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Abstract
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1 Introduction

Transfer of data between different grids, subject to constraints, is fundamental to many
numerical algorithms. Prolongation and restriction operators in multilevel and adaptive
methods, methods on non-matching grids, and computer simulations of problems with
multiple physics and/or scales are just few examples that require this capability; see, for
example, [3], [9], [11], [16], [20], [22], and the references cited therein.

Another important example, that served to motivate a large part of this work, is Arbitrary
Lagrangian-Eulerian (ALE) methods [12]. These methods combine a Lagrangian update
of the solution and the computational grid with rezoning and remapping phases wherein
the grid distortion accrued during the Lagrangian motion is reduced, and the approxi-
mate solution is transferred to the improved mesh. A computational strategy that can
combine the best properties of Eulerian and Lagrangian methods is to execute rezoning
and remapping at every time cycle. The accuracy of the resulting continuous rezone ALE
methods strongly depends on quality of the last, remapping phase and the availability
of efficient and accurate remappers. A good remapper must also be robust and prevent
pollution of solutions by unphysical features. For instance, remapping of concentrations
or density fields must preserve positivity and total mass [20], while a magnetic flux B
must remain divergence-free so as to avoid the spurious magnetic monopoles; see [4] and
[23] for a discussion of the importance of this constraint in MHD.

In a continuous rezone ALE method individual grid movements can be limited to small
perturbations of the initial mesh. To take advantage of this fact, remappers are often
defined by adapting explicit advection algorithms 3 which use information only from the
neighboring cells. However, connection between the advection equation and remapping
of face element vector fields does not appear to be well-understood, in particular, the
discretization errors engendered by advection remappers are not easily identified.

At the same time, it is clear that remapping represents an interpolation procedure that
may be additionally constrained to provide physically meaningful solutions [20]. Associa-
tion of remap with interpolation rather than transport is more flexible because it allows
formulation of algorithms on arbitrary pairs of grids, including grids with different topolo-
gies and grids that are not close to each other. If, on the other hand, the grids happen to be
close and/or have the same connectivity, then constrained interpolation can be designed
to take advantage from these features, making it potentially as efficient as an explicit
transport based remapper. In addition to generality, constrained interpolation also allows
to circumvent the often delicate and difficult issue of high order upwind interpolation and
slope limiting for face element discretizations and unstructured grids [1]-[2], [5], which are
required in accurate transport algorithms.

In this paper we employ the constrained interpolation (CI) paradigm to develop a new

3 This process can be reversed in the sense that a remap algorithm can be used to define an
transport scheme; see [6].
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remap algorithm for divergence-free finite element fields in two space dimensions without
reference to advection. To avoid the costly solution of indefinite linear systems engendered
by the use of Lagrange multipliers to enforce the constraint, our algorithm starts with
an explicit recovery of a ”vector” potential from the fluxes of a solenoidal field B. This
process is a key component of the remapper and requires a discrete exactness property [7]
to ensure the existence of discrete finite element potentials. The accuracy of the recovered
potential is increased by an application of a postprocessing technique. A simple algorithm
based on extension of the interpolation stencil along the cell faces is applied to provide
more accurate values at face midpoints which are then used to compute an eight node
serendipity representation of the potential. Then, local optimization is used to determine a
convex combination of high and low order potentials that minimizes the energy mismatch
between the original and the remapped fields. This optimized combination is interpolated
to the target mesh, where application of the curl operator gives the desired divergence-free
face element field. When the old and the new meshes have different connectivities and are
not close to each other, interpolation requires global searches to locate the appropriate
cells on the old mesh. However, in a continuous rezone ALE setting, only local searches
will be necessary. In this case efficiency of a CI remapper is comparable to that of a
transport based one.

The modular design of the CI remapper makes it very flexible and easy to specialize for
different discretizations. The key, recovery, phase of the algorithm can be extended to any
setting that provides an exact sequence of finite dimensional spaces, including mimetic fi-
nite differences [13]-[15], co-volume methods, or finite elements. The postprocessing phase
can be implemented using interpolation techniques [17]-[18], polynomial preserving recov-
ery [25]-[26], or reconstruction procedures from, e.g., finite volumes [19].

There are several important and novel aspects of our method that set it apart from the
algorithms documented in the literature. Existing solutions that preserve exact divergence-
free property are, as a rule, defined on Cartesian grids, and operate directly on the fluxes
of the divergence-free field in a dimension by dimension basis; see e.g., [3], [16], and
[22]. Many of these algorithms impose additional restrictions, such as grid hierarchy, or
factor-of-two refinement. Interpolation on unstructured grids is considered in [9] and [11].
However, these papers adopt the technique of Lagrange multipliers to enforce the relevant
constraint. This leads to a global saddle-point optimization problem for the remapped field
that is not always easy to solve. In contrast, our approach eliminates the need for Lagrange
multipliers by using potentials so that divergence-free condition is automatically satisfied
by virtue of the definition of the remapped field as a curl. Reluctance to use potentials
is perhaps due to the widely held opinion that their computation cannot be done in an
effective explicit manner. However, as we demonstrate in this paper, such concerns are
unfounded because potentials can be determined very efficiently.

To save time and space, in this paper we formulate and present the CI remapper for
finite element spaces defined on logically rectangular grids. We validate the new method
using a suite of two-dimensional cyclic remap example problems and compare it with a
local remapper [21] derived from a finite element extension of the constrained transport
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Fig. 1. Numbering and orientation choices for a logically rectangular grid.

(CT) algorithm of Evans and Hawley [10]. Numerical examples are selected to test critical
aspects of the remap process such as handling of discontinuities and energy dissipation.

The paper is organized as follows. Section 2 introduces the relevant finite element spaces
and reviews the exactness property that is fundamental to the explicit potential recovery.
The remap problem is stated and solved in Section 3. Section 4 provides a brief description
of a CT remapper. The paper concludes with a series of numerical experiments collected
in Section 5 that demonstrate the performance of the new algorithm.

2 Finite element spaces

We define the finite element spaces used in this paper by a restriction of an exact sequence
of finite elements defined with respect to an unstructured hexahedral mesh. For more
details about the hexahedral elements and their construction we refer to [7] and [24].

2.1 Logically rectangular oriented meshes

Let Ω ∈ R2 be an open bounded domain with polygonal boundary ∂Ω, equipped with
physical coordinates (x1, x2) ≡ x. In what follows we restrict attention to domains that
can be covered exactly by quadrilateral elements K arranged in a logically rectangular
mesh Th with nodes xi,j, i = 1, . . . n; j = 1, . . . ,m. The horizontal faces Fi+1/2,j of Th

connect adjacent nodes (xi,j,xi+1,j) that differ in their first index. The vertical faces
Fi,j+1/2 connect adjacent nodes (xi,j,xi,j+1) that differ in their second index. For i =
1, . . . n− 1; j = 1, . . . ,m− 1 each quadrilateral Ki+1/2,j+1/2 in the mesh is associated with
the four nodes xi,j, xi+1,j, xi,j+1, xi+1,j+1, and the four faces Fi+1/2,j, Fi+1/2,j+1, Fi,j+1/2,
Fi+1,j+1/2; see Fig.1. On a given element Ki+1/2,j+1/2 we will also use the local indexing

FS = Fi+1/2,j; FN = Fi+1/2,j+1; FW = Fi,j+1/2; FE = Fi+1,j+1/2;

xSW = xi,j; xSE = xi+1,j; xNW = xi,j+1; xNE = xi+1,j+1.
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The sets of all nodes, faces and quadrilaterals in Th are denoted by N (Th), F(Th), and
K(Th), respectively. Let (ξ1, ξ2) ≡ ξ denote a reference frame in R2. We assume that
all quadrilaterals in K(Th) are strictly convex. Then; see [8], for every Ki+1/2,j+1/2 ∈
K(Th) there exists a unique bilinear map Fi+1/2,j+1/2 : K̂ 7→ Ki+1/2,j+1/2; Fi+1/2,j+1/2 =

(F 1
i+1/2,j+1/2, F

2
i+1/2,j+1/2), where K̂ = [−1, 1]2 is the reference element. The inverse map

Gi+1/2,j+1/2 : Ki+1/2,j+1/2 7→ K̂; Gi+1/2,j+1/2 = (G1
i+1/2,j+1/2, G

2
i+1/2,j+1/2) is not polynomial

unless Ki+1/2,j+1/2 is a rectangle or a parallelepiped. For simplicity, if there’s no chance for

confusion, we will omit the indices and simply write F and G. For every ξ ∈ K̂ and x ∈ K
the Jacobians JF (ξ) and JG(x) are invertible. The ith column of JF will be denoted by
vi, that is JF = (v1,v2).

The quadrilaterals and the faces in Th are endowed with orientation as follows. Every
Ki+1/2,j+1/2 ∈ K(Th) is oriented as a source, i.e., on its faces we choose the outward
normal. The faces in F(Th) are oriented by selecting one of the two possible normal
directions. This is done according to the kind of the face. For horizontal faces we choose
the normal that runs along the down-up direction and for the vertical faces, the normal
that runs along the left-right direction; see Fig. 1. Oriented faces are denoted by (FU ,nU),
where nU stands for the normal direction on face FU . The set of all oriented quadrilaterals
forms a 2-chain and the boundary of each Ki+1/2,j+1/2 is the 1-chain

∂K = −FS + FE + FN −FW =
∑

U∈{E,N,W,S}
σUFU . (1)

The symbol −FU denotes the oriented face (FU ,−nU). The multiplicities σU of the faces
in the boundary chain take on the values ±1 and reflect their orientations relative to the
orientation of the quadrilateral K. Orientation of quadrilaterals and faces in a mesh is
not unique and can be defined in many different ways. The orientation choice used here
is convenient for logically rectangular grids and aids in streamlining definitions of finite
element functions and spaces.

2.2 Edge and face elements

To aid the discussion of finite element spaces and their properties it is convenient to view
each quadrilateral Ki+1/2,j+1/2 as a planar projection of a hexahedral with unit height that
was obtained by extruding Ki+1/2,j+1/2 along the vector k = (0, 0, 1). The vertical edges
of these hexahedrals are given by the segments (−0.5, 0.5) and their midpoints coincide
with the nodes xi,j. The set of all such virtual edges is denoted by E(Th).

We first define the local element basis functions for a quadrilateral K. There are four
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element basis functions associated with the four virtual edges:

WSW (x) =
1

4
(1−G1(x))(1−G2(x))k ; WSE(x) =

1

4
(1 +G1(x))(1−G2(x))k ;

WNW (x) =
1

4
(1−G1(x))(1 +G2(x))k ; WNE(x) =

1

4
(1 +G1(x))(1 +G2(x))k .

(2)

The element basis functions for the four faces of K are; see [7],

WE(x) =
1

4
(1 +G1(x))(∇G2(x)× k); WW (x) =

1

4
(1−G1(x))(∇G2(x)× k);

WN(x) =
1

4
(1 +G2(x))(k×∇G2(x)); WS(x) =

1

4
(1−G2(x))(k×∇G2(x)) .

(3)

Changing variables to K̂ gives the reference virtual edge functions Ŵij = (Wij ◦ F ):

ŴSW (ξ) =
1

4
(1− ξ1)(1− ξ2)k ; ŴSE(ξ) =

1

4
(1 + ξ1)(1− ξ2)k

ŴNW (ξ) =
1

4
(1− ξ1)(1 + ξ2)k ; ŴNE(ξ) =

1

4
(1 + ξ1)(1 + ξ2)k

(4)

and the reference face functions ŴF = (WF ◦ F ):

ŴE(ξ) =
1

4
(1 + ξ1)v1/det JF (ξ); ŴW (ξ) =

1

4
(1− ξ1)v1/det JF (ξ);

ŴN(ξ) =
1

4
(1 + ξ2)v2/det JF (ξ); ŴS(ξ) =

1

4
(1− ξ2)v2/det JF (ξ).

(5)

The element basis functions in (3) have the property that∫
FU

WFT
· nT dS = δU

T ; U, T ∈ {S,E,N,W} , (6)

i.e., the flux of each local face basis function equals one across exactly one of the faces
and zero across all other faces.

The cardinal basis functions for the virtual edges and the faces of Th are defined by
combining local basis functions from adjacent cells. The construction of the basis for the
virtual edges E(Th) is described next. Every virtual edge is associated with a node xi,j.
For logically rectangular meshes this node is shared by at most four quadrilaterals KI ,
KII , KIII and KIV . Let us assume that when considered as a local node on KI , KII , KIII
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and KIV , the node xi,j coincides with xSW , xSE, xNE, and xNW , respectively. Then, the
edge basis function for xi,j is defined by

Wi,j(x) =



WSW (x) on KI

WSE(x) on KII

WNE(x) on KIII

WNW (x) on KIV

(7)

For nodes shared by less than 4 elements (7) is modified in an obvious manner. The basis
defined in (7) has the property that

0.5∫
−0.5

Wi,j(xk,l) dz = Wi,j(xk,l) = δij
kl , (8)

that is circulation of a basis function equals 1 along one of the edges in E(Th) and is zero
along all other edges.

We now proceed to define cardinal basis functions for the faces F(Th) in the mesh. A
face F can be shared by at most two elements KI and KII . Let Fi,j+1/2 = KI ∩ KII be a
vertical face and assume that KI and KII are on its left and right hand sides, respectively.
Therefore, as a local face Fi,j+1/2 coincides with FE on KI and FW on KII . The basis
function for Fi,j+1/2 is defined according to this association:

WFi,j+1/2
(x) =

WE(x) on KI

WW (x) on KII
(9)

For a horizontal face Fi+1/2,j, shared by a bottom element KI and a top element KII , the
basis function is defined as

WFi+1/2,j
(x) =

WN(x) on KI

WS(x) on KII
(10)

Definitions (9)-(10) are modified in an obvious manner for faces that belong to only one
element. The face element basis defined in (9)-(10) has the property that∫

FU

WT · nU dS = δU
T ; FU ,FT ∈ F(Th) . (11)
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Fig. 2. Exactness property of W 1(Th) and W 2(Th).

In addition to the notation in (7), and (9)-(10) we will also use the symbols WE and WF
to denote the basis functions associated with an edge E ∈ E(Th) and a face F ∈ F(Th).

The edge and face finite element spaces are defined as the spans of the edge and face basis
functions:

W 1(Th) = span{WE ; E ∈ E(Th)} and W 2(Th) = span{WF ;F ∈ F(Th)} .

It is important to remember that unstructured quads are not affine images of the reference
square. As a result, the spaces defined above will contain piecewise polynomial functions
only when all elements in Th are rectangles or parallelepipeds.

2.3 Discrete exactness property

Given a planar vector field B, its face element representation is the function Bh ∈ W 2(Th)
defined by

Bh =
∑

F∈F(Th)

ΦFWF(x) ; ΦF =
∫
F

B · nF dS . (12)

On every element K ∈ K(Th)

Bh|K = ΦSWS + ΦEWE + ΦNWN + ΦWWW .
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Fig. 3. The remap problem. Thin arrows represent the known fluxes on T o
h . Thick arrows are

the unknown fluxes on T n
h .

Using the Divergence Theorem and (1) we see that

∫
K

∇ ·Bh dx =
∫

∂K

Bh · n dS = −ΦS + ΦE + ΦN − ΦW =
∑

U∈{S,E,N,W}
σUΦU ,

where σU are the face multiplicities from the formula (1) for ∂K. Such a connection
between differentiation and the boundary operator is typical for discretizations associated
with differential forms. In this case, the face elements serve as proxies of differential 2-
forms and application of the exterior derivative is equivalent to the divergence operator.

Next, consider an element K ∈ K(Th) with local nodes xSW , xSE, xNW and xNE. Taking
the curl of the functions in (2) and comparing the resulting expressions with the local
face basis functions in (3) reveals that

∇×WSW = WS −WW ; ∇×WSE = −WS −WE

∇×WNW = WN +WW ; ∇×WNE = −WN +WE

(13)

that is, curls of local virtual edge basis functions are linear combinations of the local face
basis functions; see Figure 2. Using definitions (7) and (9)-(10) it is not hard to see that
the same exactness relationship holds for the edge and face basis.
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3 Constrained interpolation (remap)

We consider a pair Th
o and Th

n of logically rectangular grids on Ω, that stand for the
old and new partitions of Ω into quadrilateral elements. Except for the fact that both
partitions are logically rectangular 4 , no other relationship between them is assumed,
e.g., they can have different numbers of elements. The problem of divergence-free remap
from the old mesh Th

o into the new mesh Th
n is as follows (see Fig. 3).

Statement of the remap problem. Assume that

Bo
h =

∑
F∈F(T o

h
)

Φo
FW

n
F

is a solenoidal field in W 2(Th
o), that is, for every K ∈ K(T o

h )∑
U∈{S,E,N,W}

σUΦo
U = −Φo

S + Φo
E + Φo

N − Φo
W = 0 . (14)

Find a divergence-free approximation of Bo
h on the new mesh Th

n with approximately
the same total energy, that is, a vector field

Bn
h =

∑
F∈F(T n

h
)

Φn
FW

n
F

in W 2(Th
n), such that for every K ∈ K(T n

h )∑
U∈{S,E,N,W}

σUΦn
U = −Φn

S + Φn
E + Φn

N − Φn
W = 0 , (15)

and ∫
Ω

|Bn
h|2 dx ≈

∫
Ω

|Bo
h|2 dx . (16)

Our solution to this problem is presented in the next section.

3.1 Algorithm description

The main idea of the finite element remap algorithm is to recover, postprocess and inter-
polate a ”vector” potential for Bo

h, and then take its curl on the new mesh to obtain a
field Bn

h on T n
h . This will guarantee that ∇ ·Bn

h = 0, without using Lagrange multipliers.

4 We recall that this assumption is made solely to simplify and shorten presentation of the
method. The new and the old partitions can consist of different types of cells, e.g., triangles vs.
quadrilaterals.
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A key part in our strategy is played by the exactness (13) of the edge and the face element
spaces W 1(Th) and W 2(Th), respectively. This property ensures that every solenoidal
field Bo

h ∈ W 2(T o
h ) has a discrete vector potential Ao

h = (0, 0, φo
h) ∈ W 1(T o

h ), such that
Bo

h = ∇×Ao
h. Moreover, we will show that this potential can be recovered without solving

a linear system of equations. This makes our method as efficient as an advection based
remapper because the cost of recovery does not exceed the cost of an explicit advection
step.

Two other important components of the algorithm are the postprocessing and the interpo-
lation operators, denoted by P and I, respectively. However, definition of these operators
is very flexible and they can be borrowed from other settings. Assuming that P and I
are defined for the potential spaces W 1(Th

o) and W 1(Th
n), respectively, the constrained

interpolation algorithm consists of the following main steps:

(1) Recovery. Given a solenoidal field Bo
h ∈ W 2(Th

o) find Ao
h ∈ W 1(Th

o), such that

Bo
h = ∇×Ao

h .

(2) Postprocessing. Define

Ah(λ(x)) = λ(x)Ao
h + (1− λ(x))

(
PAo

h,

)
,

where λ(x) : Ω 7→ [0, 1] is a real valued function.
(3) Optimization. Solve the optimization problem

λopt(x) = argminJ (∇×Ao
h,∇× IAh(λ(x)))

where J is a measure of the total energy mismatch of its arguments, defined on the
new mesh.

(4) Remap. Set

Bn
h = ∇×

(
IAh(λopt(x))

)
∈ W 2(T n

h ) .

This remap algorithm may be readily extended to any discrete setting that has a discrete
exactness property. If W 2 is a finite dimensional space used to represent the vector field
Bh, discrete exactness implies existence of spaces W 1, W 3 and operators C : W 1 7→ W 2;
D : W 2 7→ W 3, such that

W 3 = D(W 2) and Bh = CAh

for some Ah ∈ W 1, whenever DBh = 0. Consequently, the key assumption of our algo-
rithm, i.e., existence of discrete vector potentials for discrete solenoidal fields, is satisfied.
Definition of the remaining two components of the remapper can be adjusted to the choice
of discrete spaces. For instance, the finite element algorithm that we are about to discuss,
can be trivially extended to mimetic finite difference spaces, where the operators C, and
D are provided by the natural discretizations of the curl and the divergence; see [13]-[15].
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Fig. 4. Explicit recovery of a potential.

3.2 Explicit recovery of the potential

In this section we present an algorithm that finds a vector potential for an arbitrary
solenoidal field in W 2(Th) without solving a linear system of equations. Given such a Bh,
we seek Ah = (0, 0, φh) ∈ W 1(Th) such that ∇×Ah = Bh.

Let us fix an arbitrary element K ∈ K(Th). On this element

Bh|K = ΦSWS + ΦEWE + ΦNWN + ΦWWW ,

and
Ah|K = φSWWSW + φSEWSE + φNWWNW + φNEWNE .

On every element the unknown values φi,j = φh(xi,j) and the given fluxes of Bh can be
related by the equation ∇×Ah|K = Bh|K. Using (13), the left hand side in this equation
can be expressed as

(∇×Ah)|K =φSW (WS −WW ) + φSE(−WS −WE) +

φNW (WN +WW ) + φNE(−WN +WE)

= (φSW − φSE)WS + (φNE − φSE)WE +

(φNW − φNE)WN + (φNW − φSW )WW .

Comparing the coefficients of ∇ ×Ah and Bh on K gives four equations that relate the
unknown values of Ah along the virtual edges with the fluxes:

ΦS = φSW − φSE ; ΦE = φNE − φSE

ΦN = φNW − φNE ; ΦW = φNW − φSW .
(17)

Equations (17) can be used to determine recursively the value of φh at any mesh point
Q ≡ xi,j, provided an initial value (a gauge) is specified at some other arbitrary point
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P ≡ xi0,j0 . Consider first the case when P and Q are endpoints of a face FU ∈ F(Th).
i.e., these two points are adjacent on Th. On logically rectangular grids P and Q can be
in one of the following four configurations (see Figure 4):

(P,Q) =



(xi,j,xi,j+1) case (I)

(xi,j,xi,j−1) case (II)

(xi,j,xi+1,j) case (III)

(xi,j,xi−1,j) case (IV)

We will define the face index µU of FU depending on the configuration of P and Q:

µU =

 1 for configurations (I) and (IV)

−1 for configurations (II) and (III)
(18)

Using the face index, solution of (17) for φh(Q) can be expressed as

φh(Q) = φh(P ) + µUΦU , (19)

where ΦU is the flux of Bh on FU .

Consider now the general case where P and Q are arbitrary mesh points and φh(P ) is
specified. Let {FUi

}; i = 1, . . . , n denote a subset of F(Th) that forms a path from P
to Q. The vertices {Qi}n

i=0 along this path are numbered in the order in which they are
traversed, i.e., on the way from P = Q0 to Q = Qn the endpoint Qi−1 of the face FUi

will
be encountered before its second endpoint Qi; see Fig.4.

The face index µUi
of FUi

is defined according to the configuration type of its endpoints,
that is by an application of the rule (18) to the pair (Qi−1, Qi). Using the face indices we
define the chain

C =
n∑

i=1

µUi
FUi

.

Then, staring from FU0 a recursive application of (19) gives that

φh(Q) = φh(P ) +
n∑

i=1

µUi
ΦUi

. (20)

Note that (20) defines the values of φh at all intermediate points Qi on the path. This
observation will serve as a basis for the explicit recovery of the potential. However, before
we formulate this algorithm it is necessary to verify that the values computed by (20) will
not depend on the path that connects P and Q.

13



Fig. 5. Path independence of the recovered potential.

Lemma 1 Assume that Bh is a divergence-free vector field in W 2(Th). Let P denote an
arbitrary but fixed point in Th and let Q be some other grid point. Then, the value of φh(Q)
computed according to (20) depends only on the value of φh(P ), but not on the path that
connects the two points.

Proof. Consider two different paths from P to Q and let

C1 =
n1∑
i=1

µUi
FUi

and C2 =
n2∑
i=1

µUi
FUi

,

be the associated chains where µUi
are determined according to (18). Let φh(QC1) and

φh(QC2) denote the potential values at Q computed by application of (20) along the paths
C1 and C2, respectively. Then,

φh(QC1) =
∫
C1

Bh · n dS and φh(QC2) =
∫
C2

Bh · n dS .

Without loss of generality we may assume that C1 and C2 are as shown in Fig. 5. Let ΩC

be the region enclosed by C. It is not hard to see that the effect of the face indices µUi

is to change the orientation of the normal on selected faces so that all face normals along
C1 point inwards the enclosed region, while all face normals along C2 point outwards ΩC .
As a result, the boundary ∂ΩC is given by the chain

C = C2 − C1 .

Because Bh is solenoidal, application of the Divergence Theorem to the enclosed region
gives that

0 =
∫

ΩC

∇ ·Bh dx =
∫
C

Bh · n dS =
∫

C2−C1

Bh · n dS =
∫
C2

Bh · n dS −
∫
C1

Bh · n dS .
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Fig. 6. Spanning tree for a logically rectangular mesh.

As a result, ∫
C2

Bh · n dS =
∫
C1

Bh · n dS ,

and so we conclude that φh(QC1) = φh(QC2). 2

To define the explicit potential recovery algorithm consider a path Csp that forms a
spanning tree for the graph built from the mesh faces. Let P denote the first node on
this path. It is clear that by traversing Csp once, the value of Ah will be determined at
all mesh nodes xi,j up to an arbitrary constant representing the value of φh(P ). It is also
clear that, without loss of generality, we can set φh(P ) = 0. Therefore, given a discrete
solenoidal field Bh ∈ W 2(Th) the following algorithm finds its potential Ah ∈ W 1(Th):

(1) Find a spanning tree for the faces F(Th) of Th and form the chain

Csp =
n∑

i=1

µUi
FUi

where µUi
are defined according to (18).

(2) Set potential values according to

φh(Q0) = 0 and ψh(Qs) = φh(Qs−1) + µUsΦUs ; s = 1, 2, . . . , k ,

where Qs are the terminating points of the subchains

Cs
sp =

s∑
l=1

µUl
FUl

,

and ΦUs are the fluxes of Bh on the faces FSs = Cs
sp/C

s−1
sp .

Upon completion, this algorithm generates a vector potential Ah ∈ W 1(Th) with the
property that ∇×Ah = Bh. For logically rectangular grids a convenient spanning tree is

15



shown in Fig. 6.

3.3 Postprocessing and interpolation

Consider the two partitions T o
h and T n

h of the computational domain and let Ao
h =

(0, 0, φo
h) be the vector potential recovered from Bo

h. This potential can be readily used to
define a potential An

h = (0, 0, φn
h) on the new mesh, by computing the values of φo

h at the
new nodes N (T n

h ) and setting

φn
i,j = φo

h(x
n
i,j) .

Evaluation of the right hand side above requires us to find the element Ko
k+1/2,l+1/2 from

the old mesh that contains xn
i,j. If the new and the old grids are close to each other and

have the same connectivity, this search will only require to check the elements that share
the old node with the same index. For the grids considered in this paper there are at most
4 such elements.

However, differentiation of An
h gives a solenoidal field Bn

h that is only first-order accurate.
To improve the accuracy of the remapper the finite element potential can be postprocessed.
For examples of different finite element postprocessing techniques we refer to [17]-[18], [25]
and [26], among others. Here we devise a simple patch recovery scheme that is local and
can be easily extended to other settings and element shapes.

For simplicity, let us consider a cell Ko
i+1/2,j+1/2 from K(T o

h ) that does not have a face on
the boundary of the computational domain; see Figure 7. The recovered potential Ao

h is
defined by its four values at the cell vertices. In addition to these values we will compute
four new values at the face midpoints. Consider for example the face FS with endpoints
xSW , xSE and a midpoint xWSE. To define a value for xWSE we proceed as follows. First,
the face is extended in each direction by a fixed proportion of its length, say 1/4. Let
x−SW and xSE+ denote the endpoints of the extended face, so that with respect to the
natural parametrization of the face by length

x−SW < xSW < xWSE < xSE < xSE+ .

The values of φo
h are given at xSW and xSE, we proceed to compute the values of φo

h at
x−SW and xSE+ by locating the cells that contain these endpoints and evaluating the
local finite element expressions for Ao

h. The set of four values along the extended face
is interpolated by a cubic Lagrange interpolant. Finally, this polynomial is evaluated at
the midpoint xWSE. This process is repeated for the remaining three faces to provide
the desired midpoint values. If the cell Ko

i+1/2,j+1/2 has one or two boundary faces, face
extension is performed only in one direction. In this case, instead of a cubic, we use
quadratic Lagrange interpolation to define the midpoint values.

Upon completion of the patch recovery process, on each element K there are eight values
of the potential. These values are used to determine an 8-node serendipity representation
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Fig. 7. Patch recovery procedure for the potential.

of the potential on K. The local serendipity basis functions for the midpoints are

W̃WSE =
1

2
(1−G1(x)2)(1−G2(x)) ; W̃WNE =

1

2
(1−G1(x)2)(1 +G2(x))

W̃SWN =
1

2
(1−G1(x))(1−G2(x)2) ; W̃SEN =

1

2
(1 +G1(x))(1−G2(x)2)

. (21)

Each basis function in (21) equals one at exactly one midpoint, and zero at all other mid-
points and nodes on K. The local serendipity basis for the vertices of K is a modification
of (2):

W̃SW = WSW − 1

4

(
W̃SWN + W̃WSE

)
; W̃SE = WSE −

1

4

(
W̃SEN + W̃WSE

)
W̃NE = WNE −

1

4

(
W̃SEN + W̃WNE

)
; W̃NW = WNW − 1

4

(
W̃SWN + W̃WNE

) .(22)

Subtraction of the midpoint basis functions is necessary to maintain the cardinality of the
vertex basis functions.

The patch recovery operator P is, therefore, defined by the process of Lagrange interpo-
lation along element faces, followed by serendipity interpolation of vertex and midpoint
values. Thus, given an element K, vertex values φo

SW , φo
SE φo

NW , and φo
NE, and midpoint

values φo
WSE, φo

WNE, φo
SWN and φo

SEN ,

PAo
h(x)|K ≡Pφo

h(x)|K (23)

= φo
SW W̃SW + φo

SEW̃SEφ
o
NW W̃NW + φo

NEW̃NE
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+ φo
WSEW̃WSE + φo

WNEW̃WNE + φo
SWNW̃SWN + φo

SENW̃SEN .

3.4 Optimization of the potential

To set up the optimization problem consider a function λ(x) : Ω 7→ [0, 1] and a convex
combination

Ah(λ(x)) = λ(x)Ao
h + (1− λ(x))PAo

h , (24)

of the reconstructed and postprocessed potentials. The idea is to determine λ(x) so that
the compound potential in (24) minimizes the energy mismatch functional

J (Bo
h,Bh(λ(x))) =

∣∣∣∣∣∣
∑

K∈K(T n
h

)

‖Bo
h‖2

K − ‖Bh(λ(x))‖2
K

∣∣∣∣∣∣
2

,

where
Bh(λ(x)) = ∇× (IAh(λ(x)))

is the candidate solenoidal field on the new mesh. Let

λopt(x) = argminJ (Bo
h,B

n
h(λ(x))) (25)

be the optimal solution. The remapped field is defined by interpolating the optimized
convex combination of potentials to the new mesh and then taking its curl:

Bn
h = ∇× (IAh(λopt(x))) . (26)

In regions where Bo
h does not have discontinuities or other sharp features, its energy will

not experience rapid changes and the higher order component of Bn
h(λ(x)) will tend to

provide better approximation of the energy on the new mesh. As a result, in such regions
λopt(x) will tend to 0 and the high order component PAo

h and its curl will dominate in
(24) and in (26), respectively.

In contrast, in regions where Bo
h experiences sharp transitions and/or discontinuities, the

presence of PAo
h will tend to increase the energy of Bn

h(λ(x)). As a result, in such regions
minimization of the energy mismatch will tend to produce values of λ(x) that are close
to 1 and Bn

h will be dominated by the curl of the low order component Ao
h. While λopt(x)

is not a limiter in the sense that it does not guarantee monotonicity, its action resembles
that of a limiter by increasing or decreasing the order of the approximation depending on
the solution features.

To solve (25) efficiently we approximate λ(x) by a piecewise constant function λ(K). This
choice of approximation effectively uncouples the global optimization problem into a set
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of local optimization problems

λopt(K) = argmin
∣∣∣‖Bo

h‖2
K − ‖Bh(λ(K))‖2

K

∣∣∣2 , ∀K ∈ K(T n
h ) , (27)

for the element values λopt(K), that can be solved independently. For each problem we
approximate the optimal value by using a fixed number of discrete bisection steps. After all
element problems are solved, we obtain a discontinuous, piecewise constant approximation
λopt(K) of λopt(x). Let N(xi,j) denote the number of elements that share xi,j as a node.
The piecewise constant function λ(K) is further averaged to the nodes

λ(xi,j) =

 ∑
K3xi,j

λ(K)

 /N(xi,j) (28)

to define a nodal approximation of λopt(x). The final remapped field on the new mesh is
obtained by using λ(xi,j) in (26). Implementation of this optimization strategy requires
computation of the energy of the old field Bo

h on the cells of the new mesh. One possibility
is to compute ‖Bo

h‖0,K using quadrature. Another possibility is to treat energy as another
quantity that needs to be remapped and use the sign-preserving conservative interpolation
method from [20]. This will guarantee that the total energy of Bo

h on the new mesh equals
its total energy on the old mesh.

It is possible to simplify the optimization problem (27) even further by approximating
λopt(x) by a global constant function λ(Ω). In this case, (25) reduces to an optimization
problem

λopt(Ω) = argmin
∣∣∣‖Bo

h‖2
Ω − ‖Bh(λ(Ω))‖2

Ω

∣∣∣2 , (29)

for the single value of λopt(Ω). In what follows we will refer to the strategy used in (27) as
the multiple parameter optimization, while solution computed according to (29) will be
referred to as the single parameter optimization.

Another possibility is to control energy mismatch by a feedback loop. In the simplest case
we can use a single parameter λn determined according to

λn =


max(0, λo + ε) ε < 0

min(0, λo + ε) ε > 0

; ε = θ

(
1− ‖Bo

h‖Ω

‖Bn
h‖Ω

)
, (30)

where θ is a real valued parameter.
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4 Advection based remap

In this section we briefly review the advection based remapper of [21] that will be used in
the comparison tests. This remapper is based on finite element extension of the CT method
[10] to logically rectangular grids. For extensions of CT type algorithms to simplicial
triangulations using residual redistribution [1], [2] ideas, see [5].

Throughout this section we consider grids Th
o and Th

n that have the same connectivity
and assume that the new mesh is obtained by a small perturbation of T o

h . We denote the
displacement field that takes the nodes of T o

h into the nodes of T n
h by urel, and assume

that this relative ”mesh velocity” is small compared to the average cell size in T o
h . Given

the old solenoidal field
Bo

h =
∑

F∈F(T o
h

)

ΦFW
o
F ∈ W 2(T o

h )

the new field Bn
h is approximated by marching the solution of the advection equation

∂B

∂t
= −∇× (urel ×B) and B(0,x) = Bo

h (31)

forward in time by one unit time step. To apply this procedure, urel must be small enough
to prevent a node in T o

h from crossing more than one cell. This ensures that CFL condition
is satisfied with a unit time step. The finite difference equation for the new field is

Bn
h = Bo

h −∇× (urel ×Bo
h) . (32)

The ”electromotive force” urel × Bo
h effected by the mesh displacement is approximated

by
Eo

h =
∑

E∈F(T o
h

)

Eo
EW

o
E ∈ W 1(T o

h ) .

Using (13) it is easy to see that on each element K

(∇× Eo
h)|K = (Eo

SW − Eo
SE)W o

S + (Eo
NE − Eo

SE)W o
E +

(Eo
NW − Eo

NE)W o
N + (Eo

NW − Eo
SW )W o

W .

As a result, on K, the flux update (32) for the finite element field Bo
h reduces to

Φn
S = Φo

S + (Eo
SW − Eo

SE); Φn
E = Φo

E + (Eo
NE − Eo

SE)

Φn
N = Φo

N + (Eo
NW − Eo

NE); Φn
W = Φo

W + (Eo
NW − Eo

SW )
. (33)

The updated fluxes serve to define the vector field

Bn
h =

∑
F∈F(T n

h
)

Φn
FW

n
F ∈ W 2(T n

h )
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relative to the new mesh T n
h .

The flux update formulas (33) are the same as in the CT algorithm [10], except that they
are defined for arbitrary unstructured quadrilateral cells. If ∇ · Bo

h = 0, (33) guarantees
that Bn

h is also divergence-free, regardless of the manner in which the coefficients of Eo
h

were computed. These coefficients are associated with the virtual edges, or what is the
same - the nodes of the mesh, where the finite element field Bo

h is discontinuous, and
must be reconstructed in order to evaluate Eo

i,j. Because (31) is pure advection problem,
reconstruction of Bo

h at the nodes must use some form of upwinding. For logically rect-
angular grids a simple solution is to use the dimension by dimension upwind interpolant
developed in [10]. For details of this procedure we refer to [10] and [21].

It is instructive to compare the CT remapper with the constrained interpolation algorithm.
The recovered potential Ao

h and its postprocessed version PAo
h are analogues of low and

high order reconstructions, respectively, in the CT remapper. The analogue of limiting
in CI is provided by the optimization problem (25) that minimizes the energy mismatch
between Bo

h and its remapped version on the new mesh.

Even though the CT remapper was defined by an application of a transport scheme to
an advection equation, in reality it is equivalent to a Taylor series approximation of the
divergence-free field on the new mesh. To see this, consider a smooth solenoidal field B(x),
a fixed point x0 and a small increment ∆x = (∆x,∆y). Then,

B1(x0 + ∆x) =B1(x0) +
∂B1(x0)

∂x
∆x+

∂B1(x0)

∂y
∆y +O(|∆x|2)

B2(x0 + ∆x) =B2(x0) +
∂B2(x0)

∂x
∆x+

∂B2(x0)

∂y
∆y +O(|∆x|2)

Adding and subtracting ∂B2(x0)
∂y

to the first equation, and ∂B1(x0)
∂x

to the second equation
and using that

∂B1(x0)

∂x
+
∂B2(x0)

∂y
= 0

shows that the first terms in the Taylor series of B are

B(x0 + ∆x) = B(x0)−∇× (∆x×B(x0)) +O(|∆x|2) . (34)

Similarity between this formula and the advection equation (32) is obvious. As a result, the
CT remapper can be viewed as based on a local interpolation formula for the divergence-
free field. The connection between (32) and the Taylor expansion (34) also indicates that
the advection remapper will be second order accurate only when reconstruction of Bo

h at
the nodes leads to a first-order approximation of the derivatives.
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Fig. 8. Typical random mesh (left) and two snapshots of the tensor product mesh sequence.

5 Numerical examples

We test our algorithm using a cyclic remapping approach. This testing method was pro-
posed in [20] and consists of remapping the function of interest on a sequence of grids
parametrized by a ”fictitious” time parameter t ∈ [0, 1]. Therefore, we consider a sequence
of grids {T n

h }N
n=0 where T 0

h = T N
h , and the index n can be conveniently though of as rep-

resenting the fictitious time tn. We begin with an initial solenoidal field B0
h, defined on

T 0
h , and then proceed to remap this field from T n

h to T n+1
h for n = 0, . . . , N − 1. Because

the first and the last grids coincide, cyclic remap allows to inspect the cumulative effect
of many remappings by comparing the initial and the final fields.

We use two different mesh sequences for the cyclic remap. The first sequence contains a
set of 100 grids obtained by consecutive random perturbations, starting from a uniform
initial grid T 0

h . The displacement field between T n
h and T n+1

h is defined so that every grid
in the sequence is guaranteed to be a valid quadrilateral partition of the unit square.

The second grid sequence is generated by using a displacement field given by

xi,j(t) = (1− α(t)) ∗ xi,j(0) + α(t)x3
i,j(0)

yi,j(t) = (1− α(t)) ∗ yi,j(0) + α(t)y2
i,j(0)

. (35)

where α = sin(4πt)/2 and xi,j(0) = (xi,j(0), yi,j(0)) are the node coordinates in the initial
uniform grid T 0

h . The grids T n
h in this sequence are defined by xi,j(t

n) = (xi,j(t
n), yi,j(t

n));
tn = n/N . One can prove that for any 0 ≤ t ≤ 1 formulas (35) give a valid grid; see [20].
In contrast to the first sequence, these formulas produce a smooth displacement field, and
a tensor product grid. Fig. 8 shows snapshots of the two mesh sequences.

The example solenoidal fields are defined by taking a curl of a potential function. This
guarantees that they are divergence-free to machine precision. The first potential is A =
(0, 0, sin(2πx) sin(2πy)) so that

B = (2π sin(2πx) cos(2πy),−2π cos(2πx) sin(2πy))T . (36)
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Fig. 9. Energy of the remapped field for different choices of λ and tensor product mesh sequence.

The second potential is a function that has a see-saw shape in x and is constant in y:

φh(x) =


4x if 0 ≤ x < 1/4

−4(x− 0.5) if 1/4 ≤ x ≤ 3/4

4(x− 1) if 3/4 < x ≤ 0

The curl of this potential gives a vector field

B1 = 0; B2 =


−4 if 0 ≤ x < 1/4

4 if 1/4 ≤ x ≤ 3/4

−4 if 3/4 < x ≤ 0

(37)

with a discontinuous second component.

Our first experiment compares and contrasts different strategies in the computation of the
parameter λ. We remap (36) and (37) using single and multiple parameter optimization,
a feedback loop, and the fixed values λ = 0 and λ = 1. In the last two cases the remapper
uses either the postprocessed, high-order potential (λ = 0), or the reconstructed, low-order
one (λ = 1).

Figure 9 shows energy levels of the remapped smooth field (36) on the two mesh sequences
for different choices of λ. For λ = 0 and λ = 1 we see the typical growth and dissipation of
energy associated with high and low order schemes, respectively. These figures also show
little difference in the energy levels maintained by single parameter optimization (denoted
by λ(Ω) in the plots) on one hand, and feedback loop control, on the other hand. The
multiple parameter optimization (denoted by λ(K) in the plots) tends to be a bit more
dissipative for the random mesh sequence.

Figure 10 shows profiles of the discontinuous field (37) on the last grid from the ten-
sor product sequence, remapped by using multiple and single parameter optimization.
While in both cases the remapper provides crisp profiles of the discontinuity, the use of

23



Fig. 10. Solution profiles on T 100
h for the tensor product mesh sequence using multiple (top) and

single (bottom) parameter optimization for λ.

a single parameter λ(Ω) leads to pronounced under and overshoots in the vicinity of the
discontinuity. This is caused by the inability of a single parameter to account for the local
behavior of the remapped field. In contrast, because the multiple parameter optimization
can adjust contributions from low and high order potentials locally, it maintains an almost
monotone profile of the discontinuous component of B.

From these experiments we can draw a conclusion that a single parameter strategy is ap-
propriate for the remapping of smooth vector fields, while multiple parameter optimization
should be used for discontinuous or rapidly changing fields.

Our next experiment compares CI and CT algorithms for the smooth field (36) and the
two mesh sequences. The low order versions of each remapper are applied first. The energy
plots of the Donor cell CT remapper and the low order CI (with λ = 1) are shown in
Figure 11. On the random sequence the two remappers are virtually indistinguishable. For
the tensor product sequence the low order CI is slightly more dissipative. Figure 12 shows
a further comparison of the remappers on the tensor product mesh sequence. In addition
to the low order cases now we include data for the CT remapper with the monotone and
Van Leer limiters, see [21], and data for the CI algorithm with a feedback loop control. We
see that (30) provides for an almost constant energy level in the CI field. In contrast, the
high order accuracy of the CT remapper is lost during the ”compression” phases when the
mesh rapidly moves from left to right and the cells near the right wall experience rapid
change in their aspect ratios.

The last experiment compares CI and CT remappers for the discontinuous field (37).
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Fig. 11. Energy of the remapped solution under low order CI and CT remappers.

Fig. 12. Energy of the remapped solution. CI with feedback loop control and λ = 1. CT with
Donor cell, Van Leer and Monotone limiters.

In this case CI remap is applied with multiple parameter optimization for λ. In the CT
remapper, the Van Leer limiter is used. The associated energy plots of the remapped fields
for the tensor product sequence are shown at the top in Figure 13. The step-like energy
profile under the CT remap continues to persists for this mesh sequence. The multiple
parameter optimization strategy in CI is able to maintain the energy at about the same
level. Figure 14 shows the profiles of the solution at the final mesh. The energy loss under
the CT remapper is clearly visible in the second component of (37) where discontinuity
is completely smeared. In contrast, CI algorithm is able to maintain the crisp profile of
the second component.

Energy plots for the random mesh sequence are shown in Figure 13. In this case, the
energy plot of the CT remapper with Van Leer limiting is indistinguishable from the one
obtained with the simple Donor cell upwinding. This behavior is caused by the inability
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Fig. 13. Energy of (37). CI with multiple parameter optimization vs. CT with van Leer limiting.

of the dimension by dimension reconstruction to provide a true high order interpolation
when mesh faces are not approximately aligned with the coordinate axes. The CI method
also tends to be more dissipative on the random mesh sequence. However, as Fig. 13 shows,
its performance is substantially better than that of the CT remapper. This conclusion can
be also confirmed by inspecting plots of solution profiles on the last mesh in the sequence,
shown in Fig. 15. The discontinuity smearing under CT is clearly visible, while CI is
capable of providing relatively sharp profiles of the second component in (37).

6 Conclusions

We have formulated a constrained interpolation (remap) algorithm for divergence-free
vector fields in two dimensions. The use of interpolation instead of advection makes the
new algorithm applicable to a much broader range of settings than traditional advection
based remappers. The CI algorithm can also be easily adapted to different discretizations,
including finite difference and finite volume methods, provided a discrete exact sequence
of spaces is available. Implementation of the algorithm is facilitated by its modular design
that allows for an efficient incorporation of various postprocessing techniques for the
vector potential. Numerical experiments demonstrate excellent performance of the new
remapper, in particular, ability to maintain almost constant energy levels throughout the
remap cycle and ability to maintain good resolution of sharp features. Extensions to three
dimensions will be reported in a forthcoming paper.
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Fig. 14. Final profile of (37). CI with multiple parameter optimization vs. CT with van Leer
limiting for tensor mesh sequence.

Fig. 15. Final profile of (37). CI with multiple parameter optimization vs. CT with van Leer
limiting for random sequence.
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