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One cycle of a composite finite difference scheme is defined as several time steps
of an oscillatory scheme such as Lax—Wendroff followed by one step of a diffusive
scheme such as Lax—Friedrichs. We apply this idea to gas dynamics in Lagrangian
coordinates. We show numerical results in two dimensions for Noh'’s infinite strength
shock problem and the Sedov blast wave problem, and for several one-dimensional
problems including a Riemann problem with a contact discontinuity. For Noh’s
problem the composite scheme produces a better result than that obtained with a
more conventional Lagrangian code.

Key Words:Lagrangian gas dynamics; composite scheme; Lax—Wendroff; Lax—
Friedrichs.

1. INTRODUCTION

For a system of conservation lals = f,(U), it is well known that the Lax—Wendroff
(LW) finite difference scheme produces oscillations behind shock waves while the L
Friedrichs (LF) method is excessively diffusive, smearing out the shocks more than is ust
acceptable. In [7, 8] it is shown that an effective way to overcome this behavior of the
methods is to compose them. Thus, the composite scheme is defined by global compo
of several LW steps followed by one LF step. If we denotd_kythe operator defined by
the LW scheme, and blyr the operator defined by the LF scheme, then difference opera
& defined byk — 1 applications oLy, followed by one application of ¢

S=LgolLwolLwo---0oLw, Q)

defines the composite scheme which we call LWLFk. The opef&toperates from time
levelnton + k, Utk = U™,

As early as 1948 Courant and Friedrichs [4] suggested the possibility of doing
dynamicsin Lagrangian, thatis, moving with the material, as well as Eulerian, fixed in sp
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coordinates. The preponderance of research in numerical methods since then has b
the Eulerian framework, but the Lagrangian approach is also well-represented, for exar
in Richtmyer and Morton and many papers in flo@irnal of Computational Physi¢El—3]
are recent examples with references to earlier literature). Courant and Friedrichs were
opinion that in more than one dimension the Lagrangian equations were too complicat
be of much use and thatwas certainly true of the computing power of that time. Now, ther
several codes in existence for computing multi-dimensional Lagrangian gas dynamics
there are some problems which are not done well by these codes, although various fixes
been proposed. One such problem s the Noh problemin the plane [9]: initially the gas is
and all particles are moving toward the origin with constant velocity. The time evolutior
an infinite strength circularly symmetric shock propagating outward. The pressure, der
and velocity are constant behind the shock. The difficulty pointed out by Noh is that
typical code suffers an extreme dip in density at the origin with a corresponding oversl
in internal energy, and the error seems to persist as the grid is refined. This can be
in Figs. 4a and 5. The reason for this is that the standard artificial viscosity operate
there is a compression, but the codes quickly generate a constant velocity and pre
at the origin, so the viscosity has no effect. Noh called this the wall heating problem. In
the Noh problem was done in Eulerian coordinates using the composite idea, and alth
there was a dip at the origin it was considerably less pronounced than that observe
Noh.

This paper is a first attempt to see if the composite idea performs as well in Lagran
coordinates, not just for the Noh problem but for a suite of test problems. We have fo
that for the Noh problem the composite scheme works about as well as it does in Eule
coordinates, thatis, there is a density dip but itis much less pronounced than for the stal
code.

We have concentrated on two sets of test problems. The first consists of the Noh [9]
Sedov problems in the plane. The Sedov problem has an initially cold gas at rest.0At
there is a “point” explosion at the origin.

The second set contains a 1D problem with nonuniform initial density, a 1D pis
problem with ajump in mesh spacing, and the Lax 1D Riemann problem. Evenin Lagran
coordinates our composite will cause the contact discontinuity that is present in the
problem to spread out, just as it would in Eulerian coordinates, even though the inter
is at a fixed grid point. However, by using a Riemann solver to get the flux at the interf
and thereby never differencing across it we are able to keep the contact sharp.

In addition to the above we have tried the infamous Saltzman piston problem. The
for this problem and the exact solution are one dimensional, but the grid is not. This ca
grief for the standard Lagrangian code, producing extreme non-physical grid distort
as described in [5]. A sophisticated method of subzonal masses is proposed in [1]
eliminates this distortion. Our composite gives a result somewhere between these twc

2. AFRAMEWORK FOR LAGRANGIAN DIFFERENCE EQUATIONS

The Lagrangian formulation of gas dynamics uses a coordinate system moving witt
velocity field of the fluid. The equations have two parts. In the two dimensional Cartes
plane the first part governs the evolution of the hydrodynamic state variables; nan
p =density,n=1/p, the x andy velocity componentsi andv, the total energy density
E = e+ .5(u?+v?), and the internal energy densiyand pressur@ = p(p, €), according
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to the differential equations

PNt = (uX + Uy),

put - _an
2)
Pt = — Py,
PEt = —(pu)x — (pv)y.
The second part defines the moving coordinate system.
Xt = U,
(3)
Yt =v,
together with the initial conditions
Xx(a,b,0) =a,
(4)
y(a,b,0) = b.

The point(x(a, b, t), y(a, b, t)) is the current position of the fluid which was initially at
(X(a, b, 0), y(a, b, 0)). (a, b) labels the fluid particle. Thus, for example, the dengifg

p=pX Yy =pX@hbt),y@bt) =p@,b,t).

However, we will continue to use the original dependent variable names sychasiser
thang.

The differential equations can perhaps be better understood in an integral formula
Following [4, 10] we can think of the velocity fiel(l, v) as effecting a coordinate trans-
formation from(a, b) to (x, y) with Jacobian

] = XaYb — XpYa.

Now, if V (t) is a region in the plane with bounda8ft), enclosing and moving with the
fluid, then for anyf (x, y)

/ f(x(a, b,0),y(@,b,0)jdadb= f(x,y)dxdy. (5)
V(0)

V(t)

Therefore, we can apply the integral operator defining the left side of (5) to the left sid
the differential equations (2) and apply the integral operator defining the right side of
to the right side of the differential equations. Then, for example, foutbguation we can
write

/ pjurdadb= — px dx dy,
V(0 V()

or

/ pjurdadb= — pdy.
V(0) St
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But pj is independent of time, and

massV (0)) = massgV (1)) = / pjdadb
V(0)

If we set
dm=pjdadb

then

/ udm=— pdy.
V(0 S(t)

For the full set of equations, put
w=uv BT

so that the equations have the form

pwy = Ty + 0y,
where
f=@u-p0-pu,
g= @0 —p,—pv,
and then

/ wydm= (fdy—gdx). (6)
) )

This will form the basis of our difference equations.

3. THE LAX-WENDROFF LAX-FRIEDRICHS COMPOSITE

We present first a Lagrangian modification of the Lax—Friedrichs scheme in its simp
two-step form. Atthe beginning of each time step, i.&l at nAt, we have a computational
region formed by a union of quadrilaterals which we call giignary cells We suppose
that these cells are arranged in a logically rectangular grid pfingary pointsare defined
as the geometric centers of the primary cells. The hydrodynamic states are assumed k
and constant in each primary cell. We index pinignary states and pointsith half integer
index pairs

The vertices of the primary cells are the nodes of the grid, and we will refer to then
dual points We index thedual pointswith integer index pairsWe will need a set of cells
containing the dual points in their interiors, and thdsal cellscan be defined in several
ways. The simplest way is just to use the quadrilateral formed by the four primary po
associated with each dual point (see Fig. 1). The dual points are supposed knbwuat
not the dual states.
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FIG. 1. (a) Primary cell. (b) Dual cell.

The mass of each primary cell is the area of the cell times the density. Thus, for
primary cells let

Mit1/2,j+1/2 = Pit1/2,j+1/2A11/2,)+1/2,

where

Aiy12j+12 = —5[(Xirrj — X j+0) Vij — Yissj+1) + Kigrjr1 — X, D Vissnj — Yij+0]-

The mass of a dual cell is the sum of the masses of its intersection with each of the
neighboring primary cells. If the intersection of the dual celliaj) with the primary cell
at(i +a, j + B),a =+£1/2,8 = +£1/2 has areat\ﬁ'jﬁ, then the mass of the dual cell is

mij = Z mf‘_‘jﬂ,

o, p=+1/2

where
B B
mﬁj =Aﬁj Pi+a,j+B-

The first LF half-step advances the dual states one half time step, from (6) and Fig.

5At
e p— %(g dx— fdy)", (7)
] .

~ a,ﬁ
Wy = < Z m;j winJra,jJrﬂ)/mqu"
o, f=t1/2

where
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That is, the dual states #t are defined as mass-weighted averages of the neighbor
primary states, and then advanced a half time step according to the flux contour int
around the edges of the dual cell using primary datd.at

For the line integral, using simple linear interpolation, we have

%(f dy) = %[(fiJrl/Z,jfl/Z + fivyzj+12) Vivyzj-172 = Yit1/2.j+1/2)
+ (figr2 412 + ficr2 j412) Vitr/2, j+172 — Yi-1/2,j+1/2)
+ (ficy2jvr2 + ficy2j-12) Vicy2j+12 — Yie1/2,j-1/2)
+ (fi_yyoj—12 + fit1y2j-12)Vic1y2 j—172 — Yit12,j-1/2)],

and similarly for theg contribution.
The half step is completed by advancing the dual points,

n+1/2 At
X T=X+ Tl
At
n+1/2
Yo T =W S

whereu* andv* are thex andy components of velocity obtained by interpolation from th
primary velocity field.

The second half step, fromi+/? to t"*1, has several parts. First, the primary state
att"*1/2 are defined as mass-weighted averages of the neighboring dual states, anc
advanced a half time step according to the flux contour integral around the edges o
primary cell using dual data &t*%/2. Thus,

n+1 _ ~nt12 SAt 12
Wili2 12 = Witz 412 T Mirisiois (gdx— fdy)"?, (8)
where
~ N+1/2 o, n+1/2
Wiy1/2,j+12 = < Z MiY1/2+4a,j+1/248Wit1/2 4, j+1/2+,3> / Mit1/2,j+1/2-
a,f=+1/2

However,the specific volume that would be obtained in this way is not,usedause
the resulting scheme is unstable. Instead, the primary cell volume is computed fron
geometry of the advanced dual points. That is, we set

nt1_ ont12z |, At i
X=X G
n+1 n+1/2 At n+1/2
Yt =Yg g

and then compute the specific volume as the new volume divided by the mass.

The step is completed by placing the primary points in the centers of their cells as def
by the new vertices.

The Lax—Wendroff scheme we will use here is the two-step version proposed by Ei
Gottlieb, and Zwas for Eulerian coordinates in [6]. The first step is the first LF half s
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described above. The second step is time centered, namely, for the primary points,

At

Mit1/2,j+1/2

w12 = Wz jra2 + j{(g dx— fdy)"?, 9)
with the dual data at"*%/2 obtained from the LF first half step.

The primary and dual points are obtained exactly as for LF.

Note that this scheme is centered, in two senses. First, all differences are centere
there is no upwinding; and second, all state variables are taken to live at the same po
each cell. This contrasts with the more standard approaches having pressure and den
cell centers and velocities at cell edges or corners.

As stated in the Introduction, the composite consists simply of cyclbs-ofl timesteps
of LW followed by one timestep of LF. In some problems we also did LF on the first a
last step.

The Eulerian analogue of the 2D scheme we are using is known not to be optimally stz
The condition we are using is thatt max(c/l) < .3, wherec is the local sound speed,
is an estimate of the diameter of a cell, and the maximum is taken over the primary c
However, this is not a mathematically rigorous stability condition, and more investigat
of the stability of these methods is needed. In addition, there is another condition that |
be satisfied, which is that the volume of any cell be positive. To ensure this we do not a
the volume of a cell to decrease by more than 10% in any timestep.

4. NUMERICAL TESTS
4.1. The Noh Problem

The Noh problem is computed at tirhe= 0.6, at which time the shock should be at radiu
0.2. The problem is computed in a quarter plane with reflecting boundary conditions or
coordinate axes. The initial grid is uniform and is 60. As stated in the Introduction,
initially the density is 1, the pressure is 0, and the velocity field is directed toward the ce
with magnitude 1. Figure 2a shows the grid at the final time, and Fig. 2b shows a zool
view. The scheme is LWLF6. Figure 3 is a plot of the density on an axis and on the diagc
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FIG. 2. Noh. (a) Part of the grid dt=0.2. (b) Zoom-in on the shocked region.
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FIG. 3. Noh. Density on an axis and on the diagonal, showing the symmetry.

Figure 4 compares diagonal plots for a standard code and for the composite at succe
grid refinements, demonstrating the better behavior of the composite at the center. Fig
is a close-up showing the poor convergence of the standard code [3] at the center. Fig
is a surface plot of the approximate solution obtained by the composite scheme, w
demonstrates good preservation of symmetry.

4.2. The Sedov Problem

For this problem the gas is initially cold and at rest with uniform density 1. There i
“point” explosion at the center &t=0.

4.2.1. Sedov with Cartesian Grid

As with the Noh problem the basic grid is uniform &®0 in the quarter plane. For this
grid the cell at the origin of the quarter plane has initial energy 5000. For finer grids the
of the high energy source is kept constant. The scheme is LWLF6. Results are in Figs.

4.2.2. Sedov with Polar Grid

Here we have computed the Sedov problem on & 8B polar grid with initially equal
radial and angular intervals. The central triangles are treated as degenerate quadrila

FIG. 4. Noh. (a) Standard Lagrangian code. (b) Composite Lagrangian.
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FIG.5. Noh. Poor convergence of standard code at center.

The initial quarter plane polar grid is generated as follows: fali kx 26, 1 < j <51, Aa =
/100, Ar =L /50, whereL = ./4/x in order to match the energy in the central cells witt
that of the Cartesian grid. Thus,

x(i, ) = (j — DAr cos(% - 1)Aa>

y(@, j) = (j = DAr sin(% — (- 1)Aa>.

FIG. 6. Noh. Surface plot with contours for composite scheme.
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FIG. 7. (a) Sedov problem grid &t=0.1. (b) Zoom on the shocked region.
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FIG. 9. Sedov. (a) Surface plot with contours. (b) Axis and diagonal.
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FIG. 10. Sedov (polar). Final grid.

The final grid is in Fig. 10. The density surface and density on the diagonal (all rays h
the same values) are in Fig. 11. The scheme is LWLF10.

4.3. A Modified Saltzman Problem

The gridis shown in Fig. 12. This differs slightly from the grid in [5]. We have straighten
out the grid along the top and bottom in order to eliminate boundary difficulties. T
distortions seen in [5] occur well into the interior of the domain. Initially the gas is at re
with density 1 and zero pressure. The piston at the left end moves with speed 1. The
is ideal withy =5/3. At timet = 0.7 the shock has not quite reached the right reflectir
boundary. Figure 13 shows the final grid and Fig. 14 has the density surface with contc
using LWLF10. The dependence on the vertical variable is not satisfactory, but it i
considerable improvement over [5], although falling far short of the result in [1].

a b

FIG. 11. Sedov (polar). (a) Surface plot with contours. (b) Diagonal.
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FIG. 12. Saltzman initial grid.
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FIG. 14. Saltzman density surface.
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4.4. The Exponential Background Problem

This is a 1D problem in which the initial spatial grid is uniform but the initial hydrody
namic states vary. The exact solution is a shock. The initial data-&f [11] are

u(x, to) = {%(1_50) =
% X = Xo,

£(X, To) = {l’ R X=X,
3(g)A+25),  x<x,
3po(1+280)72, X < Xo,

wherexg is the location of the shock front at=tg, &= (X — X0)/A, A is characteristic
scale of impulse width, angy is the unperturbed background densityxat xg.
A self-similar solution fort > tg is given by

T X = Xe(t),
cox o) = {? X > Xe (1),
(£)A+25), x<xe(),
) {poeXp[%], L xExeO,
Bp(Xp)(1+28)72, X < Xe(1),

whereXg (1) =X+ 1.5In(t/tp) isthe location of shock front at tim@nds = (Xg () — x) /A.
We have used the following values of the parametges:2, Xo =6, po =1, A =4. This
problem has been solved for an ideal gas with 2.
A comparison of the exact and calculated solution is shown in Fig. 15. Figure 15a sh
the exact data at the initial time=2 and at the final timé¢ =6. Figure 15b compares
LWLF6 with LWLF10 and the exact solution.

4.5. Jump Test

This is a 1D piston problem testing behavior of the new composite method on a «
with a jump in meshsize. The piston moves with speed 1. The gas is initially at rest v
zero pressure; =5/3. The piston creates a shock moving with spe&tl Zhe initial grid
on the interval [0, 2] has fifty intervals of siz¢Z5 betweerk =0 andx = 4/3 and fifty
intervals of size 175 fromx =4/3 tox = 2. In Fig. 16 we compare our algorithm with a
more standard code [3]. Note that LW is unstable for this problem, and LF is, as expec
excessively diffusive.

4.6. The Lax 1D Riemann Problem

For 1D Riemann problems the point separating the initial states is tracked. Of col
in Lagrangian coordinates that point always has the same label. To avoid smearing
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14 init,, t=2 — b 14 F
t=6

10

FIG. 15. Exponential. (a) Exact density at initial tinie= 2 and at final time¢ = 6. (b) Exact and computed
density at = 6, 200 points.

initially generated contact discontinuity no LF steps are performed in the cells adjace!
the tracked point. In addition, a Riemann solver is used to obtain the pressure and vel
at the interface, although this seems to be less important than doing only LW adjace
the interface.

The data for the Lax problem are as follows. For the left sjate,445 p=3.528 u=
.698 and for the right state =.5, p=.571, u=0. The gas is ideal with =1.4. The
scheme is LWLF4. The results are in Fig. 17.
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2F 4
15 | L —
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1 1 1 1 1 “_ :
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FIG. 16. Density for jump test at= 1.4 for standard Lagrangian method and LWLF4.
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FIG. 17. Lax Riemann Problem. Convergence test.

5. CONCLUSION

We have computed a variety of problems in Lagrangian coordinates using the L
Friedrichs Lax—Wendroff composite scheme LWLFn, consisting of repeated cycles ¢
posed o — 1 steps of a variant of Lax—Wendroff followed by one step of Lax—Friedrich
The values oh used range from four to ten, with four or six being typical. The particul:
values are problem dependent, but they can be chosen based on the behavior on coars
The goal was to establish the feasibility of the composite idea in this situation. We belli
the results reported have accomplished this. We appear to do well with the Noh problel
a Cartesian grid, which is the most natural one for this method. The Sedov problem se
to be easier, and we were able to do it on a polar grid as well. The outcome of the Saltz
problem was not as good as we would have liked. It is the Lax—Friedrichs smoothing
which seems to cause the most difficulty, and further research on other consistent smoc
is planned.
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