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Abstract

Remapping is one of the essential parts of most arbitrary Lagrangian-Eulerian

(ALE) methods. In this short paper we focus on multi-material fluid flows.

We present a hybrid remapping method combining the swept remapping algo-

rithm in pure regions with the intersection-based remapping algorithm close

to material interfaces. We describe the hybrid remapping method in two

formulations, as a one-step and a two-step procedure, and compare behav-

ior of both approaches with the standard intersection-based algorithm using

several numerical examples.
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1. Introduction

There exist two basic approaches for hydrodynamic simulations – Eulerian

and Lagrangian methods. Eulerian methods utilize a static computational
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mesh and the fluid flows in the form of mass flux through it. In the La-

grangian framework, the computational mesh moves with the fluid and nat-

urally follows the changing computational domain. Therefore, it is more

suitable for certain types of applications including severe compressions and

expansions. Due to the mesh motion, its tangling or degeneration can occur

causing the failure of the simulation. In the pioneering paper [4], the Ar-

bitrary Lagrangian-Eulerian (ALE) method was introduced, combining best

properties of both approaches. The computational mesh follows the physi-

cal domain due to the embodied Lagrangian solver, while the Eulerian part

(consisting of mesh rezoning followed by remapping, interpolating conserva-

tively all fluid quantities from the Lagrangian to the rezoned mesh) keeps it

smooth. The ALE approach became very popular, and many authors con-

tributed to this topic [1, 10, 5, 12]. For real life applications, multi-material

ALE must be used, allowing more materials to share the same computational

cell.

We focus on the remapping stage of the multi-material ALE algorithm.

There exist generally two approaches based on 1) approximate (swept) fluxes

and 2) intersections. In simulations with only one material, the simple (and

fast) swept approximation can be used, integrating their piecewise-linearly

reconstructed densities in the swept region, defined by the motion of the

particular mesh edge in the rezoning stage, see for example [9, 11, 8]. In

the case when several materials are present, the rezoned mesh will include

mixed cells, and the classical (intersection-based) approach must be used, in

which pure material polygons of the Lagrangian mesh are intersected with

the new mesh cells, and summed up to the total value of each fluid quantity
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in the new cells. As intersections are used, this approach can become rather

expensive in 2D and almost impossible to use in 3D. The intersection-based

remapper can be also formulated in a flux form [11].

In this paper, we describe a new method that we call hybrid remapping,

combining both approaches. It incorporates the cheap swept approach in

pure regions and employs intersections only in the regions where more mate-

rials are present. Hence, intersections are avoided in pure regions that often

cover most of the domain. This hybrid remapping approach can dramatically

decrease the cost of the multi-material remap.

The rest of the paper is organized as follows. In Section 2, the 2-step

hybrid remapper is discussed. It is based on a clever trick – in the first

step, only pure regions are rezoned and remapped by the swept approach,

while in the second step, mixed regions are treated by the intersection-based

approach. In Section 3, the 1-step hybrid remapping approach is discussed, in

which the mass (and other) fluxes are constructed at once, by the combination

of the swept and intersection-based fluxes. In Section 4, the numerical errors

and time costs of both approaches are compared with the standard methods.

2. Two-Step Hybrid Remap

In the two-step hybrid remapping method, treatment of pure and mixed

cells is separated into two distinct phases. At the beginning of the re-

zone/remap stage, every mesh node must be marked as pure or mixed. If all

cells attached to a node are pure and contain the same material, the node is

pure, otherwise it is marked as mixed. For an example of the marking process,

see image (a) of Figure 1, where two materials separated by a straight inter-
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face are remapped from a randomly perturbed to the equidistant orthogonal

mesh.

In the first (pure) stage, only pure nodes are moved in the rezoning

process, and the swept remapping is used, see image (b) of Figure 1. As

all pure nodes are surrounded by pure cells only, no mixed cell is affected

by the mesh motion, and therefore no multi-material cells participate in the

swept remap. In the second (mixed) stage, mixed nodes are rezoned, and the

intersection-based remapper follows, capable of remapping fluid quantities in

the presence of multiple materials, see image (c) of Figure 1. Hence, the exist-

ing swept and intersection based remappers are naturally combined without

doing anything special between the pure and mixed cells. On the other hand,

the buffer cells (layer of pure cells attached to the mixed ones) are treated

in both steps, increasing the overhead cost of the 2-step hybrid method. For

more details on the 2-step hybrid remapper and its cost analysis, see [3].

3. One-Step Hybrid Remap

The 1-step hybrid remap [7] computes all fluxes at once for quadrilateral

meshes. It combines the swept volume fluxes

Vc̃ = Vc +
∑

e∈∂c

Ωe δVe = Vc +
∑

c′∈C(c)

F V,swept
c,c′ (1)

with the intersection based material volume fluxes [11]

Vc̃,k = Vc,k +
∑

c′∈C(c)

(Vc̃∩c′,k − Vc∩c̃′,k) = Vc,k +
∑

c′∈C(c)

F V,exact
c,c′,k . (2)

Here, c represents a cell in the Lagrangian mesh, c̃ is the corresponding

rezoned cell, k is the material index, e is an edge of cell c, and C ′(c) is
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a set of all neighbors of cell c. δVe is the swept volume corresponding to

edge e, defined by the motion of its vertices to the rezoned positions, and

Ωe is equal to either +1 or −1, depending on the orientation of edge e in

cell c. The swept fluxes are equal to zero for corner neighbors, while the

intersection-based corner fluxes are present. Let us note that no additional

corner coupling error is created, there is no corner flux present in the classical

swept approach, while in the exact integration method it is present. The same

formulas as in (1) and (2) can be used for the computation of fluxes of other

simple integrals,
∫

x and
∫

y, instead of the flux volume V =
∫

1. All these

integrals can be precomputed at the beginning of the remapping step, and

reused for the computation of fluxes of all quantities.

The pure/mixed nodes are marked as in the 2-step hybrid remapper.

Next, edge fluxes are marked. An edge flux is pure if both involved vertices

are pure, and mixed otherwise, see image (a) of Figure 2. A corner flux is

mixed if the involved vertex is mixed, and it is marked as hybrid otherwise.

The remapping process sweeps through the cells and through all fluxes in

each cell (including the corner ones). For pure/mixed edges, the fluxes are

computed by swept/intersection-based remap, as required. For mixed corner

fluxes, they are computed by intersections. The remaining hybrid corner

fluxes are treated in the following way. If both cell edges attached to this

node (+ and − in image (b) of Figure 2) are swept, the corner flux is ignored

as there is no discrepancy to be fixed. In the opposite case (c), there is a

discrepancy between the swept and exact edge fluxes shown as the yellow

triangles in image (d) of Figure 2. In this case, we mark the opposite mesh

edges by symbols −− and ++. In the case shown in image (d) of Figure 2, we
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compute the intersection of the new edge ẽ++ with the old edge e− (marked in

(d) by magenta crosses), construct the triangle surrounded by the intersection

and the old and new position of node n, integrate over this triangle, and add

this hybrid flux into the mixed flux through e−. The described process helps

in most situations with just one exception, when the sideward swept region is

non-convex and passes through the node, as shown in Figure 3. This situation

is easily detected – only one of four possible mixed intersections e+ ∩ ẽ−−,

ẽ+∩e−−, e−∩ ẽ++, and ẽ−∩e++ exists instead of 2 in the standard situation from

Figure 2. As before, this triangle must be added to the involved (possibly

existent sideward mixed) flux as before, and two cases can occur. If the hybrid

node moves outward of the mixed flux (images (a) and (b) of Figure 3), the

vertically and horizontally dashed yellow triangles contributed to the mixed

flux when treating it from both attached cells, c and c′. These triangles

overlap (double dashed yellow triangle in image (b) of Figure 3), so this

triangle must be recovered by connecting the old and new nodal position

with the extra same-sign intersection e+ ∩ ẽ++, ẽ+ ∩ e++, e− ∩ ẽ−− or ẽ− ∩ e−−,

whichever exists. This contribution must be removed from the mixed edge

flux. In the opposite case shown in images (c) and (d) of Figure 3, the

hybrid node moves inward, no triangles were added to the mixed flux (they

belong to the possible sideward edge flux), and a part of the swept and

intersection fluxes overlap. The overlapping triangle is bounded by the nodal

coordinates and the existing same-sign intersection, and this contribution

must be removed from the mixed flux. This process ensures smooth transition

of the intersection-based fluxes to the swept fluxes in the buffer region.
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4. Numerical Examples

Here, we present several numerical examples performed using our multi-

material remapping research code. All tests start on an equidistant orthogo-

nal mesh in 〈0, 1〉2, 100 random mesh movements followed by the remapping

process are performed, and in the last step, the data are remapped back

to the initial mesh. The random mesh motion is used as it introduces all

possible combinations of edge movements through the material interface and

therefore tests the consistency of the remapper. Only material density, vol-

ume fractions, and material centroids are remapped in the described flux

form. For more details on centroid remap, see [3, 6]. The MOF method [2]

was used for material reconstruction in all tests. All tests were performed on

a 2.7 GHz AMD Opteron computer.

In the first test, we have remapped a single-material global linear function

on meshes with resolutions from 16×16 to 512×512 cells. All tested methods

(intersections, 1-step, 2-step hybrid, and even the swept method in this single-

material test) prove exact preservation of the linear profile up to the machine

accuracy. The time costs (in logarithmic scale) are shown in the upper image

of Figure 4. We see that the cost of the hybrid methods is very close to

the swept approach, while the one-step hybrid cost almost coincides with

the swept cost. The exact intersection-based remapper is significantly more

expensive.

In the second test, we have remapped two distinct linear functions in two

materials separated by a straight interface, as shown in Figure 1. We omit the

swept method in multi-material tests. All methods show exact preservation

of a multi-material linear function, even in mixed cells.
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Table 1: Material Lmat
1 error after 100 remapping steps between random meshes of different

resolutions, performed by different remapping methods. Data for two different non-linear

functions separated by circle interface shown.

Method 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

intersections 1.03 · 10−2 1.60 · 10−3 2.68 · 10−4 5.41 · 10−5 1.29 · 10−5 3.45 · 10−6

2 step hybrid 9.32 · 10−3 1.48 · 10−3 2.49 · 10−4 5.32 · 10−5 1.32 · 10−5 3.56 · 10−6

1 step hybrid 9.18 · 10−3 1.46 · 10−3 2.47 · 10−4 5.29 · 10−5 1.32 · 10−5 3.57 · 10−6

In the last test, we define a nonlinear density function 10 + (x − 1
2
)2 +

(y− 1
2
)2 inside a circle of radius 1

4
in the center of the domain, and 10 + e2x y

otherwise. The central circle includes a different material than the rest of

the domain, the material interface is therefore curved. The computational

cost is shown in the lower image of Figure 4. We can see the benefit of the

hybrid approaches when compared with the costly intersections. In Table 1,

the numerical errors of material density ρc,k with respect to the analytic

density (Lmat
1 =

∑
∀c

∑
∀k∈c|ρc,k−ρ(xc,k, yc,k)|Vc,k/

∑
∀c

∑
∀k∈c ρ(xc,k, yc,k)Vc,k)

are shown. Errors originate from two sources – non-linear density and the

MOF error due to the curved interface. We observe second order accuracy

for all methods, and their errors are comparable.

5. Conclusions

We have described two approaches for combining the swept and intersection-

based fluxes in the presence of multiple materials, decreasing the computa-

tional cost of the remapper due to costly intersections. To add the 2-step
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hybrid method into an existing code, one does not need to do any work

on the side of the remapper, changes in the main routine logic are, how-

ever, required. The opposite is the case for the 1-step hybrid remapper.

Both methods show significant cost improvement when compared with the

intersection-based approach, and exhibit numerical errors that are compara-

ble with existing methods for both linear and non-linear densities.
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Figure 1: Straight interface dividing 2 materials on a randomly perturbed quadrilateral

mesh. (a) Initial situation, mixed cells marked by thick edges, mixed nodes by magenta

circles. (b) Pure step – pure nodes moved, doing swept remap, new mesh in yellow edges.

(c) Mixed step – mixed nodes moved, doing intersection-based remap.
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Figure 2: One mixed cell in a multi-material mesh (a) – material segment shown as dark

blue triangle, mixed nodes highlighted by magenta circles, and mixed and pure edge fluxes

highlighted by magenta and cyan ellipses. Pure node n viewed from cell c (b), as shown

by the red arrow, treated by a purely swept approach. Edges of old (black) new (green)

meshes annotated by + and − signs with respect to cell c. Hybrid node n viewed from

cell c (c), cell c′ is neighbor over the hybrid-modified edge. Fluxes (d) computed either by

swept movement (light blue) or intersections (red), yellow triangles represent the hybrid

correction of the intersection based fluxes. Brown arrows show, from which cell is the

reconstruction taken to construct the flux.
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Figure 3: Similar situation as in Figure 2, exceptional situations originated from self-

overlapping swept region passing through the hybrid node. Situation (a) – hybrid node

moving outward from the intersection treated edge. Sketch (b) (showing only fluxes cor-

responding to vertical edges) with old and new edge intersections highlighted by magenta

crosses, and the hybrid corrections from the yellow triangles (two additional left and right

triangles, which overlap and form the central triangle). Situation (c) – hybrid node mov-

ing toward the intersection treated edge. Sketch (d) shows the purple triangle where the

swept and intersection fluxes overlap.
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Figure 4: Time of simulation (in seconds) of 100 remapping steps between randomly chang-

ing meshes of different resolutions, performed by different remapping methods. Graphs

are shown in logarithmic scale for single-material linear function (top) and two different

non-linear functions separated by circle interface (bottom).
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