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One cycle of a composite finite difference scheme is defined as several time steps
of an oscillatory scheme such as Lax–Wendroff followed by one step of a diffusive
scheme such as Lax–Friedrichs. We apply this idea to gas dynamics in Lagrangian
coordinates. We show numerical results in two dimensions for Noh’s infinite strength
shock problem and the Sedov blast wave problem, and for several one-dimensional
problems including a Riemann problem with a contact discontinuity. For Noh’s
problem the composite scheme produces a better result than that obtained with a
more conventional Lagrangian code.
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1. INTRODUCTION

For a system of conservation lawsUt = fx(U ), it is well known that the Lax–Wendroff
(LW) finite difference scheme produces oscillations behind shock waves while the Lax–
Friedrichs (LF) method is excessively diffusive, smearing out the shocks more than is usually
acceptable. In [7, 8] it is shown that an effective way to overcome this behavior of the two
methods is to compose them. Thus, the composite scheme is defined by global composition
of several LW steps followed by one LF step. If we denote byLW the operator defined by
the LW scheme, and byL F the operator defined by the LF scheme, then difference operator
Sk defined byk − 1 applications ofLW followed by one application ofL F

Sk = L F ◦ LW ◦ LW ◦ · · · ◦ LW, (1)

defines the composite scheme which we call LWLFk. The operatorSk operates from time
leveln to n + k, Un+k = SkUn.

As early as 1948 Courant and Friedrichs [4] suggested the possibility of doing gas
dynamics in Lagrangian, that is, moving with the material, as well as Eulerian, fixed in space,
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coordinates. The preponderance of research in numerical methods since then has been in
the Eulerian framework, but the Lagrangian approach is also well-represented, for example,
in Richtmyer and Morton and many papers in theJournal of Computational Physics([1–3]
are recent examples with references to earlier literature). Courant and Friedrichs were of the
opinion that in more than one dimension the Lagrangian equations were too complicated to
be of much use and that was certainly true of the computing power of that time. Now, there are
several codes in existence for computing multi-dimensional Lagrangian gas dynamics, but
there are some problems which are not done well by these codes, although various fixes have
been proposed. One such problem is the Noh problem in the plane [9]: initially the gas is cold
and all particles are moving toward the origin with constant velocity. The time evolution is
an infinite strength circularly symmetric shock propagating outward. The pressure, density,
and velocity are constant behind the shock. The difficulty pointed out by Noh is that the
typical code suffers an extreme dip in density at the origin with a corresponding overshoot
in internal energy, and the error seems to persist as the grid is refined. This can be seen
in Figs. 4a and 5. The reason for this is that the standard artificial viscosity operates if
there is a compression, but the codes quickly generate a constant velocity and pressure
at the origin, so the viscosity has no effect. Noh called this the wall heating problem. In [7]
the Noh problem was done in Eulerian coordinates using the composite idea, and although
there was a dip at the origin it was considerably less pronounced than that observed by
Noh.

This paper is a first attempt to see if the composite idea performs as well in Lagrangian
coordinates, not just for the Noh problem but for a suite of test problems. We have found
that for the Noh problem the composite scheme works about as well as it does in Eulerian
coordinates, that is, there is a density dip but it is much less pronounced than for the standard
code.

We have concentrated on two sets of test problems. The first consists of the Noh [9] and
Sedov problems in the plane. The Sedov problem has an initially cold gas at rest. Att = 0
there is a “point” explosion at the origin.

The second set contains a 1D problem with nonuniform initial density, a 1D piston
problem with a jump in mesh spacing, and the Lax 1D Riemann problem. Even in Lagrangian
coordinates our composite will cause the contact discontinuity that is present in the Lax
problem to spread out, just as it would in Eulerian coordinates, even though the interface
is at a fixed grid point. However, by using a Riemann solver to get the flux at the interface
and thereby never differencing across it we are able to keep the contact sharp.

In addition to the above we have tried the infamous Saltzman piston problem. The data
for this problem and the exact solution are one dimensional, but the grid is not. This causes
grief for the standard Lagrangian code, producing extreme non-physical grid distortions
as described in [5]. A sophisticated method of subzonal masses is proposed in [1] that
eliminates this distortion. Our composite gives a result somewhere between these two.

2. A FRAMEWORK FOR LAGRANGIAN DIFFERENCE EQUATIONS

The Lagrangian formulation of gas dynamics uses a coordinate system moving with the
velocity field of the fluid. The equations have two parts. In the two dimensional Cartesian
plane the first part governs the evolution of the hydrodynamic state variables; namely,
ρ = density,η = 1/ρ, the x and y velocity componentsu andv, the total energy density
E = e+ .5(u2 +v2), and the internal energy densityeand pressurep ≡ p(ρ, e), according
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to the differential equations

ρηt = (ux + vy),

ρut = −px,
(2)

ρvt = −py,

ρEt = −(pu)x − (pv)y.

The second part defines the moving coordinate system.

xt = u,
(3)

yt = v,

together with the initial conditions

x(a, b, 0) = a,
(4)

y(a, b, 0) = b.

The point(x(a, b, t), y(a, b, t)) is the current position of the fluid which was initially at
(x(a, b, 0), y(a, b, 0)). (a, b) labels the fluid particle. Thus, for example, the densityρ is

ρ = ρ(x, y) = ρ(x(a, b, t), y(a, b, t)) = ρ̂(a, b, t).

However, we will continue to use the original dependent variable names such asρ rather
thanρ̂.

The differential equations can perhaps be better understood in an integral formulation.
Following [4, 10] we can think of the velocity field(u, v) as effecting a coordinate trans-
formation from(a, b) to (x, y) with Jacobian

j = xayb − xbya.

Now, if V(t) is a region in the plane with boundaryS(t), enclosing and moving with the
fluid, then for anyf (x, y)∫

V(0)

f (x(a, b, 0), y(a, b, 0)) j da db=
∫

V(t)
f (x, y) dx dy. (5)

Therefore, we can apply the integral operator defining the left side of (5) to the left side of
the differential equations (2) and apply the integral operator defining the right side of (5)
to the right side of the differential equations. Then, for example, for theu equation we can
write ∫

V(0)

ρ jut da db= −
∫

V(t)
px dx dy,

or ∫
V(0)

ρ jut da db= −
∮

S(t)
p dy.
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But ρ j is independent of time, and

mass(V(0)) = mass(V(t)) =
∫

V(0)

ρ j da db.

If we set

dm = ρ j da db

then ∫
V(0)

ut dm = −
∮

S(t)
p dy.

For the full set of equations, put

w = (η, u, v, E)T

so that the equations have the form

ρwt = fx + gy,

where

f = (u, −p, 0, −pu)T ,

g = (v, 0, −p, −pv)T ,

and then ∫
V(0)

wt dm =
∮

S(t)
( f dy − g dx). (6)

This will form the basis of our difference equations.

3. THE LAX–WENDROFF LAX–FRIEDRICHS COMPOSITE

We present first a Lagrangian modification of the Lax–Friedrichs scheme in its simplest
two-step form. At the beginning of each time step, i.e., attn = n1t, we have a computational
region formed by a union of quadrilaterals which we call theprimary cells. We suppose
that these cells are arranged in a logically rectangular grid. Theprimary pointsare defined
as the geometric centers of the primary cells. The hydrodynamic states are assumed known
and constant in each primary cell. We index theprimary states and pointswith half integer
index pairs.

The vertices of the primary cells are the nodes of the grid, and we will refer to them as
dual points. We index thedual pointswith integer index pairs.We will need a set of cells
containing the dual points in their interiors, and thesedual cellscan be defined in several
ways. The simplest way is just to use the quadrilateral formed by the four primary points
associated with each dual point (see Fig. 1). The dual points are supposed known attn, but
not the dual states.
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FIG. 1. (a) Primary cell. (b) Dual cell.

The mass of each primary cell is the area of the cell times the density. Thus, for the
primary cells let

mi +1/2, j +1/2 = ρi +1/2, j +1/2Ai +1/2, j +1/2,

where

Ai +1/2, j +1/2 = −.5[(xi +1, j − xi, j +1)(yi, j − yi +1, j +1) + (xi +1, j +1 − xi, j )(yi +1, j − yi, j +1)].

The mass of a dual cell is the sum of the masses of its intersection with each of the four
neighboring primary cells. If the intersection of the dual cell at(i, j ) with the primary cell
at (i + α, j + β), α = ±1/2, β = ±1/2 has areaAα,β

i, j , then the mass of the dual cell is

mi, j =
∑

α,β=±1/2

mα,β
i, j ,

where

mα,β
i, j = Aα,β

i, j ρi +α, j +β.

The first LF half-step advances the dual states one half time step, from (6) and Fig. 1

w
n+1/2
i, j = w̃n

i, j + .51t

mi, j

∮
(g dx− f dy)n, (7)

where

w̃n
i, j =

( ∑
α,β=±1/2

mα,β
i, j wn

i +α, j +β

)/
mi, j .
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That is, the dual states attn are defined as mass-weighted averages of the neighboring
primary states, and then advanced a half time step according to the flux contour integral
around the edges of the dual cell using primary data attn.

For the line integral, using simple linear interpolation, we have∮
( f dy) = 1

2
[( fi +1/2, j −1/2 + fi +1/2, j +1/2)(yi +1/2, j −1/2 − yi +1/2, j +1/2)

+ ( fi +1/2, j +1/2 + fi −1/2, j +1/2)(yi +1/2, j +1/2 − yi −1/2, j +1/2)

+ ( fi −1/2, j +1/2 + fi −1/2, j −1/2)(yi −1/2, j +1/2 − yi −1/2, j −1/2)

+ ( fi −1/2, j −1/2 + fi +1/2, j −1/2)(yi −1/2, j −1/2 − yi +1/2, j −1/2)],

and similarly for theg contribution.
The half step is completed by advancing the dual points,

xn+1/2
i, j = xn

i, j + 1t

2
u∗

i, j

yn+1/2
i, j = yn

i, j + 1t

2
v∗

i, j ,

whereu∗ andv∗ are thex andy components of velocity obtained by interpolation from the
primary velocity field.

The second half step, fromtn+1/2 to tn+1, has several parts. First, the primary states
at tn+1/2 are defined as mass-weighted averages of the neighboring dual states, and then
advanced a half time step according to the flux contour integral around the edges of the
primary cell using dual data attn+1/2. Thus,

wn+1
i +1/2, j +1/2 = w̃

n+1/2
i +1/2, j +1/2 + .51t

mi +1/2, j +1/2

∮
(g dx− f dy)n+1/2, (8)

where

w̃
n+1/2
i +1/2, j +1/2 =

( ∑
α,β=±1/2

mα,β
i +1/2+α, j +1/2+βw

n+1/2
i +1/2+α, j +1/2+β

)/
mi +1/2, j +1/2.

However, the specific volume that would be obtained in this way is not used, because
the resulting scheme is unstable. Instead, the primary cell volume is computed from the
geometry of the advanced dual points. That is, we set

xn+1
i, j = xn+1/2

i, j + 1t

2
un+1/2

i, j ,

yn+1
i, j = yn+1/2

i, j + 1t

2
v

n+1/2
i, j ,

and then compute the specific volume as the new volume divided by the mass.
The step is completed by placing the primary points in the centers of their cells as defined

by the new vertices.
The Lax–Wendroff scheme we will use here is the two-step version proposed by Eilon,

Gottlieb, and Zwas for Eulerian coordinates in [6]. The first step is the first LF half step
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described above. The second step is time centered, namely, for the primary points,

wn+1
i +1/2, j +1/2 = wn

i +1/2, j +1/2 + 1t

mi +1/2, j +1/2

∮
(g dx− f dy)n+1/2, (9)

with the dual data attn+1/2 obtained from the LF first half step.
The primary and dual points are obtained exactly as for LF.
Note that this scheme is centered, in two senses. First, all differences are centered and

there is no upwinding; and second, all state variables are taken to live at the same point in
each cell. This contrasts with the more standard approaches having pressure and density at
cell centers and velocities at cell edges or corners.

As stated in the Introduction, the composite consists simply of cycles ofN −1 timesteps
of LW followed by one timestep of LF. In some problems we also did LF on the first and
last step.

The Eulerian analogue of the 2D scheme we are using is known not to be optimally stable.
The condition we are using is that1t max(c/ l ) ≤ .3, wherec is the local sound speed,l
is an estimate of the diameter of a cell, and the maximum is taken over the primary cells.
However, this is not a mathematically rigorous stability condition, and more investigation
of the stability of these methods is needed. In addition, there is another condition that must
be satisfied, which is that the volume of any cell be positive. To ensure this we do not allow
the volume of a cell to decrease by more than 10% in any timestep.

4. NUMERICAL TESTS

4.1. The Noh Problem

The Noh problem is computed at timet = 0.6, at which time the shock should be at radius
0.2. The problem is computed in a quarter plane with reflecting boundary conditions on the
coordinate axes. The initial grid is uniform and is 50× 50. As stated in the Introduction,
initially the density is 1, the pressure is 0, and the velocity field is directed toward the center
with magnitude 1. Figure 2a shows the grid at the final time, and Fig. 2b shows a zoomed
view. The scheme is LWLF6. Figure 3 is a plot of the density on an axis and on the diagonal.

FIG. 2. Noh. (a) Part of the grid att = 0.2. (b) Zoom-in on the shocked region.
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FIG. 3. Noh. Density on an axis and on the diagonal, showing the symmetry.

Figure 4 compares diagonal plots for a standard code and for the composite at successive
grid refinements, demonstrating the better behavior of the composite at the center. Figure 5
is a close-up showing the poor convergence of the standard code [3] at the center. Figure 6
is a surface plot of the approximate solution obtained by the composite scheme, which
demonstrates good preservation of symmetry.

4.2. The Sedov Problem

For this problem the gas is initially cold and at rest with uniform density 1. There is a
“point” explosion at the center att = 0.

4.2.1. Sedov with Cartesian Grid

As with the Noh problem the basic grid is uniform 50× 50 in the quarter plane. For this
grid the cell at the origin of the quarter plane has initial energy 5000. For finer grids the area
of the high energy source is kept constant. The scheme is LWLF6. Results are in Figs. 7–9.

4.2.2. Sedov with Polar Grid

Here we have computed the Sedov problem on a 25× 50 polar grid with initially equal
radial and angular intervals. The central triangles are treated as degenerate quadrilaterals.

FIG. 4. Noh. (a) Standard Lagrangian code. (b) Composite Lagrangian.
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FIG. 5. Noh. Poor convergence of standard code at center.

The initial quarter plane polar grid is generated as follows: for 1≤ i ≤ 26, 1≤ j ≤ 51, 1α =
π/100, 1r = L/50, whereL = √

4/π in order to match the energy in the central cells with
that of the Cartesian grid. Thus,

x(i, j ) = ( j − 1)1r cos

(
π

2
− (i − 1)1α

)
y(i, j ) = ( j − 1)1r sin

(
π

2
− (i − 1)1α

)
.

FIG. 6. Noh. Surface plot with contours for composite scheme.
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FIG. 7. (a) Sedov problem grid att = 0.1. (b) Zoom on the shocked region.

FIG. 8. Sedov density on the diagonal for successive grid refinements.

FIG. 9. Sedov. (a) Surface plot with contours. (b) Axis and diagonal.
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FIG. 10. Sedov (polar). Final grid.

The final grid is in Fig. 10. The density surface and density on the diagonal (all rays have
the same values) are in Fig. 11. The scheme is LWLF10.

4.3. A Modified Saltzman Problem

The grid is shown in Fig. 12. This differs slightly from the grid in [5]. We have straightened
out the grid along the top and bottom in order to eliminate boundary difficulties. The
distortions seen in [5] occur well into the interior of the domain. Initially the gas is at rest
with density 1 and zero pressure. The piston at the left end moves with speed 1. The gas
is ideal withγ = 5/3. At time t = 0.7 the shock has not quite reached the right reflecting
boundary. Figure 13 shows the final grid and Fig. 14 has the density surface with contours,
using LWLF10. The dependence on the vertical variable is not satisfactory, but it is a
considerable improvement over [5], although falling far short of the result in [1].

FIG. 11. Sedov (polar). (a) Surface plot with contours. (b) Diagonal.
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FIG. 12. Saltzman initial grid.

FIG. 13. Saltzman final grid.

FIG. 14. Saltzman density surface.
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4.4. The Exponential Background Problem

This is a 1D problem in which the initial spatial grid is uniform but the initial hydrody-
namic states vary. The exact solution is a shock. The initial data att = t0 [11] are

u(x, t0) =
{

0, x ≥ x0,
1(1−ξ0)

t0
, x ≤ x0,

ε(x, t0) =
{

0, x ≥ x0,
1
2

(
1
t0

)
(1 + 2ξ0), x ≤ x0,

ρ(x, t0) =
{

ρ0 exp
[

x−x0
1

]
, x ≥ x0,

3ρ0(1 + 2ξ0)
− 5

2 , x ≤ x0,

wherex0 is the location of the shock front att = t0, ξ0 = (x − x0)/1, 1 is characteristic
scale of impulse width, andρ0 is the unperturbed background density atx = x0.

A self-similar solution fort > t0 is given by

u(x, t) =
{

0, x ≥ xF (t),
1(1−ξ)

t , x ≤ xF (t),

ε(x, t0) =
{

0, x ≥ xF (t),
1
2

(
1
t

)
(1 + 2ξ), x ≤ xF (t),

ρ(x, t0) =
{

ρ0 exp
[

x−x0
1

]
, x ≥ xF (t),

3ρ(xF )(1 + 2ξ)−
5
2 , x ≤ xF (t),

whereXF (t)=x0+1.5 ln(t/t0) is the location of shock front at timet andξ =(xF (t)−x)/1.
We have used the following values of the parameters:t0 = 2, x0 = 6, ρ0 = 1, 1= 4. This

problem has been solved for an ideal gas withγ = 2.
A comparison of the exact and calculated solution is shown in Fig. 15. Figure 15a shows

the exact data at the initial timet = 2 and at the final timet = 6. Figure 15b compares
LWLF6 with LWLF10 and the exact solution.

4.5. Jump Test

This is a 1D piston problem testing behavior of the new composite method on a grid
with a jump in meshsize. The piston moves with speed 1. The gas is initially at rest with
zero pressure,γ = 5/3. The piston creates a shock moving with speed 4/3. The initial grid
on the interval [0, 2] has fifty intervals of size 2/75 betweenx = 0 andx = 4/3 and fifty
intervals of size 1/75 fromx = 4/3 to x = 2. In Fig. 16 we compare our algorithm with a
more standard code [3]. Note that LW is unstable for this problem, and LF is, as expected,
excessively diffusive.

4.6. The Lax 1D Riemann Problem

For 1D Riemann problems the point separating the initial states is tracked. Of course,
in Lagrangian coordinates that point always has the same label. To avoid smearing the
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FIG. 15. Exponential. (a) Exact density at initial timet = 2 and at final timet = 6. (b) Exact and computed
density att = 6, 200 points.

initially generated contact discontinuity no LF steps are performed in the cells adjacent to
the tracked point. In addition, a Riemann solver is used to obtain the pressure and velocity
at the interface, although this seems to be less important than doing only LW adjacent to
the interface.

The data for the Lax problem are as follows. For the left state,ρ = .445, p= 3.528, u =
.698, and for the right stateρ = .5, p= .571, u = 0. The gas is ideal withγ = 1.4. The
scheme is LWLF4. The results are in Fig. 17.

FIG. 16. Density for jump test att = 1.4 for standard Lagrangian method and LWLF4.
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FIG. 17. Lax Riemann Problem. Convergence test.

5. CONCLUSION

We have computed a variety of problems in Lagrangian coordinates using the Lax–
Friedrichs Lax–Wendroff composite scheme LWLFn, consisting of repeated cycles com-
posed ofn − 1 steps of a variant of Lax–Wendroff followed by one step of Lax–Friedrichs.
The values ofn used range from four to ten, with four or six being typical. The particular
values are problem dependent, but they can be chosen based on the behavior on coarse grids.
The goal was to establish the feasibility of the composite idea in this situation. We believe
the results reported have accomplished this. We appear to do well with the Noh problem on
a Cartesian grid, which is the most natural one for this method. The Sedov problem seems
to be easier, and we were able to do it on a polar grid as well. The outcome of the Saltzman
problem was not as good as we would have liked. It is the Lax–Friedrichs smoothing step
which seems to cause the most difficulty, and further research on other consistent smoothers
is planned.
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