incorrect. Even if the
order of the materials is right, the computation of the interface normals in
multi-material cells is ambiguous. In computing the normal as the negative
gradient of the volume fraction function of a material, it is unclear whether
one should use the volume fractions with respect to original cells or the part
of the cells remaining after the earlier materials have been removed. It is also

2 In a strict sense, any cell with more than one material is a multi-material cell.
However, we choose to distinguish two material cells from cells with more than two
materials by calling the latter multi-material cells. The reason for this distinction
is that interface reconstruction for one material is (in the case of VOF methods)
complementary to the second in a cell with two-materials while it is not for more
than two materials
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Fig. 2. Four material disk at time 7" = 0.5 translated from the initial position
(0.2,0.2) with 30 time steps at a velocity of (1,1) on 32 x 32 mesh of the [0, 1]?
domain. Material reconstruction done by several methods — MOF, VOF with power
diagrams, and Youngs’ VOF. The material orderings for Youngs’ are indicated in
the figure.

not clear where these function values should be centered — at the center of the
original cell or the center of the unprocessed part of the cell:

The most significant adverse effect of these incorrect reconstructions, however,
is in material advection in flow simulations. An improper material ordering
may result in materials being advected prematurely (or belatedly) into neigh-
boring cells. This can further lead to small pieces of the material getting
separated and drifting away from the bulk of the material (sometimes known
as “flotsam and jetsam”). The effect of material ordering is illustrated clearly
in an example from [18] in which a four-material disk (with each material oc-
cupying one quadrant of the disk) is advected diagonally for 30 time steps. The
results in Figure 2 show dramatically different results with different material
orderings and a complete lossof the cross-shaped interface.

The most common and trivial way to deal with the material order depen-
dency is to select the “correct” global ordering for a problem. However, this
is obviously problematic if the same materials must be processed differently
in different parts of the mesh or if the material configurations change as the
problem advances in time. Also, some interface configurations may not be re-
producible by any particular order, such as the four material example referred
to above. While there has been some work on automatically deriving mate-
rial order, most of these attempts assume a layered structure for the interface
[14,19] and cannot handle multiple materials coming together at a point very
well.

3 VOF Methods with Power Diagram Reconstruction (VOF-PD)

Recently, Schofield et. al. [18] developed a new VOF-based reconstruction
method that is completely material order independent. This method, called
the Power Diagram method for Interface Reconstruction, does not sequen-
tially carve off materials from a cell using straight lines. Rather it first lo-
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cates materials approximately in multi-material cells and then partitions the
cell simultaneously into multiple material regions using a weighted Voronoi
decomposition thereby avoiding the order dependence problem. We describe
this procedure below referring to it as the VOF-PD method.

In the first step of the VOF-PD method, approximate locations or “centroids”
of the materials in a cell are determined using the volume fractions of the
materials in the cell and its neighbors. This is accomplished by treating the
volume fractions of each material in the cell and its neighbors as pointwise val-
ues of a pseudo-density function. The pointwise values of this pseudo-density
function are then used to obtain a linear reconstruction of the function along
with application of a limiter restricting the minimum and maximum values
to 0 and 1 respectively. Then the linear approximation of this pseudo-density
function is used to derive an approximate centroid for the material in the cell.
While this method does not locate the material centroids very accurately in
an absolute sense, it does locate the materials quite well relative to each other.

In the second step of the procedure, the approximate eentroids of the materials
are used as generators for a weighted Voronoi or Power Diagram subdivision
[20,21] of the cell. The weights of the different generators are chosen iteratively
such that the volume fractions of the different Voronoi polygons truncated by
the cell boundary match the specified material volume fractions exactly.

The authors have shown that this procedure is in general first-order accurate
and for two materials, exactly reproduces a gradient-based subdivision of the
cell. They have also presented a smoothing procedure for the power diagram-
based subdivision which results in a second-order accurate reconstruction but
slows the procedure down considerably unless applied only to cells with more
than two materials:

4 Moment-of-Fluid (MOF) Method

While VOF methods track only volume fractions of the individual materials
in mesh cells, the recently developed Moment-of-Fluid (MOF) method [6]
tracks both the volume (zeroth moment) and centroid (ratio of first and zeroth
moment) of the materials in the cells. By tracking both moments the MOF
method reconstructs the material interface with higher accuracy than VOF
methods and is able to resolve interfacial details on the order of the local
mesh size. In contrast, VOF methods can only resolve details on the order of
3-4 times the local mesh size. Also, since a line can be determined by only two
parameters (an intercept and a slope), the linear interface in a cell is actually
over-determined by specifying the volume fraction and centroid. This implies
that MOF can perform an exact reconstruction of a linear interface and a
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second-order reconstruction of a smoothly curved interface in a cell without
the need for information from neighboring cells.

Given the volume fraction and centroid of a material in a cell, the MOF recon-
struction method computes a linear interface such that the volume fraction
of the material is exactly matched and the discrepancy between the speci-
fied centroid and the centroid of the polygon or polyhedron behind interface
is minimized. This is done by an optimization process with the slope of the
linear interface (or its angle with respect to the x-direction) as the primary
variable. For any given slope, the intercept of the line is determined uniquely
by matching the specified material volume fraction.

The MOF reconstruction is also typically implemented as a nested dissection
method where materials are carved off from a cell sequentially thereby mak-
ing it an order-dependent problem. However, it is possible to combinatorially
determine the correct sequence of material reconstructions in MOF by recon-
structing with all possible sequences and choosing the sequence which leads to
the least discrepancy between the reconstruction and specified centroids. Al-
though the number of possible sequences grows as the factorial of the number
of materials, the computational overhead of this approach is tolerable as each
cell contains only a small number of materials for most problems. Also, more
complex configurations such as 4 materials coming together at a point can
be reconstructed by recursively reconstructing the interface between groups
of materials first and then resolving the interfaces between materials in each
group. Again, due to the small number of materials in a cell, this does not
impose a significant computational penalty. Such a technique has proved very
effective in accurately reconstructing multi-material interfaces.

Further details of the MOF technique of interface reconstruction are given in
6,17].

5 Compressible flow simulation with VOF and MOF reconstruc-
tions

Here we briefly describe an arbitrary-Eulerian-Lagrangian (ALE) compress-
ible flow simulation algorithm used to compare the effects of the VOF and
MOF reconstruction techniques. Since the purpose of this paper is to compare
the different interface reconstruction methods, we deliberately do not provide
many details of the ALE code to avoid overwhelming the discussion. We be-

lieve the general conclusions of this comparative study will hold regardless of
the ALE code used.

Our 2D research multi-material ALE code (RMALE) has a standard struc-
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ture shown in Figure 3. It consists of three main components — multi-material
t=0
— i=0
izi+1 Main Program Loop
)
LAGRANGIAN STEP
- update quantities REMAPPING

— update mesh - remap all cell quantities
- vol. fractions, centroids - remap nodal momenta
— closure model - fix energy
I - vol. fractions, centroids
[] - closure model

[ if (i>i may or (bad_quality_mesh) JE
no

Fig. 3. Flowchart of our research multi-material code.”Material reconstruction is

hidden in the update of material centroids at the end of the Lagrangian step.

Lagrangian solver, mesh untangling and smoothing method, and a flux-based
multi-material remapper. The Lagrangian step is repeated, until the mesh
smoothing becomes necessary (for example, due to poor mesh quality, or a
given number of hydro steps being completed). When mesh smoothing is ap-
plied to improving the mesh quality it is followed by a remapping step conser-
vatively interpolating all quantities on the new mesh. Then, a new Lagrangian
cycle can begin. The entire code employs a staggered Mimetic Finite Difference
discretization [22], where scalar fluid quantities (density, mass, pressure, in-
ternal energy) are located inside mesh cells, and vector quantities (positions,
velocities) on mesh nodes. The multi-material ALE framework allows more
than one material inside one computational cell, where the amount of each
material is defined by its volume and mass fractions, and if we use MOF, the
relative location of each material is defined by the material centroid. In each
multi-material cell, scalar quantities are defined separately for every material,
but the variables in the primary equations are the average cell quantities. Con-
trary to a single-material approach, our multi-material Lagrangian step and
remapper must update not only all fluid quantities, but also material volume
and mass fractions, and material centroids.

The Lagrangian solver solves the following set of hydrodynamic equations

1dp dw de

=-—pV-w (1)
representing conservation of mass, momenta in both directions, and total en-
ergy, completed by the ideal gas equation of state p = (y—1) pe. Here, p is the
fluid density, w is the vector of velocities, p is the fluid pressure, ¢ is the specific
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internal energy, and -y is the ratio of specific heats. The solver is based on eval-
uation of several types of forces affecting each mesh node [22] — zonal pressure
force representing forces due to the pressure in all neighboring zones, artificial
viscosity force (edge viscosity [23] is used in the examples), and anti-hourglass
stabilization force introduced in [24], suppressing some unphysical modes in
the mesh motion. The viscosity forces in the mixed cells are computed from the
average fluid quantities, and the appropriate heating is redistributed among
the particular materials according to their mass fractions. For volume fraction
update and common pressure construction, a multi-material closure model is
applied [25]. In our numerical examples, the simplest model employing the
constant volume fractions (equal strain model [1]), is used. The last part of
the Lagrangian step is a method for updating the material centroids. In the
first step, we advect them by keeping their parametric coordinates constant.
Appendix A shows that this method reproduces the Lagrangian motion of the
centroid for compressible flows with second-order accuracy. These centroids
are then used (together with updated volume fractions) as reference centroids
for the next material reconstruction step. The final material centroids are then
set to the centroids of the reconstructed polygons.

Our code incorporates several mesh-untangling and mesh-smoothing methods.
All ALE examples in this paper use one iteration of the classical Winslow mesh
smoothing algorithm [26] performed in aJacobi manner to avoid breaking the
problem symmetry.

The last essential part of the ALE code is a remapping technique interpolating
all fluid and material quantities between Lagrangian and smoothed computa-
tional meshes. Our remapper employs the cell-cell or pure polygon-cell inter-
sections and exact integration in the entire mesh, performed in a flux form.
This flux-based remapper represents the multi-material extension of the tech-
nique described in [27] — it constructs inward and outward fluxes of integrals
of 1, z, y, and some higher order polynomials using overlays (intersections) of
Lagrangian cells (or pure material polygons in the case of mixed cells) with
their neighbors in the smoothed mesh, and vice versa. Note that these inte-
grals of polynomials over polygons can be computed analytically. Fluxes of
all cell- and material-centered quantities are then constructed from these pre-
computed exchange integrals, the material quantities (mass, internal energy)
are remapped in a material-by-material way. They are also used for remapping
material volumes (and consequently volume fractions) and centroids in a flux
form. For remapping nodal mass, we need to construct inter-nodal mass fluxes,
which we interpolate from inter-cell mass fluxes as described in [28], extended
by split side fluxes for adjacent cells and corner fluxes. All nodal quantities
are then remapped by attaching them to these inter-nodal mass fluxes (for
example, the momentum fluxes are obtained by multiplication of the mass
fluxes by an interpolated flux velocity). This approach allows us to construct
two kinetic energies at each node — conservative kinetic energy obtained by its
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remap, and non-conservative kinetic energy obtained from remapped veloci-
ties. This kinetic energy discrepancy is resolved by a standard energy fix [1],
it is redistributed into the remapped internal energy of adjacent materials,
and thus global energy conservation is guaranteed. For a complete detailed
description of our multi-material remapping method, see [29].

The material reconstruction method is performed at the end of the Lagrangian
stage, during the centroid update process. This whole step can be avoided
when VOF type of method is used, and no centroid information is required.
The second part of the ALE algorithm employing the material reconstruction
method is the beginning of the remapping stage, during the computation of the
material exchange integrals, and can also be reused during the slope (of density
or internal energy) limiting. This material reconstruction must be performed
in every remapping step, independent of the reconstruction method used, or
the data from the Lagrangian step reconstruction can be reused, if it was
performed.

6 Numerical examples

We demonstrate the properties of the described material reconstruction meth-
ods in the context of multi-material ALE hydrocode for three types of prob-
lems. These are: a triple point_problem containing a strong vortex in its solu-
tion, a multi-material modification of the Sedov problem representing a mate-
rial expansion (and thus its narrowing) due to a point explosion, and finally a
multi-material modification of Saltzman problem employing the interaction of
the piston-generated shock wave with a multi-material structure. These three
problems represent a wide range of processes involved in real complex numer-
ical hydro simulations. In our comparison, we focus especially on the material
topology (relative position of the materials) and on how well the thin material
filaments are resolved.

6.1 Triple point problem

The initial data for the triple point problem is shown in Figure 4. The com-
putational domain has a rectangular shape with 7 x 3 edge ratio. In all sim-
ulations, we use an equispaced orthogonal initial computational mesh with
140 x 60 cells. It includes three materials at rest, initially forming a T-junction.
The high-pressure material (in light red or white) creates a shock wave mov-
ing to to the right, through the low pressure blue (or darkest gray) and green
(medium gray) materials. Due to different material properties, it moves faster
in the blue or dark gray (lower density) material, and therefore a vortex evolves

10
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15

0 1 7

Fig. 4. Initial conditions for static triple point problem. Materials are shown in
different colors, and values of ratio of specific heats v, density p, pressure p, and
velocity u are listed.

around the triple point. In the later stages of the simulation (finaltime 7" = 5),
we can observe thin filaments of materials rotating around the vortex. It is to
be noted that no mixed cells are present at the beginning of the simulations,
however, they appear during the first remap.

Here, we compare a traditional gradient-based VOF method with different
orderings, the MOF method, and a VOEF method based on power diagrams
(VOF-PD). We perform the comparison for two types of simulations: Eulerian
and full ALE. In the Eulerian approach, the solution is remapped back to the
orthogonal initial mesh after each Lagrangian step, while in the ALE approach,
Winslow mesh smoothing and consecutive remapping is performed after every
20 Lagrangian steps.

In Figure 5, we can see the first snapshot of the Eulerian simulation, corre-
sponding to time 7= 0.1. In this early moment, the white-blue interface is
shifted more to the right than the white-green one. As we can see, smooth
interfaces are preserved when using VOF starting with white material, which
is the correct local material ordering for this particular problem, and when
using the MOF method. The VOF with Power diagrams still provide accept-
able results, while VOF methods using wrong orderings created very distorted
interfaces leading to problems in later stages of the simulation.

A’ snapshot in the middle of the simulation (7' = 2.5) is shown in Figure 6.
A thin filament of green material is starting to develop, which is reasonably
resolved using MOF and VOF with the correct ordering. VOF with power
diagrams keeps the correct topology of materials, but starts to have problems
with resolving the thin filament. VOF with the wrong material orderings pro-
vides the worst results — the filament starts to separate from the heavy blue
material, and there are small pieces of white material between green and blue
that are not easily visible at this scale.

In Figure 7, we can see the final snapshot of the Eulerian simulation corre-

11
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Global view of MOF simulation
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VOF - R first VOF — G first VOF — B first

0.95 1 105 1.1 . 0.95 1 105 11 115

MOF VOF-PD

Fig. 5. Materials of triple point problem simulation, time 7" = 0.1. Eulerian runs (as
Lagrangian step and remap to the initial orthogonal mesh) using different meth-
ods for material reconstruction are shown: global view on the entire computational
domain for MOF method, and zooms to the three material junction for Youngs’
VOF method (with different material orderings), MOF, and Power Diagram based
methods are shown.

sponding to time 7' = 5. Again, MOF and VOF in the correct ordering resolve
the thin part of the green filament reasonably well. VOF with the wrong ma-
terial orderings give us unacceptable results — filament transforms into a drip
separating from the blue material, and there are many tiny droplets of white
material between the blue and green materials VOF with power diagrams also
do not succeed in resolving the thin part of the filament, but the result is
qualitatively better: the material topology is correct, no droplets appear, and
green material stays attached to the blue one.

In the next set of figures, the results of the same problem obtained by ALE

12
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Global view of MOF simulation

1q

1o

1.7

1.7
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1.5 1.5
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1.4

3 3.2 2.8 3 3.2

MOF VOF-PD

Fig. 6. Materials of triple point problem simulation, time 7" = 2.5. Eulerian runs (as
Lagrangian_step and remap to the initial orthogonal mesh) using different meth-
ods for material reconstruction are shown: global view on the entire computational
domain for MOF method, and zooms to the three material junction for Youngs’
VOE method (with different material orderings), MOF, and Power Diagram based
methods are shown.

approach are presented. Generally, the results are worse than for the Eulerian
simulations due to the distorted computational mesh.

In Figure 8, the early stages of an ALE simulation at time 7' = 0.1 are pre-
sented for the same example. As we can see, the MOF results are best of all
methods being compared, the multi-material interface smoothly transitions
from the white-blue to the white-green interface and no major jumps appear.
The results of VOF in correct ordering are comparable to the results of VOF
with power diagrams at this early stage. We can observe minor material jumps
and smoothness of the interface is violated. The worst results are clearly ob-

13
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0 2

Global view of MOF simulation

1.8

| 1.8

1.7 1.7

1.6

1.5
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VOF — R first VOF - G first VOF - B first

1.8 1.8
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1.5 1.5

43 42 a5 a6 47 43 42 45 a6 47

MOF VOF-PD

Fig. 7. Materials of triple point problem simulation, time 7" = 5.0. Eulerian runs (as
Lagrangian step and remap to the initial orthogonal mesh) using different meth-
ods for material reconstruction are shown: global view on the entire computational
domain for MOF method, and zooms to the three material junction for Youngs’
VOF method (with different material orderings), MOF, and Power Diagram based
methods are shown.

tained by VOF methods using the wrong material orderings. The T-shape of
the interface is completely violated and an unphysical wedge of white material
starts to separate blue and green materials, leading to more severe problems
in later stages of the simulations.

Figure 9 presents results in the middle of the simulation (7" = 2.5). In this time
moment, the (initially orthogonal) computational mesh is already relatively
distorted. As we can see, VOF in correct ordering resolves the longest green
filament. Filament resolved by MOF is shorter, compact, with a relatively

14
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Fig. 8. Materials of triple point problem simulation, time 7' = 0.1. ALE runs (as La-
grangian step and remap to the Winslow smoothed mesh after every 20 Lagrangian
steps) using different methods for material reconstruction are shown: global view on
the entire computational domain for MOF method, and zooms to the three material
junction for Youngs’ VOF method (with different material orderings), MOF, and
Power Diagram based methods are shown.

smooth interface. Power diagrams and VOF with wrong material orderings
do not resolve the filament very well, but power diagrams surpass VOF with
incorrect material order in material topology — no fragment of white and blue
material appear on the other side of the green filament.

In Figure 10, we can see the last moment (7" = 5) of the ALE simulation.
MOF provides best result again — the filament is compact, relatively smooth,
no separated tiny droplets are present. We can observe such small pieces for
all VOF methods, even for correct ordering, where a tiny thin fiber of green
material separates white-blue interface upto the picture boundary (zoomed in
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Global view of MOF simulation
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Fig. 9. Materials of triple point problem simulation, time 7' = 2.5. ALE runs (as La-
grangian step and remap to the Winslow smoothed mesh after every 20 Lagrangian
steps) using different methods for material reconstruction are shown: global view on
the entire computational domain for MOF method, and zooms to the three material
junction for Youngs’ VOF method (with different material orderings), MOF, and
PowerDiagram based methods are shown.

the last image of Figure 10). As for power diagrams, no droplets appear, but
we can see that the green filament has broken into two parts.

6.2 Multi-material Sedov problem

The second numerical problem we present here is a multi-material generaliza-
tion of the well known Sedov problem [31]. Typically, only one quarter of the
Sedov problem is solved in the domain (0,1.1)%, final time of the simulation
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Global view of MOF simulation
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Fig. 10. Materials of triple point problem simulation, time 7" = 5.0. ALE runs (as La-
grangian step and remap to the Winslow smoothed mesh after every 20 Lagrangian
steps) using different methods for material reconstruction are shown: global view on
the entire.computational domain for MOF method, and zooms to the three material
junction for Youngs’ VOF method (with different material orderings), MOF, and
Power Diagram based methods are shown. A filament of green material for Youngs’
VOF method with the correct material ordering is zoomed in the last image.

is T'= 1. The standard Sedov problem has a uniform density p = 1, pressure
p = 107%, and ratio of specific heats v = 1.4, the fluid is static. A high en-
ergy cell in the domain origin is set, causing an explosion generating a strong
circular shock wave spreading from the origin.

In our modification, we paint 4 materials over the Cartesian computational
mesh containing 322 cells in the domain, as shown in Figure 11. The material
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Fig. 11. Initial placement of materials for the multi-material Sedov problem painted
onto a Cartesian 322 mesh. The material interfaces are placed at radiuses r = 0.1,
r=20.2, and r = 0.3.

interfaces are placed at radiuses r = 0.1, » = 0.2, and » = 0.3. The central
material A represents the high-energy (and also high-density) material gener-
ating the explosion, its values are p = 10, p = 163.88, and v = 1.4. The ring B
has a very low density p = 0.2 and a very high ratio of specific heats v = 50,
which is the simplest approach for approximating a low-compressibility mate-
rial. Pressure in ring B is p = 107%. The fluid values in the high-density ring
Care p=>5,p=107% and v = 5/3. Finally, in the rest of the domain D, the
fluid values correspond to the values of a standard Sedov problem described
before.

After the simulation starts, the explosion-generated shock wave compresses
the low-density material B. As the density of the outer ring C is high, it has
high momentum and is difficult to start moving, which causes even stronger
compression of B. As the fluid moves outward from the explosion, material
B is being extended. Due to its high v, the material gets thiner instead of
decreasing of its density. At the end of the simulation, the thickness of ring B
changes to about 20% of its original thickness.

The simulation results for different material reconstruction methods using an
ALE approach performing Winslow mesh smoothing and quantity remapping
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after every 10 Lagrangian steps are presented in Figure 12. For the Youngs’

VOF-PD

Fig. 12. Materials of multi-material Sedov problem, time 7" = 1, 322 mesh. ALE
runs (as Lagrangian step and remap to the Winslow smoothed mesh after every 10
Lagrangian steps) using different methods for material reconstruction are shown:
material interfaces for Youngs’ VOF (in ABCD order), MOF, and Power Diagram
based methods are shown.

VOF method, the ABCD ordering is used, which is considered to be correct
for this problem (generally, for problems including layered structures, the or-
dering following the materials from one side to the other one is correct). Even
so, the Youngs’ VOF methods produces the worst results, and the blue ring B
is broken at several places. As we can see, the severest material displacement
is present at domain boundaries due to the distortion of the volume fraction
gradient here. Although, we can also observe fragments of the green material
between the red and blue ones along the whole blue ring. For MOF, the blue
ring stays compact with smooth interfaces. For this problem, the results ob-
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tained by the Power Diagrams based VOF method are comparable to MOF
results, with the exception of the inner material interface disturbances close
to the domain boundary. These are again caused by the computation of the
volume fraction gradient. Let us note, that the circular shock wave position
is the same and is not influenced by the particular material reconstruction
method.

6.3 Multi-material Saltzman-like Problem

The last problem we are going to discuss here is a modification of a stan-
dard Saltzman piston problem [32]. We use an orthogonal Cartesian 100 x 10
computational mesh in the computational domain (—0.5,0.5) x(=0.05,0.05).
The standard Saltzman problem contains a uniform distribution of material
density p = 1 and pressure p = 2/3 - 10~* in the whole domain. The fluid is
static and the ratio of specific heats is v = 5/3. After the beginning of the
simulation, the whole computational domain is compressed by a piston mov-
ing the left boundary with the unit velocity. As the simulations goes, a shock
wave is formed in front of the piston, which passes the whole domain and
reflects from the right boundary. It is possible to perform this simulation until
quite a long time, when the shock wave reflects several times from the left and
right boundaries. Let us note, that in time 7' = 1, the whole domain would be
compressed to the 0 width, so this time is not reachable. This problem is often
used for the investigation of the properties of Lagrangian solvers, especially
when used in connection with an initially skewed computational mesh.

In our modification, we have placed several rings of different materials to the
center of the computational domain, as can be seen in Figure 13. The ra-

B D

0

-0.05
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Fig. 13. Initial placement of materials for the multi-material Saltzman problem
painted onto a Cartesian 100 x 10 mesh. The material interfaces are placed to the
radiuses r = 0.02, » = 0.027, and r = 0.03.

diuses of the material interfaces are set to r = 0.02, » = 0.027, and r = 0.03.
This problem is multi-material only formally, the fluid quantities of all mate-
rials are set to the same values as mentioned above. Therefore, the solution
should exactly correspond to the 1D symmetric solution of the single-material
problem.

In Figure 14, we can see the comparison of the Youngs’ VOF, VOF-PD, and
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-003  -002  -001

100 x 10, VOF 100 x 10, VOF-PD

400 x 40, MOF

800 x 80, VOF 800 x 80, VOF-PD 800 x 80, MOF

Fig. 14. Multi-material Saltzman problem in time 7" = 0 on a Cartesian meshes with
different resolutions. The computational mesh and material polygons reconstructed
by the different reconstruction methods in the ring regions are shown.
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MOF material reconstruction methods applied to the initial data of the de-
scribed problem. For the Youngs’ VOF methods, the ABCD material order-
ing was used, considered to the correct ordering for layered structures. The
problem uses 100 x 10, 200 x 20, 400 x 40, and 800 x 80 mesh resolutions,
in the images a zoom of the ring region is shown. For the lowest resolution,
the problem is clearly under-resolved. We can observe severe distortions of
the green ring due to inaccurate gradient computation. The gradient is com-
puted by the Green-Gauss approach, and the stencil of the surrounding cells
including the green material is not big enough for the filament structure to
resolve the gradient accurately. We can even see pieces of the green material
between the light-red and blue materials. The VOF-PD and MOF methods
keep the material topology correctly, but the MOF method produces much
smoother interfaces. The reason for non-smooth VOF-PD interfaces are the
same as for the Youngs’ VOF method — inaccurate gradient computation. For
the 200 x 20 mesh, the situation is similar. We can still observe perturbances
of the green ring material due to the inaccurate gradient computation. The
MOF and VOF-PD results are now comparable, all interfaces are smooth. For
the 400 x 40 mesh, few tiny magenta pieces can still be found between the
blue and green rings in the case of VOF method. This can be seen in the
zoom shown in Figure 15. Finally, for the highest resolution mesh 800 x 80, all

0.021

0.0205
0.02
0.0195
0.019
0.0185
0.018
0.0175

0.017 -0.022 -0.021 -0.02 -0.019 -0.018 -0.017

Fig. 15. Multi-material Saltzman problem in time 7' = 0 on a Cartesian 400 x 40
mesh. The computational mesh and material polygons reconstructed by the VOF
reconstruction method are shown. Zoom shows fragments of the magenta material.

material features are at least 3 cells wide and all methods provide comparable
results with smooth interfaces and correct material topology.
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Let us also note, that the problems with the Youngs’ VOF method could be
improved in this particular problem by changing the material ordering such
that the thin green filament would be treated as last. As we have already said,
generally for layered structures, the ordering respecting the ordering of the
layers is considered as correct and used in most simulations. Moreover, this fix
is not applicable if there would be two or more filaments next to each other.

We perform the simulation of the multi-material Saltzman-like problem till
the (quite an early) final time 7" = 0.6, in which the shock wave passes the
rings for the first time, as can be seen for the case of MOF method on the
100 x 10 mesh in Figure 16. As we can see, in this time the piston has reached

0.05

-0.0
8.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fig. 16. Multi-material Saltzman problem in time 7" = 0.6 on a Cartesian 100 x 10
mesh obtained by the ALE1 simulation (Winslow mesh smoothing followed by the
quantity remapping is performed after every single Lagrangian step). The com-
putational mesh and material polygons reconstructed by the MOF reconstruction
method are shown.

the position 0.1, the shock position is about 0.3. The left part of the domain
(the part behind the shock wave, including the rings) is compressed and the
computational cells have the aspect ratio of about 1/4. A zoom of the ring
region is shown in Figure 17.

For comparison of different material reconstruction methods, see Figure 18.
The images show zooms to the ring regions, the aspect ratio is not preserved
here. As in Figure 14, the ABCD material ordering was used for the Youngs’
VOF method. For the lowest 100 x 10 mesh resolution, both VOF and VOF-
PD produce very bad results. VOF-PD surpasses the Youngs” VOF method
slightly — the blue and green rings are mixed together, but stays relatively well
separated from the background magenta material, contrary to the Youngs’
VOF method for which all these three materials are mixed together. The
problems of Youngs’ VOF start in the very early stages of the simulations, as
we saw in Figure 14. We can observe severe distortions of the thin green ring
due to the Green-Gauss computation of the material volume fraction gradient
in the coarse mesh. Despite the coarseness of the mesh the MOF result is
superior. For the finer 200 x 20 computational mesh, the Youngs’ VOF method
(with the correct material ordering) is the worst — the green ring is completely
distorted, and we can see small pieces of the green and magenta materials
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Fig."17. Zoom-in of the multi-material Saltzman problem in time 7" = 0.6 on a
Cartesian 100 x 10 mesh obtained by the ALE1 simulation (Winslow mesh smooth-
ing followed by the quantity remapping is performed after every single Lagrangian
step). The computational mesh and material polygons reconstructed by the MOF
reconstruction method are shown.

on the blue-light red interface. The VOF-PD result is significantly better, the
green ring is much more compact, but still small pieces of the magenta and blue
materials can be found inside the left and right parts of the green circle. For
MOF, all materials stay compact and no problems with the tiny material pieces
appear. In the case of 400 x 40 mesh resolution, the VOF method provides
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Fig. 18. Multi-material Saltzman problem in time 7' = 0.6 on a Cartesian meshes
with different resolutions, obtained by the ALE1 simulation (Winslow mesh smooth-
ing followed by the quantity remapping is performed after every single Lagrangian
step). The computational mesh and material polygons reconstructed by the different
reconstruction methods in the ring regions are shown.
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better results than in the lower resolutions, but there are still fragments of
the magenta material between the green and blue rings. We do not observe
any material topology problems with VOF-PD or MOF method. Finally, the
same set of simulations was performed on the finest 800 x 80 mesh. As we
can see, even the thinnest green ring is now about 3 cells wide. This allow
an exact computation of the gradient of the volume fractions functions, and
so the final materials are smooth, compact, and comparable to the results of
the MOF method. Similarly, VOF-PD results are comparable to MOF results,
materials are smooth, and no problems with material topology are visible. As
we can see, all methods converge towards the same material distribution as
the mesh refines.

7 Conclusions

We have presented a comparison of a material-order-dependent VOF method,
a material-order-independent VOF method and a material-order-independent
MOF method for a complex compressible flow involving more than two mate-
rials.

From the simulations that we have run, we conclude that:

e MOF performs the most accurate reconstructions, generally capturing fil-
aments accurately and getting the material topology correct. Since MOF
is quite recent it generally does not exist in many codes. Therefore, this
method is the best choice when developing new flow codes or when revamp-
ing the interface tracking machinery. It is not advisable to introduce MOF
reconstruction into a flow code without ensuring that the advection (remap-
ping) of centroids is done accurately through overlays (exact, intersection-
based remapping method).

e VOF with the correct material order performs remarkably well although
the resolution of filaments and other small features is poorer than MOF.
Since VOF commonly exists in flow codes that perform this type of interface
tracking, it is a natural choice when the flow is simple and the material order
can be predicted quite easily. It is also a good choice when the flow has only
two materials and no filamentary or other structures smaller than 3-4 times
the grid resolution are expected.

e Compared to VOF, the MOF method is less efficient. As it was already
mentioned, all possible material combinations are tested to find the optimal
material placement. If the number of materials in one cell would happen to
be high (more than 5) in many cells, the MOF method could represent a
considerable computational cost of the simulation. Fortunately, in the usual
simulations, this situation is very rare — typically, there are many 2-material
cells, some 3-material cells, and just a few 4 or more -material cells.
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e VOF with power diagrams performs more poorly than MOF or VOF with
the right material order but usually gets the interface topology right. This
method is a good choice when the advection machinery cannot be revamped
to perform overlays but the interface reconstruction can be rewritten simply
to partition cells using the power diagram.

e VOF with the wrong order performs poorly even for simple flows and is not
advised. If the ordering cannot be predicted or enforced strictly, it is better
to use VOF with the power diagram reconstruction.

A Appendix
A.1 Lagrangian update of material centroids

The Lagrangian step may be viewed as the implicit creation of a family of
maps, ¢"(x) : R? — RY such that x"*! = ¢"*(x™). Any material region,
Q! C R, evolves over a time step as

Qm = ¢"EN(Q) (A.1)
The map ¢" ! is illustrated in Figure A.1.
If the map is an affine transformation, that is

P (x) =Ax+b (A.2)

where A € R¥? is invertible and b € R?, then if x.(Q2") is the centroid of
the region and Q"™ = ¢"*1(Q"), then x.(Q") = Ax.(Q") + b. That is, the
transformed centroid is the centroid of the transformed region.

To demonstrate this,

HQn—i-lHXC(Qn—i-l):/ x dr

Qn+l

::/(Ay+mdaAdy
Q?’L
— (det A)[|Q" ]| Ax.(2") + b(det A)[|Q"]|

Noting that

||Q”+1H:/ dx:/ det A dz = ||| det A
Qn+l Qn

we obtain,
X (") = Ax (") + b
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The actual Lagrangian evolution of the region is given by the pointwise equa-
tion
dx
dt
assuming the velocity field is known. The transformation, ¢"*! is then the
solution to Equation A.3 over the time interval [¢t", "]

u(x,t) vx € (A.3)

With sufficient regularity, the velocity field can be expanded as

Ou,;(xq,t") 0y Ouy(x0, ")
g T (A )
+O(AZ?) + O(At?) + O(AxAt):

Uj(X, t) = Uj(X(], tn) + (t - tn)

Substituting this into Equation A.3 and integrating, we find that

d"TH(x) = x + u(xg, t") At + O(A?) + O(AtAT). (A.5)

Assuming At ~ Az, then the transformation defining the Lagrangian evolu-
tion over a time step may be approximated as an affine transformation with
second order accuracy.

A.2  Constant parametric coordinate method

A method for updating material centroids during a Lagrangian step can exploit
this implicit evolution operator described above. The method described [2,19]
is based on the existence of a mapping of the computational cell to and from
a logical space. It is assumed that the centroid of the material region has the
same logical coordinates, before and after the Lagrangian motion of the cell.
To obtain the centroid after the Lagrangian motion, the logical coordinates of
the centroid at the previous step are given to the logical to physical mapping
corresponding to the cell after the motion. This process is illustrated in Figure
A.1. It is important to note that the logical to physical space mapping is
different for each time step and the cells evolve in time.

The accuracy of the method relies on the properties of the logical to physical
coordinate transformations used.

Assume each cell has local coordinates, r € S, with an invertible map into
physical coordinates, 9" : S +— Q™.

We define a family of local parameterizations, {¢"} to be linearity preserv-
ing, if points from the parametric space, S, are mapped such that if

X" = AX™ 4 b, (A.6)
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Fig. A.1. Steps in the constant parametric coordinate method. (1) The logical coor-
dinates of the centroid at time ¢" are calculated. (2) It is assumed the centroid has
the same logical coordinates at time t"*1. (3) The logical coordinates are mapped
to physical coordinates to give the location. This gives a second order accurate
approximation to the centroid of theevolved region Q"+ = ¢"+1(Qn).

then if x™ = ¢"(r),
X" ="t (r) = AY"(r) + b= Ax"+b (A7)

Equivalently,
P = Ay + b (A.8)

The bilinear parameterization of quads satisfies this property: the two orthog-
onal coordinates, (r,s) € [0,1]? linearly interpolate the vertices (see Figure
A1 for node numbering)

P(r,s) = (1 —7r)[(1 —s)x{ + sx3] +r[(1 — s)x] + sx3] (A.9)
Clearly, "t = AY" + b as x;"" = Ax;" + b for j =0,...,3.
The generalized barycentric coordinates of polygon with vertices {v;} also

satisfies the linearity preserving property. To demonstrate this, barycentric
coordinates satisfy the properties [33],
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X = Z Aivi = " (N), (A.10)
Y=, (A.11)
Z Ai > 0. (A.12)

If x has barycentric coordinates A, then if x" = ¢)"(\),

AY"(N) +b =3 NAvi +b I\ (A.14)
AY"(N) +b=3" Xi(Avi +b) = ¢ () (A.15)

where >, \; = 1 was utilized in the second step.

If the family of transformations satisfy the linearity preserving property, then
we may analyze the accuracy of the constant parametric coordinate method.
If the parameterization family, {¢)"}, is linearity preserving, then updating
the location of a material centroid by assuming its parametric coordinates
are unchanged is exact for linear motions, since for an arbitrary subdomain
mapped with an affine transformation,

X (") = Ax . (Q") + b (A.16)

If the transformation is linearity preserving, then
X (") = " r) = Ap"(r) + b= Ax.(Q") + b (A.17)
In general, the Lagrangian motion will not be linear. However, as was shown in

the previous section, for sufficient regularity in time an affine approximation
to the Lagrangian motion is second order accurate.
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