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SUMMARY

After introducing the general concept of mimetic differencing, we focus on two specific methodologies,
nonoscillatory methods and finite volume approximations. We provide a brief historical account of the
development of these two mimetic strategies. We then describe the extension of these strategies to new
techniques, a discrete operator calculus and implicit large eddy simulation. In each case, we provide
illustrative examples. Further abstraction of these ideas leads to the concept of equations of finite scale,
which we advocate as a more appropriate PDE model for constructing numerical algorithms. Published
in 2007 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

After more than a half century of computer simulation, the construction of numerical algorithms
remains more of an art form than a science. It appears that computational accuracy and stability
are necessary but not sufficient strategies to design effective algorithms. In this paper, we will offer
examples of an additional strategy, mimetic approximation, which often provides useful direction
for creating and improving numerical algorithms.

The underlying idea of mimetic approximation is to build key physical properties of the PDE
model exactly into the algorithm. As an example, consider fluid solvers based on Navier–Stokes
equations, which exactly conserve momentum. Consistent discretizations will conserve momentum
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to the level of truncation error. However, algorithms based on finite volume discretizations will
conserve momentum to the level of roundoff error. This is important because truncation terms, e.g.
as measured by modified equation analysis, estimate the error made in one computational cycle.
Although individually small, these errors can accumulate over the course of a simulation to an
unacceptably high level.

There are many physical properties that are candidates for mimetic approximation. The im-
portance of formulating the equations in conservation form was emphasized by Lax [1]. The
preservation of physical symmetries has been considered in [2, 3]. Algorithms to embed time
asymptotic behavior directly or through enslavement have been studied in [4, 5]. We refer the
reader to [6–10] and the many references contained therein.

It is not the goal of this paper to provide a comprehensive review of the field. Rather, we will focus
on two particular areas, that of finite volume methods and that of nonoscillatory approximations.
Although the underlying physical principle of finite volume methods has been long recognized
as conservation, it is only recently [11] that the connection between the numerical property of
nonoscillatory approximation and the second law of thermodynamics has been appreciated. Also,
the relation of artificial viscosity, as employed in Lagrangian/arbitrary Lagrangian Eulerian (ALE)
simulations, to monotonicity- and sign-preserving methods now widely used in Eulerian simulations
is very recently uncovered [12].

One common interpretation of finite volume methods is that one solves the equations of motion
in integral form as opposed to differential form. For example, the Navier–Stokes equations are
derived by first writing the conservation laws in integral form, and then taking the limit as the
volume of integration tends to zero. However, in the case of discrete algorithms, �x never tends
to zero. This suggests that in deriving the governing equations for simulation, one should retain
terms of order in �x and higher. We refer to these as equations of finite scale (EFS) and propose
that these are a more appropriate model for simulation. A technique for deriving the EFS based
on renormalization is described in [12, 13].

The origin of nonoscillatory algorithms lies in the earliest days of computing with the intro-
duction of artificial viscosity by von Neumann and Richtmyer [14]. The origins of finite volume
approximations are more hazy, but date back before 1960 [15]. In the next section, we will recall
some early results in these areas. In Section 3, we will describe the extension of finite volume
ideas to develop a discrete operator calculus by enforcing integral relations among the funda-
mental operators: gradient, divergence and curl. In Section 4, we will explain how finite volume
techniques and nonoscillatory approximation combine to produce a new technique for simulating
high Reynolds’ number turbulence—implicit large eddy simulation (ILES). Justification of this
technique then leads naturally to the idea of EFS. In Section 5, we apply the ideas of EFS to the
well-known process of convergence testing, with some unexpected results. We conclude the paper
in Section 6 with a short discussion of overarching issues and current research.

2. HISTORICAL NOTES

In fluid flows, Reynolds’ number represents the ratio of the integral scales where inertial effects
dominate to the smaller scales at which viscous dissipation occurs. High Reynolds’ number flows,
e.g. high-speed flows with shocks and most turbulent flows, present special challenges to simulation;
because the physical mechanisms of dissipation cannot be resolved, they must be modeled. Von
Neumann’s artificial viscosity [14] was the first such model.
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Artificial viscosity was introduced to suppress the unphysical oscillations that accompanied one-
dimensional Lagrangian simulations of shocks; it is a constructive method to enforce the vanishing
viscosity principle numerically. Over more than 50 years, generalizations to the original form have
been proposed to steepen the representation of shocks, to extend the formulations to simulations
in multiple dimensions and to more general meshes. Von Neumann’s artificial viscosity also was
the basis of the Smagorinsky model, the first subgrid scale model used for large eddy simulations
(LES) of turbulence; see discussions in [12, 16].

The von Neumann viscosity in one dimension, usually denoted by q , is

q = c0�(�x)2
(

�u
�x

)2

(1)

Here, � is density, u is velocity, �x is the mesh spacing and c0 is a dimensionless constant of order 1.
This formwas suggested in [14]without derivation. Kuropatenko subsequently suggested a rationale
for this form based on analytic solutions of the Riemann problem applied to the interface between
two computational cells; see [17]. Even though no rigorous derivation of this form exists, two
essential features of von Neumann’s original formulation have survived all subsequent development:
(1) the requirement for a mesh-dependent length scale and (2) the nonlinear dependence on the
flow field velocity.

The origins of finite volume differencing lie in unpublished reports at the US National Laborato-
ries—Los Alamos, Livermore and Sandia—as well as in complementary work in Russia. Some of
the early U.S. history is recounted in [15] while that in Russia is described in [8]. The primary is-
sues at that time concerned estimating a pressure gradient on an irregular mesh for two-dimensional
Lagrangian simulations of compressible flow. The first implementation of finite volume approxi-
mation estimated the pressure gradient by surrounding each vertex with a control volume, and then
converting the volume integral of the pressure gradient into a surface integral of pressure. In this
formulation, momentum is exactly conserved by detailed balance independent of the accuracy of
the estimate. Many choices of control volumes have been made and each choice leads to different
approximations [18].

3. DISCRETE OPERATOR CALCULUS

The early development of a discrete operator calculus, also termed compatible differencing or the
support operator method, proceeded independently in Russia and in the United States, but with
very similar results. The underlying idea of the discrete operator calculus is that certain analytic
relationships between the fundamental first-order differential operators divergence, gradient and
curl, should be maintained between their discrete analogs. We will illustrate this idea with the
formulation of the discrete divergence and discrete gradient operators, whose analytic counterparts
are adjoint to each; this analytic relationship is instrumental in the demonstration of the conservation
of energy.

In a Los Alamos report [19], and independently in a Russian journal article [20], a finite volume
divergence operator DIV was constructed for a staggered mesh Lagrangian algorithm on a logically
structured mesh by enforcing Reynolds’ transport theorem at the discrete level. That is, the analytic
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relation in two spatial dimensions (x, y)

dV

dt
=

∫
V (t)

divu dV (x ′, y′) (2)

is translated directly into the definition

(DIVu)i, j ≡ 1

Vi, j

∑
�∈A

[
�Vi, j
�x�

u� + �Vi, j
�y�

v�

]
(3)

Here, Vi, j is the volume of the computational cell with logical indices i, j and (u, v) are the
components of velocity, located at the vertices of the cell (denoted by the set A). Equation (3) is
a very convenient form to write a discrete divergence because it is coordinate invariant, can be
used for Cartesian, cylindrical, spherical, etc. coordinate systems. It is readily extended to more
general mesh types and to three dimensions.

Shortly following, a discrete gradient operator was constructed by requiring adjointness to that
divergence operator [21]. Although the original motivation for this work was to construct a positive-
definite discrete diffusion operator, it was quickly realized that these operators also allowed the
exact conservation of energy in Lagrangian simulations that did not utilize a total energy equation.
To construct the discrete gradient GRAD= (Gx ,Gy), we note the integral identity (for any scalar
function p and vector u and assuming a zero boundary integral)∫

V (t)
p(divu) dV (x ′, y′) +

∫
V (t)

(grad p) · u dV (x ′, y′) = 0 (4)

This identity is used to prove the conservation of total energy for the (analytic) Navier–Stokes
equations. We write a discrete analog for an unstructured mesh, estimating the first integral as a
sum over all cells B and the second as a sum over all vertices A.∑

b∈B
pb(DIVu)bVb + ∑

a∈A
[(Gx p)aua + (Gy p)ava]Va = 0 (5)

Here, Va are the control volumes associated with the vertices, which we assume cover the mesh,∑
b∈B

Vb = ∑
a∈A

Va

By comparing the coefficients of ua in the first and second sums, we obtain explicit expressions
for the components of the gradient of a scalar function p

(Gx p)a =− 1

Va

∑
b∈Ba

�Vb
�xb

pb (6)

(Gy p)a =− 1

Va

∑
b∈Ba

�Vb
�yb

pb (7)

Here, Ba is the set of cells that share the vertex a. As is the case of divergence, the coefficients
in the above expressions depend only on the geometry of the mesh and are generally applicable
to any cell-centered scalar field. More details of these specific calculations and their import to the
conservation of energy can be found in [7, 15]. Equivalent results are found at even earlier dates
in the Russian literature in [20].
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Figure 1. Two simulations of the Noh problem on a cartesian mesh (slightly different scales).

We will illustrate the effectiveness of the discrete operator calculus with an example related
to the construction of a tensor artificial viscosity. One of the continuing issues in formulating an
artificial viscosity for multidimensional Lagrangian calculations is to minimize the dependence of
the solution on the relation of the grid to the flow symmetries, a problem termed mesh imprinting.
In [22], a tensor viscosity is formulated by systematic construction of the discrete divergence of
a tensor and the compatible discrete gradient of a vector. The derivation is algebraically complex
requiring the use of local coordinate systems and a metric tensor, but otherwise follows the same
ideas as described earlier in this section. For details of this derivation, the reader is referred
to [22]. Figure 1 compares the mesh resulting from simulations of the Noh problem [23] using
a standard edge viscosity (left panel) with that using the new tensor viscosity (right panel). The
Noh problem consists of a converging shock with point symmetry and is a standard for testing a
code’s ability to preserve symmetry and for evaluating the effects of wall heating. Here, we use a
cartesian grid that does not mirror the expected symmetries of the flow. In the left panel, jets have
formed along the coordinate axes, resulting in a highly deformed grid. In the right panel, the new
viscosity has a circular shock of the correct radius and a smooth grid behind the shock.

There are many other examples of the benefits of the discrete operator calculus; e.g. applications
to Maxwell’s equations [24], to diffusion equations [25], etc. Another related issue concerns the
null space of discrete operators. Because of the finite size of a computational cell, the null space of
the discrete gradient may be larger than that of the analytic gradient. On quadrilateral Lagrangian
meshes, this enables a mesh distortion known as hourglassing. A method for mitigating hourglass
patterns is described in [26]. The importance of preserving vector identities was also observed
in [27, 28]. The unifying theme of the results of this section is the formulation of the targeted
mimetic property in integral form.
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4. EQUATIONS OF FINITE SCALE

In the early 1990s, an unexpected result arose from the community doing LES of turbulent flow.
As noted in the previous section, the dissipative scales in most turbulent flows of practical interest
cannot be resolved in numerical simulation, which then requires modification of the governing
PDE to include subgrid models that account for the effects of the unresolved scales of motion.
The unexpected result, documented independently by several authors, was that simulations based
on a particular class of fluid solvers could produce excellent results with no need for any explicit
subgrid scale model. The results encompassed a variety of algorithms applied to a diverse spectrum
of problems. The commonality is that all solvers were based on nonoscillatory finite volume (NFV)
schemes. Details of this early work and many examples of applications can be found in [29] and
the references therein.

Despite the many successes and the computational advantages of this approach, the lack of a
formal mathematical basis has impeded the acceptance of ILES by the mainstream of the turbulence
modeling community, even though the underlying NFV schemes are widely used in computational
fluid dynamics. In 2000, a rationale for ILES was put forward [13]. Noting that the dependent
variables in finite volume codes are averages of quantities over the computational cells, e.g.

ū ≡ 1

�x

∫ x+�x/2

x−�x/2
u(x ′) dx ′ (8)

and so ū will explicitly depend on �x for any nonlinear solution u, the authors proposed:

• that the Navier–Stokes equations are not the best choice of PDE model upon which to base
the algorithms, and that a more appropriate model should depend explicitly on the size of the
cells. The proposed model was termed an EFS.

• that NFV methods were successful because they accurately solved the EFS.

The body of [13] contains two new results. First, the authors derive the EFS for a one-dimensional
fluid whose every point obeys Burgers’ equation. Second, the authors derive the modified equation
for a particular NFV solver, MPDATA [30] applied to Burgers’ equation. The EFS, keeping only
space-averaged terms, is

�ū
�t

= −ū
�ū
�x

+ �
�2ū
�x2

− �Q
�x

(9)

where L is the averaging length, � is the viscous coefficient and

Q ≡ 1

6

(
L

2

)2 (
�ū
�x

)2

(10)

That is, the EFS is Burgers’ equation augmented by one additional term of O(L2). Note the
congruence of Q with q in Equation (1), if L is identified with the cell size �x .

The modified equation analysis in [13] of the MPDATA algorithm reveals three types of
truncation terms that are of order in �x2. First, there is a term proportional to �Q/�x , which
arises directly from the finite volume character of MPDATA. Second, there is a similar term
that arises from the nonoscillatory property of MPDATA, but that is absolutely dissipative on a
cell-by-cell basis. Third, there is a dispersive term that represents numerical error. The similarity
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of the EFS and the MPDATA modified equation forms the basis of the authors’ rationale
for ILES.

We now offer some general observations about the EFS and their relation to NFV methods.

• The additional terms of the EFS arise directly from the nonlinearity of the advective terms.
Thus, similar terms will appear in the EFS of both the incompressible and the compressible
Navier–Stokes equations. The EFS for two-dimensional incompressible Navier–Stokes has
been derived in [12].

• The derivation of the EFS is an analytic result, valid for flows of any Reynolds’ number
whether laminar or turbulent, and independent of numerical issues.

• The length scale L in Equation (10) should be associated with an observer when comparing
with experimental results, or with the mesh size when constructing numerical algorithms.
That the solution of the EFS depends on L mirrors the fact that different observers will
see different results. This observation, though somewhat philosophical, has very practical
implications for convergence testing that we will discuss in the next section.

• The appearance of the �Q/�x term is not unique to MPDATA, but is generic to all NFV
schemes; this is a direct consequence of finite volume approximation. In other words, all
finite volume schemes solve EFS that depend explicitly on �x.

• The local dissipative property of NFV schemes is a sufficient but not necessary condition to
insure that simulations obey the second law of thermodynamics. ILES simulations based on
different NFV algorithms are essentially similar, but not identical. One might hypothesize that
NFV algorithms whose dissipation is order �x3 or higher would exhibit some advantages.
This hypothesis is confirmed in [12].

One of the primary functions of explicit subgrid scale models is to dissipate kinetic energy
at a physically correct rate. In the following calculation, we demonstrate that an ILES simu-
lation of decaying turbulence also dissipates energy at the physically correct rate. Kolmogorov
derived an exact relation between the third-order global moment of the longitudinal velocity
and the rate of energy dissipation [31]. We have analyzed a simulation of decaying turbulence
in a three-dimensional box with periodic boundary condition. The simulation is inviscid—that is,

Figure 2. Time history of the total energy Etot and energy dissipation rate −Edot for N = 255.
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Table I. Ratio of the left and right-hand-sides of Equation (11)
versus time, verifying Kolmogorov’s 4/5th law.

Time 1.00 1.25 1.50 1.75 2.00

−15〈u3x 〉�x2/(4�) 0.785 0.933 1.028 1.054 1.019

the physical viscosity � = 0. The mesh consists of 2553 cells with uniform spacing �x in all direc-
tions. The time history of energy and energy dissipation are shown in Figure 2. More description
of the simulation can be found in [32]. Keeping in mind that we used uniform spacing �x , and
that the turbulence is assumed (in the law) to be isotropic, the 4/5th law can be written as

3〈u3x 〉 = −4

5

�

�x2
(11)

where �= �/�t(Etot) can be found in Figure 2. In Table I, we show the ratio of the left- and right-
hand sides of Equation (11). At time t = 1.0, the ratio is less than unity, probably indicating that
the flow is not yet sufficiently isotropic. At later times, the agreement is excellent. The satisfaction
of the 4/5th law demonstrates that energy dissipation rate is independent of the viscosity and is
controlled in simulation, as it is in theory, by the large scales of the flow.

5. CONVERGENCE TESTING

Convergence testing is a strategy commonly used to verify fluid codes. One begins by choosing a
problem to which the exact solution—which we will term truth—is known. One next simulates that
problem on a sequence of grids of increasing resolution. Comparison of the simulation results with
truth produces a set of errors as a function of resolution. If the error decreases as the resolution
increases, one says the code is convergent for that test problem. In the case of a convergent code,
one can quantify the result by plotting the error as a function cell size �x . If the graph can be fit
by the model error ∼ (�x)p, then one says the code is in an asymptotic regime for that problem,
and has an order of convergence p.

In the previous section, we pointed out that for finite volume simulations, truth should depend on
the resolution. This suggests two modifications to the standard convergence testing process. First,
to calculate error, one should integrate the exact solution over the volume of the computation cell
[in analogy with Equation (8)] before comparing with the calculated value. Since the difference
between a point value, say at the center of a cell, and the average over the cell is of order �x2, the
importance of this modification seems clear. Our second suggestion is less obvious. We propose
that the results of simulations at all resolutions be moved to the coarsest mesh before evaluating
the error. This has both philosophic and practical consequences.

Consider that, from the point of view of the test problem, there is a unique specification of the
discrete problem for each resolution. However, from the point of view of the coarsest resolution,
there are many equivalent problems at the finer resolutions, each corresponding to a different
choice of the initial conditions of the scales unresolved on the coarse mesh. Thus, the error of the
simulation on the coarse mesh is the sum of two terms—discretization error and uncertainty due
to unknown initial conditions. By moving each of the simulation results to the coarsest mesh, we
average out the smaller scales and eliminate them as a source of error in studying convergence,
thus isolating the discretization error.
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Figure 3. Showing the spatial distribution of absolute value of error for the N = 512 simulation. A notional
profile of density is superposed, illustrating error is largest at the contact and the shock.

To illustrate these ideas, we present results from a convergence study of simulations of a simple
shock tube. This flow, with parameters described in [33], is a popular test problem as it combines
three fundamental fluid structures—shocks, contacts and rarefactions. Our simulations employed
an Eulerian framework, realized as a Lagrangian integration plus a total rezone of the grid. As we
do not consider the errors in detail, nor compare with other code results, we omit further details
of the method.

Our convergence study consists of a sequence of seven runs of the Sod problem, with the
coarsest mesh having N = 128 cells, then refined successively by a factor of 2; the finest mesh is
N = 8192. Because the solution is self-similar, it is sufficient to chose a problem time long enough
that initial conditions are forgotten and short enough that the flow at the boundaries is undisturbed.
A notional profile of density (i.e. with arbitrary scale) is shown in Figure 3, with the absolute
value of error superposed. The figure shows that the largest errors occur at the contact (as would
be expected in an Eulerian simulation), and the shock. However, there is significant error within
the rarefaction as well. We assess error in an L2 norm using the density field in three ways:

• Compute the difference of the numerical result �i with the cell-centered value of truth.
• Compute the difference of �i with truth averaged over the cell.
• Move each of the finer resolutions to the coarsest mesh while conserving mass, and then
compute the difference of this averaged numerical result with truth averaged over the coarsest
mesh.

The results of these three measures of error are shown in the convergence plot in Figure 4. The
first two measures of error are essentially identical; they indicate an order of convergence as
p≈ 0.58. This is in contrast to the coarsened measure of error, which indicates p≈ 1.12. That is,
our suggested procedure for convergence studies indicates an order of convergence twice as large
as the more conventional procedure.

We remark that while averaging filters the smaller scales of motion from the solution, it does
not remove the dynamical effects of those scales, i.e. the backscatter. The source of these effects is
the nonlinearity of the equations, e.g. as manifested in the advective terms. The strength of these
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Figure 4. Convergence diagram for the Sod problem for three different L2 measures of error.

effects then will be most important in high Reynolds’ number flows. Ultimately, in the limit of
turbulent flow, it is necessary to extend the averaging process to the integral scales of the problem
and to consider the convergence of global moments of the flow.

The previous paragraph suggests that one might deliberately perturb the initial conditions on the
more highly resolved meshes to assess the sensitivity of the coarse solution to unresolved scales,
leading to a constructive process for estimating the uncertainty of simulation.

6. DISCUSSION

In this paper, we have offered two general strategies for constructing numerical algorithms. First,
we described mimetic methods that build selected physical properties of the model equations
directly into the numerical approximations. Second, we argued that the model equations themselves
should be written in integral form employing no assumptions about the smallness of the volumes.
We termed these the EFS. To illustrate these ideas, we focused on two examples of mimetic
differencing—finite volume methods and nonoscillatory approximation. For each of these, we
provided a short historical context, and then followed their evolution into more modern applications.
We included computational examples to illustrate their effectiveness.

The development of a discrete operator calculus described in Section 3 made use of the fun-
damental definitions of the first-order differential operators in integral form. Most of these results
were derived to facilitate spatial differencing on irregular meshes that result from Lagrangian and
ALE codes. While the original concept of finite volumes in Section 2 employed detailed balance to
ensure exact conservation of momentum, our extensions invoked adjointness to ensure the discrete
analog of integration by parts, leading to the conservation of total energy. We note that exact
conservation in either case does not imply accuracy. In particular, artificial viscosity is required to
damp unphysical oscillations in Lagrangian simulations.

The extension of these results to non-Lagrangian frameworks, and in particular to the terms
representing material advection, involved the additional constraint of nonoscillatory differencing.
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Modified equation analysis reveals that such algorithms implicitly contain terms analogous to
artificial viscosity. This realization led to the idea that the origin of these terms lay in the model
PDEs themselves, when appropriate modifications are made to account for the definition of finite
volume variables, e.g. Equation (8). We have termed these the EFS.

Current efforts to improve the mimetic framework for algorithm development continue in several
directions. In Section 5, we advocated several modifications to the standard process of convergence
testing with the goal of separating the discretization error (an issue of numerics) from the uncertainty
of unknown initial conditions (an issue of physics). We also indicated how the modified procedures
could lead to a constructive approach to estimating simulation uncertainty.

A second direction concerns the derivation of the EFS for compressible flow. One immediate
result here is the appearance of an artificial heat conduction, arising from the advective terms of the
energy equation. Such a term was advocated by Noh [23], but is not yet commonly used in modern
Lagrangian algorithms. However, this research is complicated by the presence of the equation
of state, whose finite volume extension requires input from nonequilibrium thermodynamics. For
example, kinetic energy dissipated by the subgrid scale models of the EFS (i.e. terms depending
on �x) may require a finite time to show up as internal energy where it affects the macroscopic
pressure.

We end our discussion with the following quote from Phil Browne, one of the pioneers of finite
volume differencing [34].

By integrated gradients, we mean taking a small element and applying the physics to it to
get the difference equation directly. This seems like a good approach because we leave out
the step of shrinking quantities to zero (which often drops out terms that are important as the
difference equations are applied over and over again in time-dependent problems).
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