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The principal goal of all numerical algorithms is to represent as faithfully and
accurately as possible the underlying continuum equations to which a numerical so-
lution is sought. However, in the transformation of the equations of fluid dynamics
into discretized form important physical properties are either lost, or obeyed only to
an approximation that often becomes worse with time. This is because the numerical
methods used to form the discrete analog of these equations may only represent them
to some order of local truncation error without explicit regard to global properties of
the continuum system. Although a finite truncation error is inherent to all discretiza-
tion methods, it is possible to satisfy certain global properties, such as conservation
of mass, momentum, and total energy, to numerical roundoff error. The purpose of
this work is to show how these equations can be differenced compatibly so that they
obey the aforementioned properties. In particular, it is shown how conservation of
total energy can be utilized as an intermediate device to achieve this goal for the
equations of fluid dynamics written in Lagrangian form, and with a staggered spatial
placement of variables for any number of dimensions and in any coordinate system.
For staggered spatial variables it is shown how the momentum equation and the spe-
cific internal energy equation can be derived from each other in a simple and generic
manner by use of the conservation of total energy. This allows for the specification
of forces that can be of an arbitrary complexity, such as those derived from an arti-
ficial viscosity or subzonal pressures. These forces originate only in discrete form;
nonetheless, the change in internal energy caused by them is still completely deter-
mined. The procedure given here is compared to the “method of support operators,”
to which it is closely related. Difficulties with conservation of momentum, volume,
and entropy are also discussed. The proper treatment of boundary conditions and
differencing with respect to time are detaileds 1998 Academic Press
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1. INTRODUCTION

In discretizing the equations of fluid dynamics one should attempt to mirror into tl
numerical formulation of the equations as many of the mathematical properties of
continuum system as possible. The most important of such properties are expresse
conservation laws. In this work it is shown how this can be achieved to a substantial ext
limitations that are of a fundamental character are also indicated. This is accomplis
utilizing the conservation of total energy associated with any physical model. The numer
error in this quantity results from inconsistencies among the various terms that compose
system of equations in discrete form. Thisis because in order to derive the discrete formo
conservation of total energy the same mathematical relations must hold between the dis
terms as do for the undiscretized, continuum model. Thus, by removing these inconsister
one recovers exact conservation of energy in discrete form. The mathematical relations
must be obeyed to achieve this are the discrete analogs of the vector identities that inv
the dependent variables of the physical system. Numerical algorithms constructed in
manner are said to be compatible, in that the forms of the discrete terms that compose
are not specified independently. They therefore mimic to the degree possible the prope
of the continuum system.

The physical model that is our main concern is the equations of fluid dynamics writter
Lagrangian form. The main part of our theoretical development is given in Section 2 wh
we begin with the statement of our model, and some preliminary definitions and ideas
set the framework for the rest of this paper. Next, we present the fundamental piece of
work, where the consequences of requiring that conservation of total energy be obeye
roundoff error for the discrete equations are developed in detail. This is done for a stagg
spatial placement of variables wherein the position and velocity are defined at grid poi
and density, internal energy, and the pressure are defined at zone centers. The impc
concepts of a corner mass and a corner force that are common to both a given zone
one of its defining points are introduced. It is then shown how these quantities can be
to construct both the zone and grid point masses as well as the total force that acts
point, and the rate of work done with respect to a zone. The momentum and specific inte
energy equations are then related via the expression for the conservation of total ener
a simple and totally generic manner; it is shown how one can easily transform from on
the other using this conservation law. The relationship of this development to the metl
of support operators [2,3] is then given. In this method one specifies a discrete form
one of the vector operators (divergence, gradient, or curl) and then uses the vector iden
in discrete form to obtain the others in a compatible manner. This is shown to be virtue
identical to the conservation of energy procedure that utilizes common corner force obj
in the case of a staggered grid placement of variables. The important difference is tha
conservation of energy method allows a straightforward generalization to the case wi
the forces in question are specified directly in discrete form, and where there exist no «
tinuum differential operators that define them [4,5]. Nonetheless, the work performed
these forces is unambiguously determined. This is because the results that we derive rel
force to work utilizing the conservation of total energy are true in a purely algebraic ser
that is independent of the actual functional form of the force; this fact can be viewed
an extension of the support operators method. Next, the staggered grid formulation is «
trasted to that where all variables are defined at the same spatial locations (point-cente
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Here compatible vector operators can be constructed using the support operators m
and conservation of total energy can thus be guaranteed to roundoff error; howevel
conservation of total energy cannot be used to connect force and work algebraically
the case for a staggered grid scheme. This leads to important limitations associated
point-centered discretizations. Finally, possible errors in entropy production and momer
conservation are discussed. The former can arise because two kinds of zone volumes ¢
fined in the differencing of the fluid equations in Lagrangian form: one overtly to obtain
zone density, and one implicitly in constructing the work performed by the scalar press
These may not always be equal, resulting in errors in the accounting of entropy. Both i
and angular momentum conservation is also analyzed in terms of volume topology.
though both are exactly conserved, an important additional property, which is that the f
density due to the scalar pressure have zero curlin discrete form, is not obeyed in gene
control volume, or other, discretizations. This has important consequences that are b
detailed.

The basic theoretical ideas developed in this work can be viewed as an extensic
discrete form of the principle of virtual work and the principle of least action as they :
known in classical mechanics [6]. The principle of virtual work has been used in the fir
element context to connect the discrete equations for a force and the work that it prod
[7]- The method of support operators gives results that can be shown to be directly obtair
from the discrete form of the principle of least action [8]. The essential idea is that a fc
and the work that it produces should be conjugate quantities in discrete form just as
are in the usual Lagrangian or Hamiltonian formulation of the continuum laws of class
mechanics [9].

In Section 3 an example is presented that illustrates the above ideas. Here is pres
an analysis of the so-called “area-weighted” schemes in two-dimensional, cylindrical ¢
metry [10-12,7,13,14]. These schemes have been used extensively for problems whe
desired that perfect one-dimensional spherical symmetry be preserved as a possible
ing case in two-dimensional cylindrical geometry. They have arisen in various forms ov
period of 40 years, and have generated some confusion as to their real meaning and d
of validity, and possess a number of novel properties. Among these are conditional co
vation of volume, momentum, and entropy. They are analyzed in a succinct and transp
manner using the ideas developed in Section 2. Comparison to the various older ver
of these methods are detailed briefly.

Some issues that are necessary for a successful implementation of the ideas pre:
here into a working code are discussed in Section 4. Principal among these are the p
implementation of various types of boundary conditions in the compatible framew
for the staggered grid formulation of Section 2. Discretization with respect to time
means of a predictor-corrector method is also discussed. A numerical example is givel
illustrates difficulties that can be encountered with the implementation of bound
conditions.

A brief summary and final conclusions are detailed. It is emphasized that various ex
sions and amplifications of the ideas developed here are presented in other related
[13,4,5]. It is this paper that forms the theoretical basis for this other work. Finally,
appendix is included that illustrates the derivation of difference formulas in vector,
erator form in two-dimensional, Cartesian geometry. These formulas are utilized in
development and analysis performed in Section 3.
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2. FUNDAMENTAL IDEAS AND BASIC EQUATIONS

The basic assumption of all Lagrangian algorithms is that there exists a discrete volt
element,V;, that may deform in shape but through whose boundary no mass flows. Tl
the original mass present in the volume at some starting tifheis constant. At any later
time, t, the density,o, inside the given element is simply found from(t) = M; / V; (t).
Substituting this expression into the usual equation for continuity of mass results in
statement that

1 d\M
V; dt

whered/dt is the total time derivative following the fluid element.
Next, consider the equation of motion with the force given as the gradient of a sce

pressuré?, and also, the associated equation for the evolution of the specific internal ene
e. Written in Lagrangian form these are

= (V- )i, 1)

dv
Pai = —VP, ()
de -

To complete this system an equation of state of the fBrm P(p, €) is assumed to have
been specified.

An energy equation can be formulated from the above simply by multiplying Eq.(2) |
the velocityv, adding the result to Eq.(3), and integrating over some doraiim which
these equations are defined. This gives the result

pdi?  de LA
POV V=— VP+PV-5)dV=—¢ P 4
/D<2 o dt)d /(v +PY.7)d fgo i.d3 (@

where the last term arises from the vector iderfity(Pv) =v - VP + PV - ¥. From this
equation the total energy density per unit volume can be deflnedsaze +p0 2/2.1f the
force on the RHS of Eq.(2) is given in the more complicated forrf asv-Q, whereQ is
the total stress tensor, then the energy source term on the RHS of E@(Sjts The same
procedure results in an equation for total energy that is completely analogous to Eq.(4
means of the similar vector identity - (Q V)=v-(V. Q) + Q: V.

The fundamental equation describing the Lagrangian representation of fluid flow is giy
by Eq.(1). It can be utilized in two different ways. First, given a set of velociiiethat
determine the time evolution of the pointg™that define theth volume element, and its
initial value V; (0) at timet =0, Eq.(1) determines the evolution of this volurivg(t), with
time. Onthe other hand, glven a prescrlptlon foiithesolume element as a function of some
specified defining coordlnatéq Viit) =V, (Rl(t) Ry(t) - - -), then by differentiatingyj (t)
with respect to time, and using the fact that for any Lagrangian podﬁaj /dt=1;, Eq.(1)
determinegV - v);, the divergence of the velocity field in discretized form defined in th
ith zone.

Although we have not yet made any direct statements about the discretization of
equations for the evolution of momentum and specific internal energy, one can see alre
from the above remarks that inconsistencies may arise if one is not careful how the te
that enter the RHS of these equations are chosen. Since we have given a prescti
for the calculation of density and have shown that this is equivalent to the specificat
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of V - v, which enters into the RHS of Eq.(3), this latter equation cannot be discreti:
arbitrarily. That is, from our definition of density the consistency of Egs.(1),(3) states t
Midg = —PR,dVf, and thus implies the form afg associated with the volume chande .
Analogously, in Eq.(4), which gives the equation for the evolution of total energy, we h
used a vector identity to obtain a surface term; this will not hold in discrete form unls
the discrete representations of the terms that enter into the discrete analogs of Egs.(
obey the same integral relations, written in summation form, as do the terms in the oric
continuum equations.

In the next two subsections we investigate the consequences of the conservation of
energy to the development of discrete difference equations that are useful for the nume
integration of the equations of hydrodynamics. This is performed for a staggered sp
placement of variables, which is the main concern of this work; our results are ther
terpreted using the framework of the method of support operators. The point-cent
formulation is also investigated. The important considerations of entropy, volume, and
mentum conservation are explored in this context. The control volume method is use
the underlying basis for all of our discretization formulas, although this is not necessat
establish the validity of our results. All dependent variables are considered to be piece
constant functions of space on the respective meshes on which they are defined. Fo
plicity, most of our arguments in Section 2 are given with respect to two Cartesian sp:
dimensions, although extension to three dimensions is readily apparent.

2.1. Staggered Spatial Grid Formulation

2.1.1. Staggered grid geometry/masseale begin the staggered grid formulation by
introducing some basic concepts and notation that set the framework for the rest of this v
For purposes of illustration we consider a quadrilateral grid in two-dimensional, Carte:
geometry as in Fig.1. There is shown a quadrilateithiat is defined by points labeled as
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FIG.1. Gridwith respectto zoneand pointp showing coordinate-line (solid lines) and median (dashed ar
dotted lines) mesh with associated half-edge vect@rsvith coordinate-line mesh, ar§ with median mesh).
Corner masses?, are also indicated.
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solid dots 1 - - 4 that are connected by straight lines. Points labeled by asterisks denote
midpoints of these lines. The point in the center of the quadrilateral, also labeled by
asterisk, is defined by coordinates that are the simple average of those of the quadrila
grid points. (For a quadrilateral this is the same as the point defined by the intersec
of the lines connecting the midpoints of the opposite quadrilateral sides.) The solid li
connecting the grid points define the “coordinate-line” mesh, while the dotted and das
lines that connect the points given by asterisks make up the “median” mesh. These are
primary and dual grids, respectively. Position and velocity are defined at the grid poir
these quantities are “slaved” at points that form the median mesh as a simple averag
respective grid point quantities. The density, specific internal energy, and thus the pres
are defined as functions that are constant inside the quadrilateral zone. The deper
variables are thus staggered with respect to their spatial locations. There are eight vec
a;, that are the outward normals to the coordinate lines of a given quadrilateral zone.
shown in Fig.1, these have a magnitude of one-half of the distance between grid poi
and thusa; = &, etc. However, in general these pairs have neither the same magnitude
the same direction once the straight line condition used to join grid points is relaxed. T
four vectors,é, that are the normals to the median mesh segments interior to a zone
also shown. These have magnitudes of the distance between the points that define thes
segments. Also shown is a point labelpdthe same point as 2 of quadrilaterlabout
which is drawn a dashed line that is its associated median mesh. The vapabidg are
always used as subscripts or superscripts with integer values that range over all of the
points and zones, respectively.

The first important subzonal concept that we introduce is that of a “corner.” The cort
volume associated with a grid poiptand a zone in two-dimensions, as indicated in Fig.1,
is the volume inside the surface defined through the pwitite two midpoints of the lines
through pointp of zonez, and the center point of zore(vectorsa,, as, §1 and—S, of
Fig.1). There are four corner volumes to each quadrilateral zone. In two dimensions
corner volume, as just defined, is always a quadrilateral regardless of the type of zones
compose the underlying grid. Next we define the corner mass associated with the poi
and zonez, m, as the mass inside the associated corner volume at tinte We usez or
p as a superscript or a subscript interchangeably sanfjat m?, but we always perform
summations with respect to the lower index. The corner mass is now used as the prim
guantity from which we can construct both the zone and nodal, or grid point, masses.
construct the total mass of zomene simply forms the sum of all corner masses with fixec
label z; likewise, to find the nodal mass of a poiptone sums all corner masses with the
fixed labelp. This is given simply as

Mo=>"my  Mp=> m 5)
p z

Since the zone and nodal masses are composed of the same objects that are simply
in a different order it follows that

> Mp=> "M, (6)
p z

The above equation simply states that the total zonal and nodal mass in a problem are e
and is the statement of consistency of the zonal and nodal grids. When computing the n
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mass at points that lie on the boundary of a physical region it is always assumed tha
corner masses exterior to that region are zero.

It is usual to declard/, a constant by the Lagrangian assumption. However, ditgiis
allowed to vary with time. We consider boi, and M, on a totally equal footing. Thus,
in the rest of our development we assume that Bddftand M, are constant, Lagrangian
objects [4].

2.1.2. Compatibility—semi-discrete fornmiThe first important characteristic of a stag:
gered placement of variables is that the evolutionary equations are defined with re:
to different, but overlapping, spaces: Eq.(2) that evolves momentum in time is define
the nodes, while Eq.(3) that evolves internal energy is defined in the zones. The equ
for conservation of total energy, Eq.(4), is thus composed of a mix of variable definitic
Although this may at first appear to be an added complexity over defining all variable
the same spatial locations, it actually turns out to be superior to a point-centered place
of variables. This is because it allows one to extend the Lagrangian assumption in a ne
manner that eliminates underconstrained modes of distortion [4], and to specify force
discrete form without the need to make additional assumptions about the manner in w
the work performed at interfaces between cells is to be divided between kinetic and inte
energies, as is necessary for point-centered formulations when operator prescriptior
these forces are not available. However, care must be taken with staggered grid formule
so that logical inconsistencies between quantities defined at nodes and zones do not

The momentum equation is utilized next to introduce the important concept of a col
force, using pressure forces as an example. After this the total energy is defined on a s
zone basis. It is then shown how this definition can be extended across the entire do
of integration, and how by this extension the internal energy equation can be derived
generic form that is identical to that obtained by a direct discretization of Eq.(3) for
special case of forces that arise from a pressure that is piecewise constant in a zone.

Consider the momentum equation, Eq.(2), and integrate it over a volume el¥nen
defined about poinp in Fig.1 by the dashed lines that form the median mesh. Since |
nodal massM, is Lagrangian this yields the result

do - . L
My,—2=—[ VPdV=— ¢ PdS=)> fP=F, 7
g, /V ¢ Y fe=F ™

At this point we define the corner forcé?, using the same notation as was used for tt
corner mass. The corner force acting on pgirtue to the pressure, in zonez is defined
as fP=P,(S; — S) = P,(&, + d3), where the last equality follows simply from vector
addition, as can be seen from Fig.1. Thus we see that the boundary integral through z
depends only on the side midpoints, and is thus path independent. To obtain the total f
Fp, that is exerted on poirt one simply sums the corner forces about all zones associa
with this point, as indicated in Eq.(7). For the case of the full stress te@ogiven as
piecewise constant in a zone, the corner force is determlnécfbsz (8, + as), where
we have favored the coordinate-line mesh over the median mesh for defining this qua
At this point a generalization is made. The corner forces from here on are thought c
emerging from completely general origins, and not just due to a scalar pressure or a te
that is constant throughout a given zone. In certain instances one can have forces tha
from scalars or tensors that are constant only in a part of a zone [4,5]. In this case sub.
forces can be calculated along the various pieces of the coordinate-line mesh, the m
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mesh, or both. These forces can be specified in an almost arbitrary manner and added:
corner forces that are already present due to pressures and tensors that are constantin :
The only restriction is that total zone momentum, as discussed later, must be conserve
this instance the total force acting on a pgixis still just the sum of the corner forces about
that point, as given by Eq.(7).

It is next shown how to construct conservation of total energy in semi-discrete form. \
begin by defining the total energy of a zone. Since the internal energy is zone cente
its definition is automatic. The kinetic energy is defined at the nodes; however, it can
interpolated to the zones by means of the overlap of the zonal and nodal masses. Tt
given by the corner massj, that is common to both a zone and a point. Thus we define tf
total energyE;, in a single zone as

E, = M,e, + Z m25/ (8)

Next, we take the total derivative with respect to time of this quantity and substitute frc
Eq.(7) for momentum to obtain

dE, de mvp =p
=M,—= fl 9
i Mgt g, L T ©)

where the corner mass has been assumed to be constant in time—a point to which we
return. This equation can be summed over all zones to yield

;(ZE> ZMZ ZZ MU pr (10)

At this point we note from the definition of the nodal mass given by Eq.(5) ths
222 méﬁﬁ/z =2 Mpﬁﬁ/z. Using this factin Egs.(8),(10) gives the result for conser
vation of total energy for the entire region as

dt(ZMZeZ+ZM p/2>=ZMZ%+ZZF§.5p
z bz
= Z (Mz% +Z QFZ) : 17p> +Z foai - bdis (11)
z p i

where in our notatiorz — z in obtaining the first form of the RHS of this equation. The
first form of the RHS of this equation can be regrouped to obtain the second wherein
order of the double sum has been interchanged: and also, divided into the parts that ar
to corner forces that act from the interior zones of the domain onto points, and those tha
from the exterior boundary onto boundary points through the momentum equation. (N
that Ff — Fé in the above, since the lower index is always summed.) Now if the sum ov
zones in the second form of the RHS of Eq.(11) is set to zero for eachzzbeee results

% _va. (12)
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This is the form of the internal energy equation in terms of arbitrary corner fd?g;elsat
are common to both it and the momentum equation. These forces are simply manipulat
a different manner. That is, to obtain the total force acting on a grid point the corner fol
associated with that point are simply summed; while to obtain the heating rate of a z
the corner forces of that zone are dotted into their associated grid point velocity, and
summed. It is important to note that no boundary average quantities appear on the R}
Eq.(12). What one has are common corner forces that exchange zone internal ener
nodal kinetic energy, or vice versa.

To verify that this makes physical sense, Eq.(12) is written out explicitly for corner for
that originate from a pressuf® that is constant in zong as previously defined by means
of Fig.1, to obtain

de

Mzt == Up fp=—P[(@+a) U1+ @+ 8s) U2+ (@4 + &) - U3
p

+(55+57)-54]E—/ PV.vdV. (13)

z

Here it is noted that the discrete expression that results is equal to the exact discretizat
Eq.(3) that is obtained by directly integrating it over the zeiveCartesian geometry. Thus,
compatibility is naturally obtained for control volume differencing in Cartesian geome
in any number of dimensions.

From the LHS of Eq.(11) it is natural to define the total energy over the entire domai
timet as

Er() =) Mg+ ) Mpis/2 (14)
z p
This equation can be integrated in time to obtain
n
Er®) = ErO + ) Atmy_ iy - pa; s (15)
m=1 i

whereAty, is the magnitude of the timestep on the mth cycle. This is the discrete analo
Eq.(4). If one subtracts the left and right sides of Eq.(15) and divides the result by the
of these two quantities there results a nondimensional measure of energy conservatio
should always be equal to zero to within numerical roundoff error.

2.1.3. Compatibility—fully discrete formAlthough the basic ideas of a compatible
discretization have been illustrated by the semi-discrete derivation just given, it is usef
consider compatibility starting from Eq.(14) for total energy, and the momentum equat
Eq.(7), where these equations are both discretized with respect to time. Denoting the dis
time variation of any quantity aa applied to that object, the time variation of the tota
energy equation, Eq.(15), yields the result

z p i

The time centered velocitzﬁ)“;rl/2 = (17';*1 + v},)/2 follows directly from the time variation

of the kinetic energy defined at the points sii€&"/* - Av, =[(15)"* — (53)"] /2, where
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Avp= 6?)“ — U’[‘), Ae,=€e)"1 — ¢}, and the superscriptindicates time level. The discrete
time form of the momentum equation, Eq.(7), is given as

MpAT, =Y fPoAL. (17)
z

The time centering of the corner forces exterior to the boundary in Eq.(16) and in the ab
momentum equation is given at some intermediate value, denoteddstween time level
nandn+ 1.

Because both the internal energy and the kinetic energy must be defined at the same
level so that the total energlr (1), is at a single time level, it follows that we must use an
even time integration scheme [15]. Schemes that have the definitions of variables stagg
in time are not appropriate when total energy is exactly conserved, since both the inte
energy and the kinetic energy must be at the same time level if they are to be exchange
common corner forces (these may still have arbitrary time centering.).

Substituting Eq.(17) into Eq.(16) yields

S Moae + > 0h2NT fRoat= Aty fig - vpit (18)
z p z i

where the nodal madd, no longer enters. The crucial step is the interchange in the order
the double discrete summation on the LHS of this equation. This is equivalent to a disc
integration by parts. Regrouping all terms in Eq.(18) with the same integer inthexte
results

D7 (Moae + DGR fLoAt] = At fig - vhai % (19)
p i

z

The final step is to satisfy Eq.(19) in the strong form by setting the quantity in bracke
equal to zero for every value af(or for every zone). This yields the same equation as the
given by Eq.(12), but with the additional conclusion thigt= U’r‘fl/z, an important result.

Thus the equation for the evolution of specific internal energy becomes

Ae = - L7 TH2AL/M,. (20)
p

The time centering of the forces, given byis still left undetermined.

The strong solution is not the only solution to Eq.(19), but it is the only one that has a
physical significance for forces that originate from pressures or tensors that are cons
throughout a given zone. This important fact is shown in the next section. For the subzc
forces mentioned earlier, other possible solutions have not been found useful in practice.
solution of Eq.(19) in strong form has a simple physical interpretation. This is that a cor!
force F;, whatever its origin, produces a momentum change by acting on its associa

-

point p, and does work at the ratef% -vp With respect to its associated zand-inally, we
could just as well have specified the discrete formA@ from Eq.(20) and inserted this
into Eq.(16). Then an analogous interchange of the order of a double summation resul
an outer sum over indeg, which when satisfied for every value of this index yields the
discrete momentum equation.

Next, we show how interface pressures that act between zones, and perform total v
on azone, can be derived. These pressures produce changes in both the internal and k
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FIG. 2. Coordinate-line mesh with half-edge vectors and force “contours” (curved lines) with respect to z
1" and pointp. Zones about poinp are indicated by numbers 1. - 4.

energy of a single zone. We denote therfPasvherel =1- - - 8 for each quadrilateral zone,
and formally rewrite Eq.(19) as

> " [(P1dy + Pads) - 11) + (Pod + Padia) - U2) + (Pada + Psds) - U3
z
+ (Peds + P787) - V4], = Z Poi Soi * Todi - (21)
i

Then for pressure forces the terms on the LHS of Eq.(19) can be written as the su
the interface work terms and regrouped as coefficients of the eight half-edge \&dimrs
give explicit forms for theP?;. These are the interface pressures on the half-edges of
zones; they do equal and opposite work with respect to each of their two adjacent zc
Allinternal work sums to just the boundary term, as indicated. Choosing the corner def
by point p and zone 10of Fig.2, we can use Eq.(17) and Eq.(20) to rewrite the coefficier
of vectorsa, andaz in Eq.(19) as

p=2  _p=2
Lo my=s+mi=,
3-2~U2[P1' —(Py — pz,)M}

as - UZ[Pl’ — (Py — Py)

By comparing these terms to those in Eq.(21), and recalling Mhat, = Z‘Z‘/:l, mp, it
follows that the interface pressurfs andPs are given by

P = [(mEZ + i) Py + (i +mI2) Py /M @2)

Py = [(ME=5 + mP=2) Py + (=] + mP=2) Py /Mpo. (23)
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These pressures give the total work done on a given zone in terms of the grid point veloci
interface velocities need not be defined! If we subtract the change of internal energy
zone, as given by Eq.(20), from this total work, we exactly obtain the change of kine
energy with respect to that zone. The change in kinetic energy is given from Eq.(17), v
Eq.(8) used to define the kinetic energy in a zone via the corner mass. This argument
be reversed to compute the change of zone internal energy given the change in zone ki
energy. This situation is what we call “local conservation” form; that is, these quantities :
all internally consistent with each other and total energy conservation is valid on a sin
zone basis. Lastly, note that we must define eight interface pressures for each quadrile
and not just four, as is often assumed with Riemann solutions [15].

2.1.4. Additional considerations. An important part of the derivations just completed
is that the nodal mass as well as the usual zonal mass is considered constant. Oft
Lagrangian algorithms only the zonal mass is constant, and the nodal mass is recomg;
on each timestep as a different number. This leads to a flux of momentum and kinetic en
from the nodes and results in an extra tergpid M, /dt) that should appear on the LHS of
the momentum equation, but which is often neglected in practice. By ke&pirgpnstant
in time we have employed a stronger form of the Lagrangian assumption than usually gi\
This has additional far-reaching consequences as now discussed.

BecausaM, is a constant no mass flows through the boundary of zdné~ig.1. Also,
sinceM, is a constant no mass flows through the median mesh boundary abouppoir
as shown in Fig.1. However, the intersection of these two boundaries, through which
mass flows, defines a new volume in which the mass is constant, and thus defines a
Lagrangian subzonal mass. From Fig.1 this is the corner mdssThus we have that
because botivi, and M, are constant, it follows that their intersectiol? must also be a
constant [4]. Therefore there exist auxiliary subzonal pressures in addition to the mean :
pressurd®,. These subzonal pressures arise from the subzonal corner depiitims puted
aspP=mP/VP(t), where theVP(t) are the corner volumes associated with the media
and coordinate-line meshes, as shown in Fig.1. The contributions to the cornerf@rces
from these subzonal pressures result in the elimination of spurious grid distortion and
resultant grid tangling that has plagued these methods. This type of integration, whet
four pressures per quadrilateral zone are utilized, is a common practice in finite elen
formulations [7]. However, we stress that these pressures arise only from subzonal de
ties and not from subzonal internal energies. Although this does, by intent and neces
increase grid stiffness, this is not found to present difficulties in the wide range of proble
investigated. Also, artificial grid stiffness is mitigated by the fact that we employ subzor
guadrilaterals and not subzonal triangles, as has often been used previously. Rayle
Taylor instability problems have been run far into the nonlinear regime successfully, ¢
long after traditional Lagrangian algorithms would terminate due to excessive grid tangli
The full development of this subject considered in the framework given here is pursues
depth elsewhere [4].

It is sometimes useful to define the forces in a zone solely with respect to the individ
pieces of the median mesh within that zone. For example, the pressure forces can be de
as ﬂz = P,§ in zonez, wherei = 1. - - 4, as shown in Fig.1. Then the pressure fofégl
acts with a plus sign in the momentum equation on point 1, and with a minus sign in-
momentum equation on point 2, of Fig.1. The rate of change of internal energy due to
force with respect to zone is thus— ﬂz - (U1 — U2). From this rearrangement of terms,
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Eq.(20) can be rewritten equivalently as
4
e, == 75 2ay/M,, (24)
i=1

wheres o2 = 5" — {2 and the cyclic index is as denoted in Fig.1. This form

explicitly displays the Galilean invariance of the internal energy equation. It is most usi
in the development of an edge-centered artificial viscosity where the tensor term for
force that is computed from ead of a given zone is different, and where each term c
Eq.(24) is required to be positive definite [5].

A nondynamical, but still useful, way to construct an equation for the change in spec
internal energy is just to substitute the definitionf, from Eq.(5) into Eq.(16) with
boundary forces neglected. One then changes the order of the double summation, as k
to arrive at the kinematical expression

Ag == mii,- Avp/My, (25)
p

valid in each zone. This equation involves only the corner masses of a zone and the velo
of its associated points. It is useful when one wishes to make kinematical adjustmen
the velocity field without specifying any forces and still conserve total energy. It just gi\
a way of distributing a prescribed change of kinetic energy at a node among its assoc
zones.

To simulate problems involving instability it is useful to incorporate a constant gravi
tional force into our preceding formulation. To do this one must add the potential ene
term Zp M0y, defined with respect to the nodes into Eq.(14) for the total engrgy
Hereg is the strength of the constant gravitational field that acts in the negedivection,
denoted ag. Then the force term-(MpgAt)y is entered into the RHS of the momenturr
equation as given by Eq.(17). If one then follows the algebra leading to Eq.(19) it is s
that this equation is unchanged (recall that/ At = vy). Thus the internal energy equation,
Eq.(20), is unchanged, as it should be for nodal masses moving in a gravitational field,
only the potential and kinetic energy are interchanged. With this modification total ene
is still exactly conserved.

2.2. Relation to Method of Support Operators

2.2.1. Staggered grid formulationThe method of support operators utilizes the vectc
identities of differential calculus to derive compatible sets of the fundamental vector dif
ential operators: gradient, divergence, and dBRAD, DIV, andCURL) in discrete form.
This is done by first specifying one of these operators and then using the vector iden
written in discrete summation form to consistently determine the others. In the case
staggered grid the gradient can act to produce a vector function defined at the poin
in Eq.(17) with zone centered pressures, but it can also act on scalar functions defin
the points to produce a vector function centered in the zones. We will denote the fir:
these operators &SRAD,_, ,, and the latter a&RAD ,_,,. Since this also holds for the
divergence and the curl, there are six discrete operators to determine for the staggere
case considered here. This leads to two forms of the discrete Laplacian, one defined c
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points via the zones, and vice versa. For the point-centered case there are only the |
three operators. In the case where variables are defined with respect to points, zones
sides of zones, more complicated possibilities result [16].

The principal idea of the method of support operators is that because the equation
mathematical physics are given in terms of differential vector operators it is enough
determine these operators in discrete form in order to spatially discretize all such equati
In addition, the proper relations between various dependent variables are automatically
into the discrete equations, at least in integral form. It is next shown that the procedure
given for connecting the momentum and internal energy equations through the conserve
oftotal energy on a staggered spatial grid includes, as a subset for this application, the me
of support operators. Conservation of energy is more general in that it allows one to spe
forces that arise from subzonal pressures and tensors and still calculate the work perfol
by them in an automatic manner. These latter forces originate as discrete objects an
not a priori written as a function of the vector operators in continuum form.

Consider the time derivative of total energy as given by Eq.(11), where Eq.(12) has b

utilized to replace the term’lzd? to obtain

dt
_ZZFS'BP_I_ZZFE'ﬁp:ZdeJ'Bbd*i' (26)
z p p z i

Letus focus onthe LHS of this expression, recalling that the term on the RHS is due to for
de,i , exterior to the boundary, that act on the system through the momentum equation.
now examine what this statement amounts to for forces determined by piecewise con:
zonal pressures.

Consider the staggered grid of Fig.2 where zones labeled 4 and the associated
coordinate-line mesh associated with zare 1’ and pointp is shown. Half-edge vectors
are indicated by the arrows label@d that are sufficient to describe the divergence of the
velocity with respect to zoné,Jand the pressure gradient with respect to ppifithe curved
lines indicate “force lobes” that connect the side midpoints with the coordinate points. Tt
are straight lines that are shown as curved only so they can be distinctly seen apart fron
coordinate lines. They indicate that there are distinct discontinuous forces on either sid
these lines. Define the corner vec(f)le, = (4, + a3), that is associated with zonédnd
point p; then the piece of the corner force that acts from zdrte form part of minus the
pressure gradient at poiptin Fig.2 is fle, = Pz:lféle,, while the part of the divergence
of the velocity field associated with this same corner is giveéb;ﬁ, - Up.

The control volume differencing of the divergence of the velocity in zone diven by

- 1 . e o W o - e o

(V- 0)pmr = V—l[(al +8g) - U1+ (@2 +az) - U2+ (4 + 8s) - V3 + (g + A7) - V4]
1 _—

=) Crlei,. (27)

Vy
Y

Next, the discrete form of the vector identity that expresses the divergence of pressure ti
velocity can be written in summation form as

STVLPV 5+ Vi VP = Phgi Soai - Ubais (28)
z p i
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whereV, andV, are the zone and point volumes, respectively. The explicit functional fori
of V- v and VP are left unspecified. Now if we insert the result given in Eq.(27) for tt
divergence into the first term on the LHS of Eq.(28), for all zoneand interchange the
order of the double summation in that term, then, by setting the resulting equation to
for each value of the indeg one obtains for the interior points

1 R R R R R R R N
(VP)p = V—[— Py (8; + @3) + P> (82 + dg) — Py(ag + 810) + Py (83 + 810)]
p

> " P.CE/V,. (29)
V4

which is the compatible discrete form of the gradient operator defined with respect tc
grid points, written here for the point labeledn Fig.2. We could just as well have specifiec
VP as Eq.(29) and derived the divergence as given by Eq.(27) by a completely analo
set of steps.

The above arguments can all be translated directly into the language involving
ner forces that was employed earlier. To see this note that in the zerig, (V PV -

Vz=1= ), f%:l' - Up; and likewise for pointp, (VVP),=—>", Fg. Using these ex-
pressions in Eq.(26) results in the vector identity, Eq.(28). Thus, an explicit specifica
of the corner force can be viewed as specifying. Then the work done can be found by
the series of steps starting from conservation of total energy and leading to Eq.(19).
the previously stated procedure using conservation of total energy encompasses the n
of support operators; however, because the former can be derived in a very generic
that involves only the corner forces it is more general for the staggered grid case. How
it is important to note that the compatibility of the gradient and divergence operators
given by Eqgs.(27)—(29), justifies the solution given for Eq.(19) that yields the equation
specificinternal energy. This is seen to be the only solution that leads to compatible, dis
forms for the vector operators. Thus, a proper determination of the corner forces bec
the central issue. This involves the specification of the corner vectors of the coordinate
mesh, or alternatively, the associated vectors of the median mesh.

The corner vectorf:f, is not necessarily a simple object. It is composed of two “hal
edges” in two dimensions and many analogous “edges” in three dimensions. These
edges may depend on some or all of the dynamical grid point coordinates and not or
those of two points connected by a straight line, as indicated in Fig.2. The definitior
these edges depends on the definition of the zone volume which is of arbitrary comple
and, as will be seen for the “area-weighted schemes” investigated in the next section, ¢
non-integrable. In the language of the method of support operators one defines one ope
sayDIV p_,, acting from points to zones (this can always be found from a specification
the zone volume), and then by an interchange of the order of discrete double sum:
derivesGRAD,_, , acting from zones to points. Note that what is important here is not t
entire edge between two points, but the corners or half-edge vectors that are comm
both the gradient and divergence operators. (The procedure for obtaining the corner ve
CE is given in Appendix A for a simple case where the functional form of the zone volul
is specified.)

The support operators method can be viewed in the following intuitive terms for pie
wise constant functions, and for the staggered grid placement of variables given |
Consider a set of specified corner vect6f5 and a set of scalars and vect@s, P;, A,
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B,, where those with the subscrit are defined at points and those with subscrpt
are defined in zones. Then the corner pieces of the operators for gradient, diverge
and curl that take data defined at pomts and produce data defined in zones are ¢
by grady_,= QpCp, divp.,= Ap Cé, and curly_,, = Ap X CZ The full operators
GRAD ..z, DIV p,;, andCURL p_,, are then given as sums of these corner pieces wit
respect to indexp, and divided by the zone volumé,. To obtain the operators going
from zones to points we may consider the vector identities to be effectively defined ¢
lectively by conservation of total energy, or individually as in Eq.(28). For the contr
volume dlfferencmg used here this will resultgradHp = PZC div,,p= BZ Cp and
curl,, p= —Bz X CQ (recall thale = p), where the full operatoilGRAD,_, , DIV ,_, ;,
andCURL ., , are then given as sums over the indgxand divided by the volumey,,
associated with the poimt. For our particular staggered grid formulation it is this latter
set of operators that make up the corner forf@swhereas the former set compose the
equation for internal energy.

The other important operator expressions that can be obtained from gradient, diverge
andcurlV x Vp=0andv- (V x A) =0, for arbitraryp and,&] are not generally satisfied
locally in discrete form. This is not surprising since we utilized the vector identities on
in integral form. Spurious numerical errors arising from the fact that these relations are
valid do occur. This is a more general problem associated with all discretization method
has important implications that are discussed after momentum conservation is conside

2.2.2. Point-centered formulationlt is interesting to compare the staggered grid formu:
lation just given with that obtained with a point-centered placement of variables. Consi
the grid shown in Fig.3 with all variables placed at the zone center points indicated
solid dots. Zone boundaries are indicated by solid lines labeled as the Vé;tpvshere
j =1---4, that connect auxiliary points given as asterisks. The position of these auxilic
points is specified in terms of the zone points in some manner. The Masassociated
with the zone points is a constant, Lagrangian quantity. The momentum equation for the
Zone point is given by

Mi%=2ﬂ_j, (30)
j
where the forces . j.i are calculated as functions that are piecewise constant on the zc

boundanesS, i of the ith zone. For forces that originate from a scalar presslqrp,_
-P; .SJ i, where the pressure on the jth boundary segm@pt, must be determined in

So,i

A

S5, i . = e

S4,i

FIG. 3. Zone surrounding poiritwith grid lines for point-centered grid. Asterisks are nondynamical points
used to define zoniewith edge vectorséjyi ,forj=1...4.
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some manner. This is usually done as an interpolation from the zone pressures, or frol
solution of a local Riemann problem across this edge. (Note that with respect to the
adjacent to the ith zoné+ 1, on the opposite side of the jth ed@Hl = —§j,i )

Multiplying Eq.(30) by the zone velocity; gives the time evolution of the kinetic energy
as

d [(ma2) > . >
a( |2|>=Ui'zfj,i=_vi'zpj,isj,i~ (31)
i i

Next we find the equation for the evolution of the internal energy by integrating Eq.(3) o
the ith zone. This yields

de

M._
'dt

=—R/v.adV=—HZ§j.i.aj,i, (32)
M j

where now we must also define the velocity along the jth edige This can be given by the
same procedure used for determining the edge pressures. Summing the internal and }
energies we can write an equation for the total energy change inside the ith zone as

d (M} . B} .
a ( |2| —i—MiQ) =—viZP,—,iSj,i—P|Zst - Ujj. (33)
J j

In the staggered grid case both the momentum and internal energy equations inv
the same entities, the corner forces. This is seen not to be true for the point-centered
The equation for kinetic energy evolution involves forces, but these forces must be br
apart to obtain the internal energy equation. If we specify I®thandv; ; independently,
then the sum of Egs.(31),(32), as given by Eq.(33), will not in general be a quantity that
be written in divergence form, and thus reducible to a boundary integral. Unless this is
case, conservation of total energy will be violated.

A crude way around this difficulty is to specify boih); and P;; at the cell interfaces
and redefine the RHS of Eq.(33) to be given-as_; Pj i éj,i - Uji. One then uses this
equation directly to evolve the total energy as a function of time. This equation along v
the momentum equation is advanced in time, after which the kinetic energy computed 1
the advanced velocity is subtracted from the total energy to obtain the internal energy
is needed to compute the pressure using the equation of state. This completely elimi
Eq.(32) and guarantees exact conservation of total energy. However, this can resultin
errors if the kinetic energy is large, since quantities sometimes nearly equal in size
subtracted to obtain a small difference. Compatibility is never an issue since the error
simply hidden and subsumed by the total energy equation.

In the support operators prescription no interface work is defined; instead it is requ
that the RHS of Eq.(33) be expressed as

Z <l7i ‘Zéj,i Pii+ P Zﬁj,i : éj,i) = Z PoaSod - Db (34)
i j i bd

where the RHS of Eq.(34) is evaluated at the boundary. Given a specificatiByy for the
above equation is equivalent to specifying the form of the gradient operator, and specif
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vj,i is the same as specifying the form for the divergence operator. This equation is t
the vector identity foW - (Pv) in summation form. By specifying one or the other of these
quantities, Eq.(34) is used to determine the coefficients of the unknown operator. Howe
this equation is satisfied only globally, and never in the strong sense of setting each t
with respect to an outer summation index equal to zero, as was true for the staggered
case in EQ.(19). Therefore, unlike in the staggered grid case, the particular functional f
of the undiscretized terms that enter into both the momentum and internal energy equat
must be known for this procedure to be carried out. Many examples of this method h
been given [17,18,14,19].

Direct specification of a force that acts between two points lies outside of the domain of
method of support operators. For the case of a staggered spatial grid scheme consen
of total energy can be used to compute work given force, or vice versa, in a way t
is not possible for a point-centered placement of variables. When forces are specifie
a heuristic manner, as is the case for an artificial viscosity, the conservation of ene
approach enables one to construct the work equation in a simple, unique, and ger
manner when the functional form of this equation would not at all be obvious otherwi
In the case of a point-centered scheme, if one simply specifies a discrete form for a ft
acting between two points, additional information must be provided in order to decide h
the work performed by that force on a given zone is to be partitioned between the kin
and the internal energy of that zone. In the staggered grid case this information is alre
given by the assumption that a corner forf.?: whatever its origin, acts on a poiptand
does work with respect to zorze This was seen to be a consequence of satisfying Eq.(1
in the strong form for every zone lakelThere is no arbitrariness in this arrangement that i
also necessary for the discrete vector operators to be compatible with one another. Thu
a staggered placement of variables the conservation of total energy procedure, as deve
here, includes the method of support operators and allows for an important extension i
automatic manner.

2.3. Entropy Errors and Volume Consistency

In both point-centered and staggered spatial grid formulations two definitions of volul
have been introduced. The first is through the definition of a cell volifm@), used to
compute the cell density, given the initial cell mass. The second volsg, is implicitly
defined through the change of internal energy caused by the pressuiRe@s,. This latter
volume is not necessarily the same as the first. In particular, when work is done compati
for instance by Eq. (20), the change of the second volume has been constructed by th
of mesh vectors and point velocities, and not by subtracting volumes defined by coordir
positions at different time levels. For a staggered spatial grid scheme implemented with t
energy conserved to roundoff error these two definitions of volume will agree (to with
truncation error with respect to time) only if we choose the divergence of the velocity fie
defined from Eq.(1) as the determining operator from which the others are derived fr
the requirement of compatibly. In the case of two-dimensional cylindrical geometry,
example, the median and coordinate-line meshes describe different volume elements
are not equivalent within a single zone, as is the case for Cartesian geometry. Thus fo
compatible change of internal energy caused by the zone pressure to be consistekf wit
of the coordinate volume, the gradient operator that determines the pressure forces a
on the points should be defined with respect to the same mesh as the divergence ope
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The divergence operator is naturally defined with respect to the coordinate-line mes
order to correspond to the time derivative of the zone volume. In other instances, as wi
seen in Section 3, the zone volume and the volume compatible with the gradient ope
may be guaranteed to agree only for certain kinds of velocity flow fields.

The error that results from an inconsistency in these two volumes appears as an er
error. To see this consider the second law of thermodynamics written for an isentropic flo

TAS= —P,(V1, &)[AVs — AV4]. (35)

T ASis the entropy production term, which for an isentropic flow should vamisls given
as a function o, through its dependence on densityV is the volume change used in
the internal energy equation and/; is the actual volume change calculated from the zor
coordinates. FOAV; # AV, the error in the internal energy term shows itself as an additic
to the entropy; it can obviously have either sign.

Point-centered schemes can also have this same kind of entropy error. In fact, for ¢
such schemes, where interpolation functions are used to smear the cell mass over
characteristic length, the computation of density and work are not related in a mal
that even makes the assessment of this error simple to estimate [20]. Where one ha:
estimates of these two volumes, for instance, by integrating Eq.(1) in time and compe
the result to that obtained from computing the volume directly as a function of the p
coordinates, it is possible to construct a nondimensional estimate of this error term.

2.4. Momentum Conservation

Unlike the total energy, one does not usually care what the value of the total momer
is. However, momentum must be conserved. In general, this is the statement of New
third law in discrete form and says that the action and reaction of a given force shouls
equal in magnitude and opposite in direction. For the case of forces that are computed
respect to the median mesh of a staggered spatial grid discretization this is automatic.
is seen from the arguments that led to the form for the specific internal energy eque
given as Eq.(24). There it was seen that each piece of force along a part of the median
acts with equal magnitude and opposite sign with respect to the two dynamical points
which it is associated. Likewise, for point-centered schemes momentum will be conse
for the same reason.

For the case where there are no boundary forces the statement of conservation o
mentum is given simply as

S R=Y )Y fr=o0 (36)
P p oz
Now consider the case when the forces are due to piecewise constant zone-centerec

sures, and interchange the order of the double sum in the above equation. Then for
forces calculated along the coordinate-line mesh in Cartesian geometry we have the 1

8
Y ft=pr ) & =0 (37)

since the sum of the outward normal vectors of any closed volume is always zero.
result followed from the equivalence of the median and coordinate-line meshes in Carte
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geometry, since momentumwas seen to be trivially conserved in the former case. It expre
a simple topological property of the zones: namely, they consist of closed surfaces. -
simply says that when we construct a zone from edge vectors, those lengths should
without gaps or overshoots.

In an exactly similar manner angular momentum is also perfectly conserved on a sir
zone basis. The change in angular momentum is computed by taking the cross produ
the radius vector of each poirﬁtp with the momentum equation and summing over all
points p. Then decomposing this sum on a single quadrilateral zone basis yields

Y Ryx f2=P,> Ry xCi=0, (38)
p p

where the sum that vanishes identically is again a purely geometrical property of any clo
zone that is valid independently &%.

While the above may seem simple enough, there are schemes in cylindrical geometry
achieve important physical properties by allowing both linear and angular momentum tc
violated at truncation error levels by modifying the zone normal vectors such that gaps
overshoots are present [13]. This is done in order to preserve certain symmetry prope
that are broken by angular momentum, or spurious vorticity, errors that are present v
control volume, as well as other, discretizations. This is in spite of the fact that angu
momentum is exactly conserved on a zone basis, and thus appears rather paradoxica
important criterion that must be satisfied to prevent the generation of spurious vorticity
that the force density due to the scalar pressure have zero clxov p=0 [21]. This
is a property that, as previously noted, is not generally satisfied locally. For our stagge
grid, control volume differencing, this criterion is operationally measurable in each zone

FD
V x (V_p) =0, (39)
where lfp is the total force on a poinp due to the scalar pressure, awg is the total
volume associated with this point (the sum of the corner volumes with the ipfiex
calculating Eq.(39) one always uses the surface normals of a particular zone in unmod
form, although for the symmetry preserving procedure given in [13] these normals
modified when used to compute the pressure forces. To satisfy the above criterion in
instance itis necessary to violate attruncation error levels both linear and angular momer
conservation. Inthe special case of symmetry preservation investigated in [13], the proce
presented there results in Eq.(39) being satisfied to roundoff error for very particular ki
of flow conditions. (In these instances the total force density also has zero curl since the
is one-dimensional, although x V - Q # 0 for an arbitrary tenso®.) However, making

V x Vp=0in discrete form does not generally mean that all spurious vorticity generati
has been eliminated. This is because given any analytical prescripti@pfavhich is then
projected onto a grid with arbitrarily spaced points, one finds thatV p # 0 in discrete
form. Thus, Eq.(39) is not a general, well-defined measure.

With the above said, it is still a central requirement that momentum be conserved, e
if it might be violated at truncation error levels in some instances. In the case of forces
arise from subzonal pressures or tensors, and that are addé’d tiois must be done so
that Eq.(37) is obeyed. This places an important restriction on how these subzonal pi
of force may be distributed among the corner forces of a given zone [5].
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Finally, we note that the concept of closure of a volume for proper momentum con
vation is important in three dimensions. If one uses arbitrary interpolations between pc
to approximate curved surfaces, each described by a single normal vector, it is not
that the sum of all such vectors about a closed figure will actually vanish. If this does
happen then, not only is momentum conservation violated, but there exists no median|
that can be equivalent to the coordinate-line/surface mesh, since, as just argued, for f
calculated with respect to the median mesh momentum is always conserved for piece
constant pressures. This restriction thus places some limitations on the definition o
normal direction used in these interpolations.

3. AN EXAMPLE: AREA-WEIGHTED DIFFERENCING

The most straightforward way to derive a scheme that is compatible in any geomet
number of dimensions is to use what we now define as “proper” control volume differenc
In this kind of scheme one uses a staggered placement of variables, as previously disci
with piecewise constant functions. The main starting point is then to use Eq.(1) to de
the operatoDIV ,_,,, given some specified form for the zone volume as a function of
defining coordinatesV,(Ry, Ry, ...). Then using Eq.(28) one can derive the compatibl
gradient operatoGRAD,_, ;. This essentially determines the form of the vecﬁfsthat
mutually compose the coordinate-line and median meshes. Then the corner masse
defined, and thus the zone and nodal masses. Postulated forces, such as those arisir
artificial viscosity, can also be specified; all change in internal energy is calculated u:
Eq.(20) since the complete corner forces can now be constructed. Except for numerical
associated with time integration, there is no entropy problem because the volume us
compute work is automatically the same as that used to compute the zone volume and de
Momentum is also conserved since this volume is closed, and total energy is conserv

The problem is that in some instances the kind of scheme detailed above will not pres
otherimportant properties. An example of this situation is two-dimensional, cylindricl
geometry in the case of spherical flow. Here one can specify one-dimensional, spheri
symmetric initial and boundary conditions and the numerical solution, computed with
control volume scheme described above, will not remain spherical in time. Since |
important to investigate perturbations in two dimensions of this type of one-dimensic
symmetry, other kinds of schemes were developed for solving this type of problem. Tt
are the so-called “area-weighted” schemes [10-12,18]. They have been used extensive
almost 40 years and have arisen in several incarnations that sometimes look quite diff
but are the same in their principal features. They have a staggered spatial placeme
variables that are piecewise constant functions. All have the useful property that they
preserve spherical symmetry in cylindrical geometry for an equal angle zoned initial ¢
This subject, its extension to unequal angle zoning, and the rectification of this diffici
for a control volume scheme are given elsewhere [13]. However, a detailed analysis ©
salient features of area-weighted schemes proves very useful for displaying the pos
difficulties previously discussed. This is because for this type of scheme one essen
begins by postulating the form of the gradient oper&®AD,_,,, based on physical
reasoning of what is necessary for symmetry preservation for a grid that is constructed
equal angle zoning. This implicitly determines the zone volume, and leads to an intere:
set of problems that are amenable to analysis in the framework given here. These scf
violate strict momentum conservation; in compatible form they possess a non-integr
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volume element, and thus may give rise to entropy errors of the type previously mentior
Nonetheless, they have been used extensively because of the above mentioned sym
property.

The formalism introduced in Section 2 allows the area-weighted schemes to be der
and analyzed in a most economical manner. This is done starting from the momen
equation. To transform the momentum equation of the control volume scheme in tv
dimensionalr, z) Cartesian geometry into two-dimensioalz) cylindrical geometry one
must multiply the normal vector edge lengths of a quadrilateral zana, S, from which
the forces are computed, by a faatahat is defined as the average of treordinate values
at the respective endpoints of the straight line segments. This gives “true” zone volume
nodal volume, in cylindrical geometry depending on whether one calculates along a clo
segment of the coordinate-line, or the median, mesh.

Spherical symmetry in cylindrical geometry is not preserved with the control volun
scheme because the areas along the angular direction are not equal even when the :
between the radial lines are equal. Thus for pressures that are radially symmetric the for
not in the radial direction, leading to the aforementioned violation of symmetry. Howev
for an equal angle zoned grid cylindrical symmetry is preserved in Cartesian geometry. 1
is because the lengths along the angular direction are then equal, and thus the net force
node perpendicular to the radial direction vanishes for a spherically symmetric distribut
of pressures [13]. It is this fact that is used to construct the area-weighted scheme
cylindrical geometry that preserve spherical symmetry.

To obtain the area-weighted schemes one simply multiplies the vector lengths, as def
in Cartesian geometry, of the entire force contour defined with respect to a given grid po
p, by the value of the coordinatg at that point. This is done in place of multiplying the
separate vector lengths that make up this contour by their respective vafugsofvould
result in true volume for cylindrical geometry. Then the Lagrangian nodal mass is a
defined at poinp as an effective “areal inertia” timeg so that the momentum equation in
cylindrical geometry becomes

-

dv dv -
Mpd—t" Erp(pA)pd—t” :rpz; e, (40)

where we indicate a§gz the force as computed in two-dimensional, Cartesian geomett
Now the common factor af, cancels in Eq.(40) and one is left with essentially the sam
momentum equation as was used in Cartesian geometry, hence the term “area-weigt
This modification to control volume differencing points the acceleration in the radial ¢
rection and can be shown to preserve spherical symmetry in cylindrical geometry for ec
angle initial zoning if(o A), is the same for all points on an arc of constant radius [13,7]
The first difficulty encountered with the above is the proper definition of the nodal ma
Mp. (The definition of the zonal mass and the areal inertia is the place where differen
in the various forms of the area-weighted schemes arise.) We require that the total va
of the zone and nodal mass be the same over the entire grid and that the zone ma
the “true” initial mass in the cylindrical quadrilateral volume. That is, the relations give
by Egs.(5),(6) must be satisfied. The areal inertia used in this equation can be obta
by (0 A)p= Mp/r,, as seen from Eq.(40). Consider the center powoitthe quadrilateral
zone defined in Fig.4. There we indicate four triangular subzones labeled as numbdrs 1
inside circles, each corresponding to an edge of the zone. We denote the areas of
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FIG. 4. Quadrilateral zone with center poinaind coordinate-line mesh (solid) vectagsand median mesh
(dotted) vectors . Triangular sub-division indicated by dashed lines and their associated solid coordinate lir

respective triangles by the symbaj. Then from the fact that the true volume of the itt
triangular subzone of the quadrilateralAs(ri + ri 11 +rc)/3 we have

4

Mz =p; > A +Tip1+10)/3. (41)

i=1
Using the fact that thecoordinate of the center poingis givenbyrc = (ry +r2+r3+rs) /4
allows us to find the corner mass@$ by simply decomposing Eq.(41) with respect to the
factorsr;. For instance, for point 1 of the zone shown in Fig.4 we have the result t
m = p,r1(5A; + 5A4 + Az + Ag)/12. Now the relations given by Eq.(5) can be applie
directly and Eq.(6) will be satisfied. This construction can obviously be used to find
corner masses in area-weighted form for a zone of any number of sides in two dimens
It provides a solution to what has heretofore been a major difficulty in the formulation
these types of schemes.

The only problem with this definition of nodal mass is that along 2kaxis where
ro =0, the nodal mas#, =0, and the areal inertia is indeterminate. This defect can
remedied in more than one manner. One can simply extrapolate its value from ne
points or calculate the areal inertia fragmi\ taken with respect to the median mesh abot
these points. The first curious property of the area-weighted scheme just specified is
sinceM, =0 on thez-axis these points carry no momentum or kinetic energy. They jt
serve as marker points to determine the size of the zones (and thus their density)
cent to thez-axis. Total energy will be conserved regardless of how these points move
time.

The last step in our derivation of the area-weighted scheme is the specification o
equation for the evolution of specific internal energy. This we do for forces defined w
respect to the median mesh. Note that the force acting on a pdimm a piece of the
median mesh of a given zone is nfg’i , butr fqé’i. Using this fact in Eq.(24) we have that
the rate of change of internal energy due to forces applied fromzane

d 4L R dV.
M, o =3 s E et (42)
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The forcesfﬁé,i are evaluated with respect to the median mesh ve&orf zonez in
Cartesian geometry. Siné¢ v); = (r v)ij;1 — (r v);, in this equation, unlike in the momen-
tum equationy, enters; this is necessary to approximate a zone volume in cylindric
geometry. The last equality in Eq.(42), which is true only for pressure forces, is the r
concern. Since for pressure forcﬂ’;éi =P,S, Eq.(42) defines a rate of change of the
differential volume of zone with time. What this volume is and how it is related to the
true volume of a quadrilateral zone in cylindrical geometry is the important question. Fir
notice from Eq.(42) that momentum is not in general conserved by this scheme. Thi
because the forc@é’i acts with a factor; on pointi, and with a different factor;,; on
pointi 4+ 1, of zonez. These forces have opposite signs but not equal magnitudes, and t
Eq.(36) is not exactly satisfied.

Substitutingf ; = P,S into Eq.(42) yields the resultfa\V,/dt given as the first equality
in the equation

dv, L v arv, v, R
dt ;S (rv); z( ar + 37 . "> c- v ( )

the second equality in this equation follows from the form for the discrete divergence
Cartesian geometry, as given by Eq.(62) of Appendix A with argumeitserted in place
of v. The partial derivatives are understood to be the discrete form of these objects.
last equality in this equation follows from using the identity= V,/(r )., which defines an
average coordinate for zone (A; is zone area); by, we understand the Cartesian form
of the divergence operator where there are no unit vector differentiation contributions. Fr
this last term of Eq.(43), and using Eq.(1), the divergence of the velocity field in cylindric
geometry is given by

1 _ lary  larv,
T + =

(r), roor r 9z’ (44)

where we have lefr ), — r. We thus see that we have obtained from Eq.(42) a consiste
discrete representation of the divergence operator, and thus the discrete volume, in c
drical geometry. One derivation of an area-weighted scheme startswithwritten in
continuum form as given above [12]. Then the full system of hydrodynamics equatic
is discretized using what amounts to formulas given by Egs.(58),(59) of Appendix A. /
area-weighted scheme is then derived, but by a much more involved path.

The time rate of change of the compatible zone volume given by Eq.(43) can be explic
written in terms of the coordinates of the quadrilateral zone shown in Fig.4 as

d\, 1
el E[("zvrz —T40r4)(Z3 — Z1) + (Fvrs — r3vr3) (22 — Z)
+ (r3vs — r1v21)(F2 — ra) + (F2vz2 — rav) (ry — r3)]. (45)

(This is most easily seen by the use of Egs.(58),(59) of Appendix A in Eq.(43) withnd
rv; as arguments.) We label this volumé&so denote that it is the second (and compatible
form of the zone volume. Given any functic)n(lil(t), Iiz(t), ...) that depends on time
only implicitly through its arguments, it is true in general that

dv .
T > i ViV, (46)
i
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whered; =dR /dt, and byV; is meant the generalized gradient with respect to all vect
arguments of the volum¥. By simply comparing the expressions given by Eq.(45) ar
Eq.(46) one can find the partial derivatives\bfwith respect to all zone coordinates. Fol
point 2 of Fig. 4 this is

3V2 1 8V2 1
— = =l(Zz3 — 71), — = =r(r1 —r3), 47
o, 2 2(Z3 — z1) 0z, ~ 2 2(fr1 —r3) (47)
as is seen from the coefficients®p andv,, in EQ.(45). Forming the second mixed deriva:
tives of these quantities with respect to the index 2 leads to the interesting result
0 Vs 0 d Vo 1

= ——— = =(I'1 —r3). 48
0Zp drp daro 022 2(1 3 ( )

Thus, the compatible volume of the quadrilateral zones defined by area-weighted differ
ing in cylindrical coordinates is non-integrable; there exists no scalar funehicRy (t),
R(t), ...) whose time derivative yields Eq.(45). Since Eq.(45) does not define the t
volume of the zones, we show how this expression is related to this volume.

If we write Eq.(43) along the coordinate grid lines, then the rate at which volume is sw
in time along any edge described by the outward no@dires calculated by area-weighted
differencing is given by

d Vedge
dt

1 . R R
= E(rlvl +rov7) - 4, (49)

area.weight

where the labels 1 and 2 denote the endpoints of this edge. The rate at which volur
swept in time along this edge as calculated from true “control volume” differencing is gi

by

d Vedge
dt

1 R N R
= Z(rl +r2) (V1 +v2) - & (50)

true

The difference between these two rates is due to the faetair; + r,)/2 that appears in
Eq.(50) versus, (p=1, 2) in Eq.(49). Subtracting these two equations, the difference
these two rates of change of volume can be written as

d Vedge
dt

_ d Vedge
dt

Ar - -

areaweight true

whereAd = ¥, — 91 andAl is the vector along the given coordinate-line edge (perpendicu
tod and with the same magnitude). Thus it is seenifitla¢ velocity difference along an edge
is parallel to the direction of that edge, then there is no difference in the volume cha
calculated with area-weighted differencing relative to true control volume differencir
Now consider a spherically symmetric velocity field as shown in Fig.5. For this type of fl
field it is obvious that the above condition is satisfied along all edges of the quadrilat
zones. Thus the volume change calculated for this kind of flow field with the area-weig!
scheme gives the same volume change as calculated from the control volume sct
The latter is what is obtained from computing the difference of the quadrilateral volur
at two different time levels to obtaidV of a zone. So there is no volume consistenc
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FIG. 5. Grid lines for a 180 symmetric flow (radially inward arrows) problem with poings a center of
convergencet-z axis is a reflective boundary containing grid pointg,axis is a reflecting boundary without grid
points on this line (dashed and dotted). Dotted lines indicate degenerate quadrilateral zones that are comn
the center of convergence.

problem or associated entropy error for spherically symmetric flow, although there is for
arbitrary velocity flow field. The reason that area-weighted differencing preserves spher
symmetry in cylindrical geometry for equal angle zoning is because the criterion giv
by Eq.(39) is unchanged in moving from Cartesian to cylindrical geometry for this ty]
of differencing. This is because the terrﬁ§ andV, that are divided in that expression

both acquire only a common factor gf in cylindrical geometry. Thus the force density
that was curl free for equal angle zoning in Cartesian geometry remains so in cylindri
geometry.

Although the zone mass of this area-weighted scheme and the control volume sch
is equal, their nodal masselsl,, and corner masses)?, are not. As shown earlier, the
assumption oM, and M, as both constant, Lagrangian masses leads to the conclus;
that the corner masses® are also constant. When this concept is used to derive subzor
pressures as described in [4] for use with an underlying area-weighted force differenc
these subzonal pressures are calculated from subzonal masses and volumes compute
the true volumes of the corners of the quadrilaterals. The corner masses used to con:
M, for an area-weighted scheme do not turn out to be useful Lagrangian objects bec:
of their dependence an.

Lastly, in the variant of the area-weighted scheme due to Schulz, the quadrilateral z
volume is defined as the zone area timgsther coordinate of the center point of the
zone. This never exactly matches the true zone volume so that this form of area-we
differencing can never be cast in a form that is compatible with total energy conservati
In this case the work done in a zone by pressure forces is calculateB,dy/, whered V
is the change in zone volume computed from the “postulated” functional form.

4. PRACTICAL CONSIDERATIONS

Here we briefly discuss other issues that are of importance for constructing a comp
numerical implementation of the ideas developed in this paper. Principal among these
time integration and a proper implementation of appropriate boundary conditions. Th
subjects are treated here only to the extent that our specific numerical formalism imp.
upon them. In particular, we describe how we have implemented time integration e
boundary conditions in a working code, results from which are shown here only to clar



COMPATIBLE HYDRODYNAMICS ALGORITHMS 253

very specific issues; however, numerical examples in a much larger context and with re:
to a much broader range of problems, obtained from the same code, are given else
[13,4,5].

4.1. Time Integration

It was already noted in Section 2 that an even time integration scheme must be usec
this model since we wish to have all quantities that enter into the definition of total ene
at the same time level. Given this fact there remain three issues to be addressed: nun
stability, time centering of the corner forces, and timestep control. Our time integra
method is a predictor-corrector technique where on the predictor we always advanc
variables a full timestep to the+ 1 time level.

Our discretization that conserves total energy to numerical roundoff error implie
specific ordering to the solution of the equations: namely, that the momentum equatit
firstadvanced to obtaiﬁ;*l, and only then is the internal energy equation advanced. Wh
the latter is advanced information from the velocity field atthe- 1) level is used, since
in Eq.(20),17';+1/2 = (17';” +v},)/2 is what enters. This sequence forms our initial predict
step, as well as following corrector steps.

If the momentum and internal energy equations, Eqs.(17),(20), are linearized for pres
forces in one spatial dimension it is readily found that this sequence of steps yields the
CFL stability constraint with respect to the sound speed. Thus, this system is stable fol
one predictor step. Therefore, the very structure of these equations, in which they
discrete conservation of total energy, appears to imply linear stability.

Although a single predictor step is numerically stable, and we could simply advance
variables at this point, we always do at least one additional corrector step. The sequ
of operations in performing either a predictor or a corrector step is advance velocity,
specific internal energy (using'"/?), and last coordinates, and therefore zone volun
and density. To advance coordinates one always uses the average of the velocity at ti
and new time levels; this is formally second order accurate. However, on the predictor
we have effectively calculated a volume change in computing the time advanced spe
internal energy. This step uses forces centered at the old time level and is thus only
order accurate, and will result in an entropy error for the reasons previously mentiol
(This is measured since we also integrate Eq.(1) in time and compare this zone volur
that defined by the coordinates.) Thus, on the corrector step we always time center the
lines, & and § at the(n+ 1/2) time level by averaging the old and new values of th
coordinates. Then the time advance of the compatible volume and work has the same
of accuracy as the coordinate advance. This still results in a residual numerical integr:
error between the compatible volume and the coordinate volume since the velocity a
n+ 1 time level that is used to time center the grid lines is not the same velocity ths
used to advance the coordinates at the end of the corrector step. The pressure ma
be centered at thén + 1/2) level or used fully advanced; we observe little difference i
these choices. However, the pressure used in the momentum and internal energy equ
is always the same since the corner forces are common to both. In the case where we
an artificial viscosity, the subzonal tensors from which this force is computed are alw
kept at the unadvanced time level; this centering choice is found to produce less nume
noise than any others. More than one corrector step may be employed and the results
all preceding steps can be easily factored into the calculation of the time-centered c
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forces and grid lines [22]. Time is always advanced after some fixed, predetermined nun
of corrector steps; usually, only one corrector step is utilized.

A new value for the timestep is always chosen on the predictor step. This is done
follows for quadrilateral zones in two spatial dimensions: first we define a characteris
zone lengthl;, as the minimum distance of the two sides of the median mesh of a given zo
Next we compute a generalized sound speggin every zone. This is defined by adding
the maximum pressure in a zone to the maximum value of the scalar part of the artifi
viscosity tensors in a zone to form a generalized presgjiréhen,c; = (y pi/p2)Y/?, where
y is the ratio of specific heats apg is the mean zone density. We then require that

C; At

< f1 = 0.25, (52)

P

be satisfied for every zone. In addition, we also require that a zone not change its voll
by too large an amount in a timestep; namely,

|(V-9)]|At < 0.8y, (53)

where (V - 9)7 is known at time leveh. Although Eq.(52) almost always sefst, the
criterion given by Eq.(53) is a useful supplement in certain, some what pathological,
uations. The increase of a given value of the timestep over the previous one is limite
no greater than 10% to 20%, while the decrease is unrestricted in order to always mair
numerical stability. If there are characteristic speeds due to sources other than pressur
artificial viscosity, for example, shear wave speeds that result from material strength, t
the maximum value of these characteristics speeds is used in Eq.(52).

4.2. Boundary Conditions

Initial and boundary conditions are crucial to the complete description of any physi
problem. The latter must be treated carefully in any numerical model. Here we consi
the following cases: externally applied force, specified velocity at a boundary, a reflect
boundary, and a center of convergence that can move with time. As before, conservatic
total energy is central to our development.

For an externally applied force one can compute the velocity with time of the bound:
points in the same manner as for the interior points. Since there is assumed to be no |
outside the boundary, the nodal mass of the boundary points is due only to the interior zc
adjacent to the boundary. The equation for total energy, Eq.(15), becomes

Er() =Er@+ Y > Wi, (54)

m=1 i

where the rate of boundary work performed at péimn the mth cycle is computed as
WG = ﬂ';r[‘,,i : ﬁg‘;il/zAtm. Since the external boundary forcef%_,d’i, are specified, energy
balance is complete.

Suppose the velocity at the boundary is specified. Then in order to compute total ene
balance from Eq.(54) we must find the wokkyy ;, that is effectively performed by the
exterior boundary forcel’;,g‘&‘i . Since the velocity is known the momentum equation, givel
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as Eq.(17), can be used to firﬁgd,i; thus the boundary work is given by

e | 1/2 | 1/2 - e
Wk??j,i = fk?zj,i 'UEtT,i/ Aty = UE}L/ . (MiAUbd,i — Z f'Z’UA'[m) , (55)

z

where f}“ is an interior corner force that acts on the ith boundary point.

While the above is simple enough, a more complicated situation that can be viewed
combination of the above two cases is that of a slide line between two different mate
[10,7]. Since the equation of state is different for each material, the force and thus
velocity in the direction tangential to be interface can be discontinuous. In addition, one
have friction forces that act between the two sides of an interface; these must be spe
by some prescription that is consistent with momentum conservation. Once this is don
corner forces are completely known on both sides of the sliding interface, but simply do
line up so thatthey can be summed about a point to obtain the complete momentum equ
What one does in this instance is to interpolate both the corner masses and forces frot
side to the other to complete the momentum equation at all points on the interface. (In
way the construction of “ghost cells” to complete the force on either side of the interfac
avoided.) Then this completed momentum equation is advanced in time with respect t
direction normal to the interface, while in the tangential direction only the uninterpola
forces (including friction) and masses are used to advance this component of the vel
The internal energy equation, Eq.(20), is then advanced using the uninterpolated c
forces (including friction) dotted into the velocity of their associated points, just as befc
This equation is unmodified by the interpolation of corner forces and masses.

By the above procedure one essentially specifies the advanced velocity at either side
interface, wherein total energy is therefore exactly conserved for each region. In compt
the boundary work for each region by means of Eq.(55) all nodal masses on either sit
the interface consist of a single material with the corner masses of the opposite materi
to zero, but with boundary velocity specified. Then the total interface work done by e
material on the other should be equal in magnitude and opposite in sign so that there
netinterior energy source. This is not exact due to numerical truncation error in the inter
treatment. However, how closely this is satisfied gives a goodness criterion for this tyf
interior boundary condition. Kinematical adjustments in the velocity of the interface poi
may be needed to prevent material interpenetration. In this case total energy can st
exactly conserved by using Eq.(25) to modify the internal energy of the zones assoc!
with the affected interface points.

In principle, a center of convergence need not be treated in any special form since tl
an arbitrary property of the solution of the equations that can occur at any spatial loca
However, in practice one often constructs the initial grid knowing approximately where
pointis likely to occur: for example, along a given axis or at a fixed, predetermined locat
In this case this point can be allowed for in a special manner that increases code robus
Such an instance is shown as pairdf Fig.5. In this case we choose to treat this point &
the center of a zone that has more nearest neighbors than other zones. As shown in Fig
zone is composed of triangles, indicated by dotted lines, that are degenerate quadrila
adjacent to point. These triangles all have the same values of density and specific inte
energy since they are all part of the same zone. The position and velocity ot peodm-
puted in the same manner as any other zone center; namely, by a simple arithmetic av
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of the positions and velocities of the points that compose the zone. It is important to n
that because this point is the center point of a zone there is no nodal mass associated w
Reflective boundary conditions can be implemented in two forms, as shown with resg
to the z-axis in Fig.5, where a spherically symmetric flow is indicated by the velocity fie
arrows that point radially inward. The more usual case, shown with respect to the |
labeled+z in Fig.5, is where points lie on the reflective boundary but are constrained
move parallel to some specified direction defined dis is thez direction in Fig.5. Along
this kind of reflective boundary one simply modifies the velocity at these points after t
advance of the momentum equation to be equa(Bﬂ(j_il - €) €. Note that any motion of
these points along th& direction is consistent with this boundary condition, and in this
sense these points are unconstrained. If they carry little or no nodal mass, as in the ca
two-dimensional cylindrical geometry, this can lead to spurious motion and grid distortic
Aremedy for this difficulty when using area-weighted differencing is to enslave these poi
to their nearby neighbors since they carry no mass. One way to achieve this is to require
Al x AT=0, as suggested by Eq.(51), for these points relative to their nearest neigh
that is not on the z-axis. < is the velocity of points on the z-axis, aiti *is the velocity
of their associated nearest neighbors not on the z-axis, this yigldak—1 — vk-1sz/6r,
wheresr andsz are the difference in theandz coordinates of these points.

The reflective boundary condition as implemented in Fig.4 with respect te thaxis
has no points on the actual boundary. Instead, points on the line ldbelédare reflected
from the line labeled about thez direction to obtain their velocity. In this case the velocity
of points on the lin&k 4+ 1 is given in terms of the velocity on their associated points o
line k by the relations*** = 2(5¥ - &) & — &¥. This type of reflective boundary condition is
better constrained than the previous one in that there is no extra freedom that can be :
ciated with it. However, caution must be exercised with this implementation. For the c:
of an area-weighted scheme in cylindrical geometry, as discussed in Section 3, the ¢
patible work computed with this kind of reflective boundary condition about the z-ax
can be shown to result in a volume change that is different from that obtained from “tr
coordinate volume in zeroth order. This results in zeroth order errors in the internal ene
equation for all zones that lie next to the z-axis. It is therefore recommended only for |
with a proper control volume differencing where compatibility is always obeyed.

4.3. A Numerical Example

The Sedov blast wave problem [23] is used here to demonstrate the differences tha
be encountered with the two types of reflective boundary conditions just discussed. T
problem gives a diverging shock wave; it is run in two-dimensional cylindrical geomet
Our initial setup consists of a square grid with an edge of length 1.125 divided int@l85
square zones. Two of these edges correspond todhedz axes where reflective boundary
conditions are specified. The initial density is unity and the initial velocity is zero. Tt
specific internal energy is zero except in the first zone where it has a value of 5027.7.
use an artificial viscosity that is detailed in [5], and corner pressure forces with a fix

FIG. 6. Sedov blast wave in cylindrical geometry: (a) grid at unit time for reflective boundary conditior
with dynamical points on both theandz axes. (b) grid at unit time for reflective boundary conditions with no
dynamical points on the or z axes. These axes are indicated by dashed lines through zone centers.
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strength factor of 0.25 as discussed in [4]. The hydrodynamics equations are discret
using a proper control volume differencing. For these parameters the analytic solus
predicts that the expanding shock wave should be at a major radius of unity at a time
unity, with a peak density of four. In Fig.6a the grid is shown at this time, wherein we ha
used the first form for the reflective boundary conditions; points are present on bath tf
andz axes. Note that difficulties arise in the grid along the z-axis for this problem. The
points carry less nodal mass than other points and are more sensitive to numerical error
the ones along theaxis. In Fig.6b is shown results with identical run parameters but wit
the reflecting boundary conditions implemented as a line reflected about each afitiz
axes. Note that the first zone, where all energy is initially deposited, is divided into quart
by the intersection of these two axes; they are shown in Fig.6b as dashed lines throug|
centers of the zones that contain them. No difficulties with spurious grid distortion occ
along the z-axis with this type of boundary condition, as can be seen from this figure. In
case where this problem is run using area-weighted differencing (cf. [5, Fig.8]). we find t
enslavement of the points on the z-axis using the first form of reflective boundary condit
is the best solution to this difficulty. (Recall that the second form of the reflective bound:
condition is not appropriate for the z-axis with area-weighted differencing.)

5. SUMMARY AND CONCLUSIONS

The central feature of this paper was to show how conservation of total energy coulc
used to construct difference equations for the system of hydrodynamics equations in ¢
a way that the discrete equations that one numerically solves obey the relationships
occur in the equations that compose the original continuum system. A crucial part of 1
development was the staggered placement of variables in space. This allowed a set of u
definitions of corner objects, masses and forces, that are common to both a zone a
dynamical grid point to be made. Given these definitions it was shown how conservatiol
total energy could be utilized to link the momentum and specific internal energy equati
in a completely generic manner that is true algebraically given any set of corner forc
This was true independent of the precise functional form of these terms. This allows
enormous generality and rests on a simple physical assumption; namely, the corner fc
act on their associated nodal point to produce a change in momentum, and do work
respect to their associated zone at rate given by minus their dot product with the velo
of that point, independent of their functional form or origin. That this assumption was al
mathematically necessary followed from comparing the results obtained from it to the
of the support operators method. This showed that the assumption stated is require
the vector identities of differential calculus to be valid in discrete form for this kind c
differencing. By satisfying these identities in discrete form one ensures that the algeb
manipulations that are performed on the continuum system of equations to prove prope
such as conservation of energy all have discrete analogs. This then ensures that -
properties are mirrored into the discrete equations. (The exception beirlg thatp =0
is not locally satisfied.) The conservation of energy approach allows for an extension of
support operators method in the staggered grid case in that forces in discrete form ma
specified, and their associated energy contributions calculated, regardless of their functi
form. The specification of such forces is of extreme importance to the development of rot
and advanced hydrodynamics algorithms [4,5].
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An extension of the usual Lagrangian assumption of constant mass in a zone was
given. By noting that if the nodal mass is not constant there will be momentum flux fr
a node, it was concluded that this mass should also be constant. This is necessary f
momentum equation to appear in the form in which it is almost always used in Lagran
calculations. Because these two masses were defined in terms of common corner i
it then follows that these latter masses must also be constant, Lagrangian objects.
conclusion leads to the important concept of subzonal corner pressures and force:
inhibits spurious grid distortion in these algorithms [4].

Other concerns with the numerical solutions of the equations of fluid dynamics,
fundamental and practical, were explored. Among these were difficulties with mom
tum, volume, and entropy conservation in the former context: and, the proper treatr
of boundary conditions and time integration in the latter. The possible difficulties that
be encountered were illustrated by a first principles analysis of the so-called area-weic
schemes that have been used for many years in different forms, and have heretofore ren
somewhat of an enigma.

Although numerical results were shown here only to explore practical concerns with
implementation of reflective boundary conditions, a much larger set of results is prese
as part of the wider development of this work. This is contained in the related papers [13
that have been referenced extensively throughout this one. Finally, we wish to note the
ideas developed here in two spatial dimensions are directly applicable to any numb:
dimensions [24].

APPENDIX A

In this appendix we illustrate the derivation of difference operators given a prescrip!
for the volume of a zone element. (Our development here somewhat parallels that in [
This is done for a quadrilateral zone in two-dimensional, Cartesian geometry specifie
the coordinateg, z). Necessary changes in going to two-dimensional, cylindrical geome
are indicated. The are#, of a quadrilateral zone in terms of the coordinates of its definir
points, as shown in Fig.4, is given by

1
A= E[(fz —T2)(Zz3 —71) + (11 — 13)(22 — Z4)]. (56)

From the Lagrangian assumption, as stated by Eq.(1), and the expression for the
gence in Cartesian geometry we have

_  ov  0vy 1dA
Vio=—4+—"=-"—. 57
v ar + dz Adt ®7)
Using the fact thafi; =d ﬁi /dt, wherelii = (ri, z), the above expression can be explicitly

evaluated and the partial derivatives with respect to both coordinates can be obtained

vy 1
S5 = oxllr = va) (@ — 2) + (s — va) (22— 2], (58)
v, 1
8—1}2 = ﬂ[(rz —14)(vz3 — vz1) + (1 — 13) (V2 — vz4)]. (59)

The important fact to note about the above formulas is that not only do they expres:
partial derivatives ofy andv, with respect to coordinatasandz, respectively, but they
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also give the formulas for the partial derivatives of any function defined at the grid points
the quadrilateral with respect to these coordinates. For example, if one wants the expres
for the cross derivatives inside zoredv,/dr anddv; /dz, one simply substitutes, for v,
in Eq.(58), and; for v, in Eq.(59), respectively. Thus, by the procedure outlined we hav
derived operator expressions that can act on any data that are given at the respective |
to obtain a discrete form of the derivatives of that data inside the zone. Another feat
of Eqgs.(58),(59) as operator expressions is that they obey the results of simple calc
to lowest order. For example, insertingn place ofv; in Eq.(58) and in place ofv; in
Eq.(59) givesZ = & = 0. However, inserting? for v, in Eq.(58) does not yield zero for an
arbitrary spacing of the quadrilateral grid points. This shows that these formulas are c
first order accurate.

Our next goal is to write the derivative formulas given by Egs.(58),(59) in vector form &
the use of either set of vectod, or S, as shown in Fig.4. To this end, the representatiol

that corresponds quantitatively to the notation in Fig.4 of the veéassdefined by

== 2 . e (f2 5 "W, (60)

etc., which gives the outward normal prescription. Then the form for the divergence
velocity given by the usual control volume differencing in Cartesian geometry is

AV -V) = (8, +8g) - U1+ (82 +83) - Up+ (4 + 8s) - U3+ (@ + &7) - Us. (61)

It is easy to verify by straightforward algebraic manipulation that this equation is identic
to Eqs.(58),(59) obtained by time differentiation Af By vector manipulation the above
expression can be written in an equivalent form with respect to the median mesh. By us
the vector relations between the two sé&, — S;) =a; + dg, (S, — S)) =&, + as, ... .,
etc., there follows that

AV -9) =S8 -B1—02)+ S (o —3) + Ss- (U3 — Da) + Su - (V4 — ¥1)

4
->"§ 80, (62)
i=1

wheresv; = vj,1 — v, andi is cyclic as before.

To complete this discussion we now have that the partial derivatives given by Egs. (¢
(59) can be written with respect to these sets of vectors. For example, the partial derive
with respect to the coordinateusing the vectord; for any grid point functionx is given

by

27: = %[(alr +ag)* + (A +az)* + (A + a5 )* + (A +az )], (63)
wherea;; is ther component of vectod; ; a similar expression holds for the partial deri-
vatives with respect to the coordinaeThese derivatives expressed in vector form can b
used to define all vector operatofSRAD, DIV, andCURL) in Cartesian geometry with
respect to functions defined on the grid points.

We wish to note that the procedure carried out here for Cartesian geometry can be
for two-dimensionalr, z) cylindrical geometry with minor modifications. For this case the
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volume element given by Eq.(56) becomes more complicated but the net result obtaine
the divergence, as given by either Eq.(61) or Eq.(62), is modified simply by multiplying e
vector length by a factar, This factor is given as the average of the value of the coordine
r at the endpoints that define each vector length. So, for instanee,a;(3r; +r,)/4 and
3, — 8,(3r +11)/4, etc., as seen from Fig.4; for the vect&sthe endpoints are defined
by the midpoints of the associated side and the common center point of the zone.
Finally, in the case of curvilinear coordinates it is not possible to uniquely distingu

single derivatives since, for example, in cylindrical coordinates the e 24P — 2

can have different discrete representations. However, if one is given thervgcﬁ?r(;ret

S as functions of the coordinate points, then the discrete form of the differential ve
operators can still be completely specified directly in vector form. The specification of
half-edge vectors that compose these operators is what is important. This can often
very complicated step since the half-edge vectors can be given as arbitrary functions

grid point coordinates.
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