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Abstract

In this paper we compare the performance of different methods for reconstructing
interfaces in multi-material compressible flow simulations. The methods compared
are a material-order-dependent Volume-of-Fluid (VOF) method, a material-order-
independent VOF method based on power diagram partitioning of cells and the
Moment-of-Fluid method (MOF). We demonstrate that the MOF method provides
the most accurate tracking of interfaces, followed by the VOF method with the right
material ordering. The material-order-independent VOF method performs some-
what worse than the above two while the solutions with VOF using the wrong
material order are considerably worse.
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1 Introduction

Accurate simulation of multi-material and multi-phase flows, requires effec-
tive tracking and management of material interfaces. Due to their ability to
strictly conserve the mass of different materials, volume-of-fluid (VOF) meth-
ods using interface reconstruction are widely used in such simulations [1–4].
Originally developed by Hirt and Nichols [5], VOF methods do not explicitly
track interfaces but rather track the volume of each material. The interface
between materials is first reconstructed in cells based on the material volume
fractions. Then the volume fluxes of each material between cells are estimated
from the geometric reconstruction and finally, the fluxes are used to compute
new volume fractions in each cell, in preparation for the next time step.

More recently, an interface tracking method has been devised based on track-
ing both the volume (zeroth moment) and centroid (ratio of first and zeroth
moment) of the materials in mesh cells. This new method, called the Moment-
of-Fluid (MOF) method [6], reconstructs interfaces more accurately than VOF
methods and is able to resolve interfacial features on the order of the local
mesh size whereas VOF methods do poorly in resolving features smaller than
3-4 times the local mesh size.

In this paper, we present a comparative study of different VOF methods and
the MOF method for a complex compressible flow simulations involving more
than two materials.

2 VOF Methods with Nested Dissection (VOF-PLIC)

Early VOF methods used a straight line aligned with a coordinate axis to
partition the cell according to the material volume fractions. This is often
referred to as the simple line interface calculation (SLIC) originally due to
Noh and Woodward [7]. Youngs [8,9] extended the method to permit the
material interface to have an arbitrary orientation within the cell (called PLIC
or Piecewise Linear Interface Calculation by Rider and Kothe [3]). In Youngs’
method, the outward normal of the interface separating a material from the
rest of the cell is taken to be the negative gradient of the “volume fraction
function”. The “volume fraction function” is treated as a smooth function
whose cell-centered values are given by the cell-wise material volume fractions.
The interface is then defined by locating a line with the prescribed normal that
cuts off the correct volume of material from the computational cell.

Gradient based methods are in general first order accurate although they
may exhibit near second order accuracy on regular Cartesian grids. However,
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Fig. 1. Nested dissection interface reconstruction for three materials in the order
ACB: (a) the first (A) material is removed leaving a smaller available polygon, (b)
the second (C) material is removed from the available polygon, (c) the remaining
available polygon is assigned to material B, (d) the resulting partitioning of the
computational cell. (e)-(g) show the same procedure but the materials are processed
in a different (CAB) order leading to a different reconstruction (h).

there are extensions that make the reconstruction second-order accurate for
general grids. The LVIRA technique by Pilliod and Puckett [10] tries to find an
extended straight line interface that cuts off the exact volume fraction in the
cell of interest and minimizes the error in matching the volume fractions in the
surrounding cells. LVIRA uses a minimization procedure with a gradient-based
normal as the initial guess. An alternative is the interface smoothing procedure
based on Swartz’s quadratically convergent procedure [11] for finding a straight
line that cuts off the right volume fractions from two arbitrary planar shapes 1 .
Mosso et.al [14] and Garimella et.al. [15] have used this procedure in slightly
different ways to devise interface smoothing procedures. For a given mixed cell,
Garimella et.al. compute a straight line cutting off the right volume fractions
from the cell and each of its mixed cell neighbors by the Swartz method. The
normals of these different straight lines are then averaged to give a smoothed
interface normal for the cell.

VOF-PLIC techniques have been successfully used to accurately simulate two-
phase (or two-material) flows and free-surface flows in two and three dimen-
sions. However, their application to flows involving three or more materials
that come closer than the mesh spacing and even form junctions has been
mostly ad hoc. Examples of such phenomena are flows of immiscible fluids
(e.g. oil-water-gas), inertial confinement fusion, armor-antiarmor penetration
and powder metallurgical simulation of multiple materials.

1 This is commonly known as the “ham-sandwich” or Steinhaus problem[12,13]
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The most common extensions of PLIC to cells with more than two materials
(multi-material cells) 2 , is to process materials one by one leading to a re-
construction that is strongly dependent on the order in which the materials
are processed. Of the different ways to sequentially partition a cell, one of
the most general and accurate ways is called the “nested dissection” method
[6], where each material is separated from the others in a specified order. In
the method, a pure polygon (or polyhedron) representing the first material is
marked out from the cell, leaving a mixed polygon for the remaining materi-
als. Then, a polygon representing the second material is marked out from the
mixed polygon and the process continues until the last material is processed.
This method is illustrated in Figure 1 and described in detail in [6,16,17].
Clearly, such an order dependent method can easily place materials in wrong
locations in the cells if the chosen order of processing is incorrect. Even if the
order of the materials is right, the computation of the interface normals in
multi-material cells is ambiguous. In computing the normal as the negative
gradient of the volume fraction function of a material, it is unclear whether
one should use the volume fractions with respect to original cells or the part
of the cells remaining after the earlier materials have been removed. It is also
not clear where these function values should be centered – at the center of the
original cell or the center of the unprocessed part of the cell.

The most significant adverse effect of these incorrect reconstructions, however,
is in material advection in flow simulations. An improper material ordering
may result in materials being advected prematurely (or belatedly) into neigh-
boring cells. This can further lead to small pieces of the material getting
separated and drifting away from the bulk of the material (sometimes known
as “flotsam and jetsam”). The effect of material ordering is illustrated clearly
in an example from [18] in which a four-material disk (with each material oc-
cupying one quadrant of the disk) is advected diagonally for 30 time steps. The
results in Figure 2 show dramatically different results with different material
orderings and a complete loss of the cross-shaped interface.

The most common and trivial way to deal with the material order depen-
dency is to select the “correct” global ordering for a problem. However, this
is obviously problematic if the same materials must be processed differently
in different parts of the mesh or if the material configurations change as the
problem advances in time. Also, some interface configurations may not be re-
producible by any particular order, such as the four material example referred

2 In a strict sense, any cell with more than one material is a multi-material cell.
However, we choose to distinguish two material cells from cells with more than two
materials by calling the latter multi-material cells. The reason for this distinction
is that interface reconstruction for one material is (in the case of VOF methods)
complementary to the second in a cell with two-materials while it is not for more
than two materials
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Fig. 2. Four material disk at time T = 0.5 translated from the initial position
(0.2, 0.2) with 30 time steps at a velocity of (1, 1) on 32 × 32 mesh of the [0, 1]2

domain. Material reconstruction done by several methods – MOF, VOF with power
diagrams, and Youngs’ VOF. The material orderings for Youngs’ are indicated in
the figure.

to above. While there has been some work on automatically deriving mate-
rial order, most of these attempts assume a layered structure for the interface
[14,19] and cannot handle multiple materials coming together at a point very
well.

3 VOF Methods with Power Diagram Reconstruction (VOF-PD)

Recently, Schofield et. al. [18] developed a new VOF-based reconstruction
method that is completely material order independent. This method, called
the Power Diagram method for Interface Reconstruction, does not sequen-
tially carve off materials from a cell using straight lines. Rather it first lo-
cates materials approximately in multi-material cells and then partitions the
cell simultaneously into multiple material regions using a weighted Voronoi
decomposition thereby avoiding the order dependence problem. We describe
this procedure below referring to it as the VOF-PD method.

In the first step of the VOF-PD method, approximate locations or “centroids”
of the materials in a cell are determined using the volume fractions of the
materials in the cell and its neighbors. This is accomplished by treating the
volume fractions of each material in the cell and its neighbors as pointwise val-
ues of a pseudo-density function. The pointwise values of this pseudo-density
function are then used to obtain a linear reconstruction of the function along
with application of a limiter restricting the minimum and maximum values
to 0 and 1 respectively. Then the linear approximation of this pseudo-density
function is used to derive an approximate centroid for the material in the cell.
While this method does not locate the material centroids very accurately in
an absolute sense, it does locate the materials quite well relative to each other.

In the second step of the procedure, the approximate centroids of the materials
are used as generators for a weighted Voronoi or Power Diagram subdivision
[20,21] of the cell. The weights of the different generators are chosen iteratively
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such that the volume fractions of the different Voronoi polygons truncated by
the cell boundary match the specified material volume fractions exactly.

The authors have shown that this procedure is in general first-order accurate
and for two materials, exactly reproduces a gradient-based subdivision of the
cell. They have also presented a smoothing procedure for the power diagram-
based subdivision which results in a second-order accurate reconstruction but
slows the procedure down considerably unless applied only to cells with more
than two materials.

4 Moment-of-Fluid (MOF) Method

While VOF methods track only volume fractions of the individual materials
in mesh cells, the recently developed Moment-of-Fluid (MOF) method [6]
tracks both the volume (zeroth moment) and centroid (ratio of first and zeroth
moment) of the materials in the cells. By tracking both moments the MOF
method reconstructs the material interface with higher accuracy than VOF
methods and is able to resolve interfacial details on the order of the local
mesh size. In contrast, VOF methods can only resolve details on the order of
3-4 times the local mesh size. Also, since a line can be determined by only two
parameters (an intercept and a slope), the linear interface in a cell is actually
over-determined by specifying the volume fraction and centroid. This implies
that MOF can perform an exact reconstruction of a linear interface and a
second-order reconstruction of a smoothly curved interface in a cell without
the need for information from neighboring cells.

Given the volume fraction and centroid of a material in a cell, the MOF recon-
struction method computes a linear interface such that the volume fraction
of the material is exactly matched and the discrepancy between the speci-
fied centroid and the centroid of the polygon or polyhedron behind interface
is minimized. This is done by an optimization process with the slope of the
linear interface (or its angle with respect to the x-direction) as the primary
variable. For any given slope, the intercept of the line is determined uniquely
by matching the specified material volume fraction.

The MOF reconstruction is also typically implemented as a nested dissection
method where materials are carved off from a cell sequentially thereby mak-
ing it an order-dependent problem. However, it is possible to combinatorially
determine the correct sequence of material reconstructions in MOF by recon-
structing with all possible sequences and choosing the sequence which leads to
the least discrepancy between the reconstruction and specified centroids. More
complex configurations such as 4 materials coming together at a point can be
reconstructed by recursively reconstructing the interface between groups of
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materials first and then resolving the interfaces between materials in each
group. Since the number of materials in a cell is typically small, this does not
impose a significant computational penalty. Such a technique has proved very
effective in accurately reconstructing multi-material interfaces.

Further details of the MOF technique of interface reconstruction are given in
[6,17].

5 Compressible flow simulation with VOF and MOF reconstruc-
tions

Here we briefly describe an arbitrary-Eulerian-Lagrangian (ALE) compress-
ible flow simulation algorithm used to compare the effects of the VOF and
MOF reconstruction techniques. Since the purpose of this paper is to compare
the different interface reconstruction methods, we deliberately do not provide
many details of the ALE code to avoid overwhelming the discussion. We be-
lieve the general conclusions of this comparative study will hold regardless of
the ALE code used.

Our 2D research multi-material ALE code (RMALE) has a standard struc-
ture shown in Figure 3. It consists of three main components – multi-material

t

Initialization

t=0
i=0 i = 0

Mesh Smoothing
Main Program Loop

if (i>i     ) or (bad_quality_mesh)max

Until t<t max

End

i = i + 1
t = t +    t∆

yes

no

 − update mesh

 − closure model

LAGRANGIAN STEP
 − update quantities

 − vol. fractions, centroids

Compute time step∆

 − remap all cell quantities 
 − remap nodal momenta

 − closure model

REMAPPING

 − vol. fractions, centroids
 − fix energy

Fig. 3. Flowchart of our research multi-material code. Material reconstruction is
hidden in the update of material centroids at the end of the Lagrangian step.

Lagrangian solver, mesh untangling and smoothing method, and a flux-based
multi-material remapper. The Lagrangian step is repeated, until the mesh
smoothing condition is fulfilled (for example, poor mesh quality, or rezoning
counter reaches given number of hydro steps). When mesh smoothing is ap-
plied to improving the mesh quality it is followed by a remapping step conser-
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vatively interpolating all quantities on the new mesh. Then, a new Lagrangian
cycle can begin. The entire code employs a staggered Mimetic Finite Difference
discretization [22], where scalar fluid quantities (density, mass, pressure, in-
ternal energy) are located inside mesh cells, and vector quantities (positions,
velocities) on mesh nodes. The multi-material ALE framework allows more
than one material inside one computational cell, where the amount of each
material is defined by its volume and mass fractions, and if we use MOF, the
relative location of each material is defined by the material centroid. In each
multi-material cell, scalar quantities are defined separately for every material,
but the variables in the primary equations are the average cell quantities. Con-
trary to a single-material approach, our multi-material Lagrangian step and
remapper must update not only all fluid quantities, but also material volume
and mass fractions, and material centroids.

The Lagrangian solver solves the following set of hydrodynamic equations

1

ρ

d ρ

d t
= −∇ · w , ρ

dw

d t
= −∇ · p , ρ

d ε

d t
= −p∇ ·w (1)

representing conservation of mass, momenta in both directions, and total en-
ergy, completed by the ideal gas equation of state p = (γ − 1) ρ ε. Here, ρ is
the fluid density, w is the vector of velocities, p is the fluid pressure, ε is the
specific internal energy, and γ is the ratio of specific heats. The solver is based
on evaluation of several types of forces affecting each mesh node [22] – zonal
pressure force representing forces due to the pressure in all neighboring zones,
artificial viscosity force (edge viscosity [23] is used in the examples), and anti-
hourglass stabilization force introduced in [24], suppressing some unphysical
modes in the mesh motion. For volume fraction update and common pressure
construction, a multi-material closure model is applied [25], which adjusts the
material volume fractions such that material pressures equilibrate to a com-
mon pressure value. The last part of the Lagrangian step is a method for
updating the material centroids. In the first step, we advect them by keeping
their parametric coordinates constant. Appendix A shows that this method
reproduces the Lagrangian motion of the centroid for compressible flows with
second-order accuracy. These centroids are then used (together with updated
volume fractions) as reference centroids for the next material reconstruction
step. The final material centroids are then set to the centroids of the recon-
structed polygons.

Our code incorporates several mesh-untangling and mesh-smoothing meth-
ods. All ALE examples in this paper use classical Winslow mesh smoothing
algorithm [26].

The last essential part of the ALE code is a remapping technique interpo-
lating all fluid and material quantities between Lagrangian and smoothed
computational meshes. Our flux-based remapper uses the multi-material ex-
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tension of the technique described in [27] – it constructs inward and outward
fluxes of integrals of 1, x, y, and some higher order polynomials using overlays
(intersections) of Lagrangian cells (or pure material polygons in the case of
mixed cells) with their neighbors in the smoothed mesh, and vice versa. Note
that these integrals of polynomials over polygons can be computed analyti-
cally. These integrals are then used for construction of fluxes for all cell- and
material-centered quantities. They are also used for advancing material vol-
umes (and consequently volume fractions) and centroids in a flux form. For
remapping nodal mass, we need to construct inter-nodal mass fluxes, which we
interpolate from inter-cell mass fluxes as described in [28], extended by split
side fluxes for adjacent cells and corner fluxes. All nodal quantities are then
remapped by attaching them to these inter-nodal mass fluxes (for example,
the momentum fluxes are obtained by multiplication of the mass fluxes by an
interpolated flux velocity). This approach allows us to construct two kinetic
energies at each node – conservative kinetic energy obtained by its remap,
and non-conservative kinetic energy obtained from remapped velocities. This
kinetic energy discrepancy is resolved by a standard energy fix [1], it is re-
distributed into the remapped internal energy of adjacent materials, and thus
global energy conservation is guaranteed.

6 Problem description

We demonstrate the properties of the described material reconstruction meth-
ods in the context of multi-material ALE hydrocode for a triple point problem
suggested by Maire [29]. The initial data for this problem is shown in Figure 4.

0 1 7
0

1.5

3

γ=1.5
ρ=1
p=1
u=0

γ=1.5
ρ=0.125
p=0.1
u=0

γ=1.4
ρ=1
p=0.1
u=0

Fig. 4. Initial conditions for static triple point problem. Materials are shown in
different colors, and values of ratio of specific heats γ, density ρ, pressure p, and
velocity u are listed.

The computational domain has a rectangular shape with 7 × 3 edge ratio. In
all simulations, we use an equidistant orthogonal initial computational mesh
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with 140 × 60 cells. It includes three materials at rest, initially forming a T-
junction. The high-pressure material (in light red or white) creates a shock
wave moving to to the right, through the low pressure blue (or darkest gray)
and green (medium gray) materials. Due to different material properties, it
moves faster in the blue or dark gray (lower density) material, and therefore
a vortex evolves around the triple point. In the later stages of the simulation
(final time T = 5), we can observe thin filaments of materials rotating around
the vortex. In our comparison, we focus especially on the material topology
(relative position of the materials) and on how well the thin tip of green or
light gray material filament is resolved.

It is to be noted that no mixed cells are present at the beginning of the
simulations, however, they appear during the first remap.

7 Results

Here, we compare a traditional gradient-based VOF method with different
orderings, the MOF method, and a VOF method based on power diagrams
(VOF-PD). We perform the comparison for two types of simulations: Eulerian
and full ALE. In the Eulerian approach, the solution is remapped back to the
orthogonal initial mesh after each Lagrangian step, while in the ALE approach,
Winslow mesh smoothing and consecutive remapping is performed after every
20 Lagrangian steps.

In Figure 5, we can see the first snapshot of the Eulerian simulation, corre-
sponding to time T = 0.1. In this early moment, the white-blue interface is
shifted more to the right than the white-green one. As we can see, smooth
interfaces are preserved when using VOF starting with white material, which
is the correct local material ordering for this particular problem, and when
using the MOF method. The VOF with Power diagrams still provide accept-
able results, while VOF methods using wrong orderings created very distorted
interfaces leading to problems in later stages of the simulation.

A snapshot in the middle of the simulation (T = 2.5) is shown in Figure 6.
A thin filament of green material is starting to develop, which is reasonably
resolved using MOF and VOF with the correct ordering. VOF with power
diagrams keeps the correct topology of materials, but starts to have problems
with resolving the thin filament. VOF with the wrong material orderings pro-
vides the worst results – the filament starts to separate from the heavy blue
material, and there are small pieces of white material between green and blue
that are not easily visible at this scale.

In Figure 7, we can see the final snapshot of the Eulerian simulation corre-
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Fig. 5. Materials of triple point problem simulation, time T = 0.1. Eulerian runs (as
Lagrangian step and remap to the initial orthogonal mesh) using different meth-
ods for material reconstruction are shown: global view on the entire computational
domain for MOF method, and zooms to the three material junction for Young’s
VOF method (with different material orderings), MOF, and Power Diagram based
methods are shown.

sponding to time T = 5. Again, MOF and VOF in the correct ordering resolve
the thin part of the green filament reasonably well. VOF with the wrong ma-
terial orderings give us unacceptable results – filament transforms into a drip
separating from the blue material, and there are many tiny droplets of white
material between the blue and green materials VOF with power diagrams also
do not succeed in resolving the thin part of the filament, but the result is
qualitatively better: the material topology is correct, no droplets appear, and
green material stays attached to the blue one.

In the next set of figures, the results of the same problem obtained by ALE
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Fig. 6. Materials of triple point problem simulation, time T = 2.5. Eulerian runs (as
Lagrangian step and remap to the initial orthogonal mesh) using different meth-
ods for material reconstruction are shown: global view on the entire computational
domain for MOF method, and zooms to the three material junction for Young’s
VOF method (with different material orderings), MOF, and Power Diagram based
methods are shown.

approach are presented. Generally, the results are worse than for the Eulerian
simulations due to the distorted computational mesh.

In Figure 8, the early stages of an ALE simulation at time T = 0.1 are pre-
sented for the same example. As we can see, the MOF results are best of all
methods being compared, the multi-material interface smoothly transitions
from the white-blue to the white-green interface and no major jumps appear.
The results of VOF in correct ordering are comparable to the results of VOF
with power diagrams at this early stage. We can observe minor material jumps
and smoothness of the interface is violated. The worst results are clearly ob-
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Fig. 7. Materials of triple point problem simulation, time T = 5.0. Eulerian runs (as
Lagrangian step and remap to the initial orthogonal mesh) using different meth-
ods for material reconstruction are shown: global view on the entire computational
domain for MOF method, and zooms to the three material junction for Young’s
VOF method (with different material orderings), MOF, and Power Diagram based
methods are shown.

tained by VOF methods using the wrong material orderings. The T-shape of
the interface is completely violated and an unphysical wedge of white material
starts to separate blue and green materials, leading to more severe problems
in later stages of the simulations.

Figure 9 presents results in the middle of the simulation (T = 2.5). In this time
moment, the (initially orthogonal) computational mesh is already relatively
distorted. As we can see, VOF in correct ordering resolves the longest green
filament. Filament resolved by MOF is shorter, compact, with a relatively
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Fig. 8. Materials of triple point problem simulation, time T = 0.1. ALE runs (as La-
grangian step and remap to the Winslow smoothed mesh after every 20 Lagrangian
steps) using different methods for material reconstruction are shown: global view on
the entire computational domain for MOF method, and zooms to the three material
junction for Young’s VOF method (with different material orderings), MOF, and
Power Diagram based methods are shown.

smooth interface. Power diagrams and VOF with wrong material orderings
do not resolve the filament very well, but power diagrams surpass VOF in
material topology – no fragment of white and blue material appear on the
other side of the green filament.

In Figure 10, we can see the last moment (T = 5) of the ALE simulation. MOF
provides best result again – the filament is compact, relatively smooth, no sep-
arated tiny droplets are present. We can observe such small pieces for all VOF
methods, even for correct ordering, where a tiny thin fiber of green material
separates white-blue interface upto the picture boundary. As for power dia-
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Fig. 9. Materials of triple point problem simulation, time T = 2.5. ALE runs (as La-
grangian step and remap to the Winslow smoothed mesh after every 20 Lagrangian
steps) using different methods for material reconstruction are shown: global view on
the entire computational domain for MOF method, and zooms to the three material
junction for Young’s VOF method (with different material orderings), MOF, and
Power Diagram based methods are shown.

grams, no droplets appear, but we can see that the green filament has broken
into two parts.

8 Conclusions

We have presented a comparison of a material-order-dependent VOF method,
a material-order-independent VOF method and a material-order-independent
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Fig. 10. Materials of triple point problem simulation, time T = 5.0. ALE runs (as La-
grangian step and remap to the Winslow smoothed mesh after every 20 Lagrangian
steps) using different methods for material reconstruction are shown: global view on
the entire computational domain for MOF method, and zooms to the three material
junction for Young’s VOF method (with different material orderings), MOF, and
Power Diagram based methods are shown.

MOF method for a complex compressible flow involving more than two mate-
rials. The VOF methods track volumes of fluids and the MOF method tracks
both volumes and centroids of fluids. The first VOF method uses a nested
dissection or sequential removal of materials from the cell to reconstruct the
multi-material interface, making its results dependent on the material order-
ing. The second VOF method partitions the cells simultaneously into multiple
material regions using a power diagram and is therefore, independent of any
material order specification. The MOF method performs sequential subdivi-
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sion of the cell but considers all possible material orders and chooses the one
that minimizes the discrepancy between the specified and reconstructed mo-
ments.

From the simulations that we have run, we conclude that:

• MOF performs the most accurate reconstructions, generally capturing fil-
aments accurately and getting the material topology correct. Since MOF
is quite recent it generally does not exist in many codes. Therefore, this
method is the best choice when developing new flow codes or when revamp-
ing the interface tracking machinery. It is not advisable to introduce MOF
reconstruction into a flow code without ensuring that the advection (or
remapping) of centroids is done accurately through overlays.

• VOF with the correct material order performs remarkably well although
the resolution of filaments and other small features is poorer than MOF.
Since VOF commonly exists in flow codes that perform this type of interface
tracking, it is a natural choice when the flow is simple and the material order
can be predicted quite easily. It is also a good choice when the flow has only
two materials and no filamentary or other structures smaller than 3-4 times
the grid resolution are expected.

• VOF with power diagrams performs more poorly than MOF or VOF with
the right material order but usually gets the interface topology right. This
method is a good choice when the advection machinery cannot be revamped
to perform overlays but the interface reconstruction can be rewritten simply
to partition cells using the power diagram.

• VOF with the wrong order performs poorly even for simple flows and is not
advised. If the ordering cannot be predicted or enforced strictly, it is better
to use VOF with the power diagram reconstruction.

A Appendix

A.1 Lagrangian update of material centroids

The Lagrangian step may be viewed as the implicit creation of a family of
maps, φn(x) : R

d 7→ R
d, such that xn+1 = φn+1(xn). Any material region,

Ωt ⊂ R
d, evolves over a time step as

Ωn+1 = φn+1(Ωn) (A.1)

The map φn+1 is illustrated in Figure A.1.
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If the map is an affine transformation, that is

φn+1(x) = Ax + b (A.2)

where A ∈ R
d×d is invertible and b ∈ R

d, then if xc(Ω
n) is the centroid of

the region and Ωn+1 = φn+1(Ωn), then xc(Ω
n+1) = Axc(Ω

n) + b. That is, the
transformed centroid is the centroid of the transformed region.

To demonstrate this,

‖Ωn+1‖xc(Ω
n+1)=

∫
Ωn+1

x dx

=
∫
Ωn

(Ay + b) detA dy

= (detA)‖Ωn‖Axc(Ω
n) + b(detA)‖Ωn‖

Noting that

‖Ωn+1‖ =
∫
Ωn+1

dx =
∫
Ωn

detA dx = ‖Ωn‖ detA

we obtain,

xc(Ω
n+1) = Axc(Ω

n) + b

The actual Lagrangian evolution of the region is given by the pointwise equa-
tion

dx

dt
= u(x, t) ∀x ∈ Ωt (A.3)

assuming the velocity field is known. The transformation, φn+1, is then the
solution to Equation A.3 over the time interval [tn, tn+1].

With sufficient regularity, the velocity field can be expanded as

uj(x, t) = uj(x0, t
n)+(t−tn)

∂uj(x0, t
n)

∂t
+(xi−x

0
i )
∂uj(x0, t

n)

∂xi

+O(∆x2)+O(∆t2)+O(∆x∆t).

(A.4)
Substituting this into Equation A.3 and integrating, we find that

φn+1(x) = x + u(x0, t
n)∆t+ O(∆t2) + O(∆t∆x). (A.5)

Assuming ∆t ≈ ∆x, then the transformation defining the Lagrangian evolu-
tion over a time step may be approximated as an affine transformation with
second order accuracy.
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Fig. A.1. Steps in the constant parametric coordinate method. (1) The logical coor-
dinates of the centroid at time tn are calculated. (2) It is assumed the centroid has
the same logical coordinates at time tn+1. (3) The logical coordinates are mapped
to physical coordinates to give the location. This gives a second order accurate
approximation to the centroid of the evolved region Ωn+1 = φn+1(Ωn).

A.2 Constant parametric coordinate method

A method for updating material centroids during a Lagrangian step can exploit
this implicit evolution operator described above. The method described [2,19]
is based on the existence of a mapping of the computational cell to and from
a logical space. It is assumed that the centroid of the material region has the
same logical coordinates, before and after the Lagrangian motion of the cell.
To obtain the centroid after the Lagrangian motion, the logical coordinates of
the centroid at the previous step are given to the logical to physical mapping
corresponding to the cell after the motion. This process is illustrated in Figure
A.1. It is important to note that the logical to physical space mapping is
different for each time step and the cells evolve in time.

The accuracy of the method relies on the properties of the logical to physical
coordinate transformations used.

Assume each cell has local coordinates, r ∈ S, with an invertible map into
physical coordinates, ψn : S 7→ Ωn.
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We define a family of local parameterizations, {ψn} to be linearity preserv-
ing, if points from the parametric space, S, are mapped such that if

xn+1 = Axn + b, (A.6)

then if xn = ψn(r),

xn+1 = ψn+1(r) = Aψn(r) + b = Axn + b (A.7)

Equivalently,

ψn+1 = Aψn + b (A.8)

The bilinear parameterization of quads satisfies this property: the two orthog-
onal coordinates, (r, s) ∈ [0, 1]2 linearly interpolate the vertices (see Figure
A.1 for node numbering)

ψn(r, s) = (1 − r) [(1 − s)xn
0 + sxn

3 ] + r [(1 − s)xn
1 + sxn

2 ] (A.9)

Clearly, ψn+1 = Aψn + b as xj
n+1 = Axj

n + b for j = 0, . . . , 3.

The barycentric coordinates of polygon with vertices {vi} also satisfies the
linearity preserving property. To demonstrate this, barycentric coordinates
satisfy the properties [30],

x=
∑

i

λivi = ψn(λ), (A.10)

∑
i

λi = 1, (A.11)

λi ≥ 0. (A.12)

If x has barycentric coordinates λ, then if xn = ψn(λ),

Ax=
∑

i

λiAvi (A.13)

Aψn(λ) + b=
∑

i

λiAvi + b
∑

i

λi (A.14)

Aψn(λ) + b=
∑

i

λi(Avi + b) = ψn+1(λ) (A.15)

where
∑

i λi = 1 was utilized in the second step.

If the family of transformations satisfy the linearity preserving property, then
we may analyze the accuracy of the constant parametric coordinate method.
If the parameterization family, {ψn}, is linearity preserving, then updating
the location of a material centroid by assuming its parametric coordinates
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are unchanged is exact for linear motions, since for an arbitrary subdomain
mapped with an affine transformation,

xc(Ω
n+1) = Axc(Ω

n) + b (A.16)

If the transformation is linearity preserving, then

xc(Ω
n+1) = ϕn+1(r) = Aϕn(r) + b = Axc(Ω

n) + b (A.17)

In general, the Lagrangian motion will not be linear. However, as was shown in
the previous section, for sufficient regularity in time an affine approximation
to the Lagrangian motion is second order accurate.
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