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The principal goal of all numerical algorithms is to represent as faithfully and
accurately as possible the underlying continuum equations to which a numerical so-
lution is sought. However, in the transformation of the equations of fluid dynamics
into discretized form important physical properties are either lost, or obeyed only to
an approximation that often becomes worse with time. This is because the numerical
methods used to form the discrete analog of these equations may only represent them
to some order of local truncation error without explicit regard to global properties of
the continuum system. Although a finite truncation error is inherent to all discretiza-
tion methods, it is possible to satisfy certain global properties, such as conservation
of mass, momentum, and total energy, to numerical roundoff error. The purpose of
this work is to show how these equations can be differenced compatibly so that they
obey the aforementioned properties. In particular, it is shown how conservation of
total energy can be utilized as an intermediate device to achieve this goal for the
equations of fluid dynamics written in Lagrangian form, and with a staggered spatial
placement of variables for any number of dimensions and in any coordinate system.
For staggered spatial variables it is shown how the momentum equation and the spe-
cific internal energy equation can be derived from each other in a simple and generic
manner by use of the conservation of total energy. This allows for the specification
of forces that can be of an arbitrary complexity, such as those derived from an arti-
ficial viscosity or subzonal pressures. These forces originate only in discrete form;
nonetheless, the change in internal energy caused by them is still completely deter-
mined. The procedure given here is compared to the “method of support operators,”
to which it is closely related. Difficulties with conservation of momentum, volume,
and entropy are also discussed. The proper treatment of boundary conditions and
differencing with respect to time are detailed.c© 1998 Academic Press
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1. INTRODUCTION

In discretizing the equations of fluid dynamics one should attempt to mirror into the
numerical formulation of the equations as many of the mathematical properties of the
continuum system as possible. The most important of such properties are expressed as
conservation laws. In this work it is shown how this can be achieved to a substantial extent;
limitations that are of a fundamental character are also indicated. This is accomplished
utilizing the conservation of total energy associated with any physical model. The numerical
error in this quantity results from inconsistencies among the various terms that compose the
system of equations in discrete form. This is because in order to derive the discrete form of the
conservation of total energy the same mathematical relations must hold between the discrete
terms as do for the undiscretized, continuum model. Thus, by removing these inconsistencies
one recovers exact conservation of energy in discrete form. The mathematical relations that
must be obeyed to achieve this are the discrete analogs of the vector identities that involve
the dependent variables of the physical system. Numerical algorithms constructed in this
manner are said to be compatible, in that the forms of the discrete terms that compose them
are not specified independently. They therefore mimic to the degree possible the properties
of the continuum system.

The physical model that is our main concern is the equations of fluid dynamics written in
Lagrangian form. The main part of our theoretical development is given in Section 2 where
we begin with the statement of our model, and some preliminary definitions and ideas that
set the framework for the rest of this paper. Next, we present the fundamental piece of this
work, where the consequences of requiring that conservation of total energy be obeyed to
roundoff error for the discrete equations are developed in detail. This is done for a staggered
spatial placement of variables wherein the position and velocity are defined at grid points,
and density, internal energy, and the pressure are defined at zone centers. The important
concepts of a corner mass and a corner force that are common to both a given zone and
one of its defining points are introduced. It is then shown how these quantities can be used
to construct both the zone and grid point masses as well as the total force that acts on a
point, and the rate of work done with respect to a zone. The momentum and specific internal
energy equations are then related via the expression for the conservation of total energy in
a simple and totally generic manner; it is shown how one can easily transform from one to
the other using this conservation law. The relationship of this development to the method
of support operators [2,3] is then given. In this method one specifies a discrete form for
one of the vector operators (divergence, gradient, or curl) and then uses the vector identities
in discrete form to obtain the others in a compatible manner. This is shown to be virtually
identical to the conservation of energy procedure that utilizes common corner force objects
in the case of a staggered grid placement of variables. The important difference is that the
conservation of energy method allows a straightforward generalization to the case where
the forces in question are specified directly in discrete form, and where there exist no con-
tinuum differential operators that define them [4,5]. Nonetheless, the work performed by
these forces is unambiguously determined. This is because the results that we derive relating
force to work utilizing the conservation of total energy are true in a purely algebraic sense
that is independent of the actual functional form of the force; this fact can be viewed as
an extension of the support operators method. Next, the staggered grid formulation is con-
trasted to that where all variables are defined at the same spatial locations (point-centered).
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Here compatible vector operators can be constructed using the support operators method
and conservation of total energy can thus be guaranteed to roundoff error; however, the
conservation of total energy cannot be used to connect force and work algebraically as is
the case for a staggered grid scheme. This leads to important limitations associated with
point-centered discretizations. Finally, possible errors in entropy production and momentum
conservation are discussed. The former can arise because two kinds of zone volumes are de-
fined in the differencing of the fluid equations in Lagrangian form: one overtly to obtain the
zone density, and one implicitly in constructing the work performed by the scalar pressure.
These may not always be equal, resulting in errors in the accounting of entropy. Both linear
and angular momentum conservation is also analyzed in terms of volume topology. Al-
though both are exactly conserved, an important additional property, which is that the force
density due to the scalar pressure have zero curl in discrete form, is not obeyed in general by
control volume, or other, discretizations. This has important consequences that are briefly
detailed.

The basic theoretical ideas developed in this work can be viewed as an extension to
discrete form of the principle of virtual work and the principle of least action as they are
known in classical mechanics [6]. The principle of virtual work has been used in the finite
element context to connect the discrete equations for a force and the work that it produces
[7]. The method of support operators gives results that can be shown to be directly obtainable
from the discrete form of the principle of least action [8]. The essential idea is that a force
and the work that it produces should be conjugate quantities in discrete form just as they
are in the usual Lagrangian or Hamiltonian formulation of the continuum laws of classical
mechanics [9].

In Section 3 an example is presented that illustrates the above ideas. Here is presented
an analysis of the so-called “area-weighted” schemes in two-dimensional, cylindrical geo-
metry [10–12,7,13,14]. These schemes have been used extensively for problems where it is
desired that perfect one-dimensional spherical symmetry be preserved as a possible limit-
ing case in two-dimensional cylindrical geometry. They have arisen in various forms over a
period of 40 years, and have generated some confusion as to their real meaning and domain
of validity, and possess a number of novel properties. Among these are conditional conser-
vation of volume, momentum, and entropy. They are analyzed in a succinct and transparent
manner using the ideas developed in Section 2. Comparison to the various older versions
of these methods are detailed briefly.

Some issues that are necessary for a successful implementation of the ideas presented
here into a working code are discussed in Section 4. Principal among these are the proper
implementation of various types of boundary conditions in the compatible framework
for the staggered grid formulation of Section 2. Discretization with respect to time by
means of a predictor-corrector method is also discussed. A numerical example is given that
illustrates difficulties that can be encountered with the implementation of boundary
conditions.

A brief summary and final conclusions are detailed. It is emphasized that various exten-
sions and amplifications of the ideas developed here are presented in other related papers
[13,4,5]. It is this paper that forms the theoretical basis for this other work. Finally, an
appendix is included that illustrates the derivation of difference formulas in vector, op-
erator form in two-dimensional, Cartesian geometry. These formulas are utilized in the
development and analysis performed in Section 3.
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2. FUNDAMENTAL IDEAS AND BASIC EQUATIONS

The basic assumption of all Lagrangian algorithms is that there exists a discrete volume
element,Vi , that may deform in shape but through whose boundary no mass flows. Thus
the original mass present in the volume at some starting time,Mi , is constant. At any later
time, t , the density,ρ, inside the given element is simply found fromρi (t) = Mi /Vi (t).
Substituting this expression into the usual equation for continuity of mass results in the
statement that

1

Vi

dVi

dt
= (∇ · Ev)i , (1)

whered/dt is the total time derivative following the fluid element.
Next, consider the equation of motion with the force given as the gradient of a scalar

pressureP, and also, the associated equation for the evolution of the specific internal energy
e. Written in Lagrangian form these are

ρ
dEv
dt

= −∇ P, (2)

ρ
de

dt
= −P∇ · Ev. (3)

To complete this system an equation of state of the formP = P(ρ, e) is assumed to have
been specified.

An energy equation can be formulated from the above simply by multiplying Eq.(2) by
the velocityEv, adding the result to Eq.(3), and integrating over some domainD in which
these equations are defined. This gives the result∫

D

(
ρ

2

dEv2

dt
+ ρ

de

dt

)
dV = −

∫
D
(Ev · ∇ P + P∇ · Ev) dV = −

∮
∂ D

PEv · d ES, (4)

where the last term arises from the vector identity∇ · (PEv) = Ev · ∇ P + P∇ · Ev. From this
equation the total energy density per unit volume can be defined asε ≡ ρe+ ρ Ev2

/2. If the
force on the RHS of Eq.(2) is given in the more complicated form asEf ≡ ∇ · ¯̄Q, where ¯̄Q is
the total stress tensor, then the energy source term on the RHS of Eq.(3) is¯̄Q: ∇Ev. The same
procedure results in an equation for total energy that is completely analogous to Eq.(4) by
means of the similar vector identity∇ · ( ¯̄Q · Ev) = Ev · (∇ · ¯̄Q) + ¯̄Q: ∇Ev.

The fundamental equation describing the Lagrangian representation of fluid flow is given
by Eq.(1). It can be utilized in two different ways. First, given a set of velocitiesEv j that
determine the time evolution of the points “j ” that define thei th volume element, and its
initial valueVi (0) at timet = 0, Eq.(1) determines the evolution of this volume,Vi (t), with
time. On the other hand, given a prescription for thei th volume element as a function of some
specified defining coordinatesERj , Vi (t) = Vi ( ER1(t), ER2(t) · · ·), then by differentiatingVi (t)
with respect to time, and using the fact that for any Lagrangian pointj, d ERj /dt = Ev j , Eq.(1)
determines(∇ · Ev)i , the divergence of the velocity field in discretized form defined in the
i th zone.

Although we have not yet made any direct statements about the discretization of the
equations for the evolution of momentum and specific internal energy, one can see already
from the above remarks that inconsistencies may arise if one is not careful how the terms
that enter the RHS of these equations are chosen. Since we have given a prescription
for the calculation of density and have shown that this is equivalent to the specification
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of ∇ · Ev, which enters into the RHS of Eq.(3), this latter equation cannot be discretized
arbitrarily. That is, from our definition of density the consistency of Eqs.(1),(3) states that
Mi dei = −Pi dVi , and thus implies the form ofdei associated with the volume changedVi .
Analogously, in Eq.(4), which gives the equation for the evolution of total energy, we have
used a vector identity to obtain a surface term; this will not hold in discrete form unless
the discrete representations of the terms that enter into the discrete analogs of Eqs.(2),(3)
obey the same integral relations, written in summation form, as do the terms in the original
continuum equations.

In the next two subsections we investigate the consequences of the conservation of total
energy to the development of discrete difference equations that are useful for the numerical
integration of the equations of hydrodynamics. This is performed for a staggered spatial
placement of variables, which is the main concern of this work; our results are then in-
terpreted using the framework of the method of support operators. The point-centered
formulation is also investigated. The important considerations of entropy, volume, and mo-
mentum conservation are explored in this context. The control volume method is used as
the underlying basis for all of our discretization formulas, although this is not necessary to
establish the validity of our results. All dependent variables are considered to be piecewise
constant functions of space on the respective meshes on which they are defined. For sim-
plicity, most of our arguments in Section 2 are given with respect to two Cartesian spatial
dimensions, although extension to three dimensions is readily apparent.

2.1. Staggered Spatial Grid Formulation

2.1.1. Staggered grid geometry/masses.We begin the staggered grid formulation by
introducing some basic concepts and notation that set the framework for the rest of this work.
For purposes of illustration we consider a quadrilateral grid in two-dimensional, Cartesian
geometry as in Fig.1. There is shown a quadrilateralz that is defined by points labeled as

FIG. 1. Grid with respect to zonez and pointp showing coordinate-line (solid lines) and median (dashed and
dotted lines) mesh with associated half-edge vectors (Eai with coordinate-line mesh, andESi with median mesh).
Corner masses,mp

z , are also indicated.
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solid dots 1· · · 4 that are connected by straight lines. Points labeled by asterisks denote the
midpoints of these lines. The point in the center of the quadrilateral, also labeled by an
asterisk, is defined by coordinates that are the simple average of those of the quadrilateral
grid points. (For a quadrilateral this is the same as the point defined by the intersection
of the lines connecting the midpoints of the opposite quadrilateral sides.) The solid lines
connecting the grid points define the “coordinate-line” mesh, while the dotted and dashed
lines that connect the points given by asterisks make up the “median” mesh. These are our
primary and dual grids, respectively. Position and velocity are defined at the grid points;
these quantities are “slaved” at points that form the median mesh as a simple average of
respective grid point quantities. The density, specific internal energy, and thus the pressure
are defined as functions that are constant inside the quadrilateral zone. The dependent
variables are thus staggered with respect to their spatial locations. There are eight vectors,
Eai , that are the outward normals to the coordinate lines of a given quadrilateral zone. As
shown in Fig.1, these have a magnitude of one-half of the distance between grid points,
and thusEa1 = Ea2, etc. However, in general these pairs have neither the same magnitude nor
the same direction once the straight line condition used to join grid points is relaxed. The
four vectors,ESi , that are the normals to the median mesh segments interior to a zone are
also shown. These have magnitudes of the distance between the points that define these line
segments. Also shown is a point labeledp (the same point as 2 of quadrilateralz) about
which is drawn a dashed line that is its associated median mesh. The variablesp andz are
always used as subscripts or superscripts with integer values that range over all of the grid
points and zones, respectively.

The first important subzonal concept that we introduce is that of a “corner.” The corner
volume associated with a grid pointp and a zonez in two-dimensions, as indicated in Fig.1,
is the volume inside the surface defined through the pointp, the two midpoints of the lines
through pointp of zonez, and the center point of zonez (vectorsEa2, Ea3, ES1, and− ES2 of
Fig.1). There are four corner volumes to each quadrilateral zone. In two dimensions the
corner volume, as just defined, is always a quadrilateral regardless of the type of zones that
compose the underlying grid. Next we define the corner mass associated with the pointp
and zonez, mz

p, as the mass inside the associated corner volume at timet = 0. We usez or
p as a superscript or a subscript interchangeably so thatmz

p = mp
z , but we always perform

summations with respect to the lower index. The corner mass is now used as the primitive
quantity from which we can construct both the zone and nodal, or grid point, masses. To
construct the total mass of zonez one simply forms the sum of all corner masses with fixed
labelz; likewise, to find the nodal mass of a pointp one sums all corner masses with the
fixed labelp. This is given simply as

Mz =
∑

p

mz
p, Mp =

∑
z

mp
z . (5)

Since the zone and nodal masses are composed of the same objects that are simply added
in a different order it follows that ∑

p

Mp =
∑

z

Mz. (6)

The above equation simply states that the total zonal and nodal mass in a problem are equal,
and is the statement of consistency of the zonal and nodal grids. When computing the nodal



          

COMPATIBLE HYDRODYNAMICS ALGORITHMS 233

mass at points that lie on the boundary of a physical region it is always assumed that the
corner masses exterior to that region are zero.

It is usual to declareMz a constant by the Lagrangian assumption. However, oftenMp is
allowed to vary with time. We consider bothMz andMp on a totally equal footing. Thus,
in the rest of our development we assume that bothMz andMp are constant, Lagrangian
objects [4].

2.1.2. Compatibility—semi-discrete form.The first important characteristic of a stag-
gered placement of variables is that the evolutionary equations are defined with respect
to different, but overlapping, spaces: Eq.(2) that evolves momentum in time is defined at
the nodes, while Eq.(3) that evolves internal energy is defined in the zones. The equation
for conservation of total energy, Eq.(4), is thus composed of a mix of variable definitions.
Although this may at first appear to be an added complexity over defining all variables at
the same spatial locations, it actually turns out to be superior to a point-centered placement
of variables. This is because it allows one to extend the Lagrangian assumption in a natural
manner that eliminates underconstrained modes of distortion [4], and to specify forces in
discrete form without the need to make additional assumptions about the manner in which
the work performed at interfaces between cells is to be divided between kinetic and internal
energies, as is necessary for point-centered formulations when operator prescriptions for
these forces are not available. However, care must be taken with staggered grid formulations
so that logical inconsistencies between quantities defined at nodes and zones do not occur.

The momentum equation is utilized next to introduce the important concept of a corner
force, using pressure forces as an example. After this the total energy is defined on a single
zone basis. It is then shown how this definition can be extended across the entire domain
of integration, and how by this extension the internal energy equation can be derived in a
generic form that is identical to that obtained by a direct discretization of Eq.(3) for the
special case of forces that arise from a pressure that is piecewise constant in a zone.

Consider the momentum equation, Eq.(2), and integrate it over a volume elementVp

defined about pointp in Fig.1 by the dashed lines that form the median mesh. Since the
nodal massMp is Lagrangian this yields the result

Mp
dEv p

dt
= −

∫
Vp

E∇ P dV = −
∮

b
PdES =

∑
z

Ef p
z ≡ EFp. (7)

At this point we define the corner force,Ef p
z , using the same notation as was used for the

corner mass. The corner force acting on pointp due to the pressurePz in zonez is defined
as Ef p

z ≡ Pz( ES2 − ES1) = Pz( Ea2 + Ea3), where the last equality follows simply from vector
addition, as can be seen from Fig.1. Thus we see that the boundary integral through zonez
depends only on the side midpoints, and is thus path independent. To obtain the total force,
Fp, that is exerted on pointp one simply sums the corner forces about all zones associated
with this point, as indicated in Eq.(7). For the case of the full stress tensor,¯̄Qz, given as
piecewise constant in a zone, the corner force is determined byEf p

z = ¯̄Qz · ( Ea2 + Ea3), where
we have favored the coordinate-line mesh over the median mesh for defining this quantity.

At this point a generalization is made. The corner forces from here on are thought of as
emerging from completely general origins, and not just due to a scalar pressure or a tensor
that is constant throughout a given zone. In certain instances one can have forces that arise
from scalars or tensors that are constant only in a part of a zone [4,5]. In this case subzonal
forces can be calculated along the various pieces of the coordinate-line mesh, the median



           

234 CARAMANA ET AL.

mesh, or both. These forces can be specified in an almost arbitrary manner and added to the
corner forces that are already present due to pressures and tensors that are constant in a zone.
The only restriction is that total zone momentum, as discussed later, must be conserved. In
this instance the total force acting on a pointp is still just the sum of the corner forces about
that point, as given by Eq.(7).

It is next shown how to construct conservation of total energy in semi-discrete form. We
begin by defining the total energy of a zone. Since the internal energy is zone centered,
its definition is automatic. The kinetic energy is defined at the nodes; however, it can be
interpolated to the zones by means of the overlap of the zonal and nodal masses. This is
given by the corner massmz

p that is common to both a zone and a point. Thus we define the
total energy,Ez, in a single zonez as

Ez = Mzez +
∑

p

mz
pEv2

p

/
2. (8)

Next, we take the total derivative with respect to time of this quantity and substitute from
Eq.(7) for momentum to obtain

d Ez

dt
= Mz

dez

dt
+

∑
p

mz
pEv p

Mp
·
∑

z′

Ef p
z′ , (9)

where the corner mass has been assumed to be constant in time—a point to which we later
return. This equation can be summed over all zones to yield

d

dt

( ∑
z

Ez

)
=

∑
z

Mz
dez

dt
+

∑
z

∑
p

mz
pEv p

Mp
·

p∑
z′

Ef p
z′ . (10)

At this point we note from the definition of the nodal mass given by Eq.(5) that∑
z

∑
p mz

pEv2
p/2 = ∑

p MpEv2
p/2. Using this fact in Eqs.(8),(10) gives the result for conser-

vation of total energy for the entire region as

d

dt

(∑
z

Mzez +
∑

p

MpEv2
p

/
2

)
=

∑
z

Mz
dez

dt
+

∑
p

∑
z

Ef p
z · Ev p

=
∑

z

(
Mz

dez

dt
+

∑
p

Ef z
p · Ev p

)
+

∑
i

Ef bd,i · Evbd,i , (11)

where in our notationz′ → z in obtaining the first form of the RHS of this equation. The
first form of the RHS of this equation can be regrouped to obtain the second wherein the
order of the double sum has been interchanged: and also, divided into the parts that are due
to corner forces that act from the interior zones of the domain onto points, and those that act
from the exterior boundary onto boundary points through the momentum equation. (Note
that Ef p

z → Ef z
p in the above, since the lower index is always summed.) Now if the sum over

zones in the second form of the RHS of Eq.(11) is set to zero for each zonez there results

Mz
dez

dt
= −

∑
p

Ef z
p · Ev p. (12)
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This is the form of the internal energy equation in terms of arbitrary corner forcesEf z
p that

are common to both it and the momentum equation. These forces are simply manipulated in
a different manner. That is, to obtain the total force acting on a grid point the corner forces
associated with that point are simply summed; while to obtain the heating rate of a zone
the corner forces of that zone are dotted into their associated grid point velocity, and then
summed. It is important to note that no boundary average quantities appear on the RHS of
Eq.(12). What one has are common corner forces that exchange zone internal energy for
nodal kinetic energy, or vice versa.

To verify that this makes physical sense, Eq.(12) is written out explicitly for corner forces
that originate from a pressurePz that is constant in zonez, as previously defined by means
of Fig.1, to obtain

Mz
dez

dt
= −

∑
p

Ev p · Ef z
p = −Pz[( Ea8 + Ea1) · Ev1 + ( Ea2 + Ea3) · Ev2 + ( Ea4 + Ea5) · Ev3

+ ( Ea6 + Ea7) · Ev4] ≡ −
∫

Vz

P∇ · Ev dV. (13)

Here it is noted that the discrete expression that results is equal to the exact discretization of
Eq.(3) that is obtained by directly integrating it over the zonez in Cartesian geometry. Thus,
compatibility is naturally obtained for control volume differencing in Cartesian geometry
in any number of dimensions.

From the LHS of Eq.(11) it is natural to define the total energy over the entire domain at
time t as

ET (t) ≡
∑

z

Mzez +
∑

p

MpEv2
p

/
2. (14)

This equation can be integrated in time to obtain

ET (t) = ET (0) +
n∑

m=1

1tm
∑

i

Ef σ
bd,i · Evm+1/2

bd,i , (15)

where1tm is the magnitude of the timestep on the mth cycle. This is the discrete analog of
Eq.(4). If one subtracts the left and right sides of Eq.(15) and divides the result by the sum
of these two quantities there results a nondimensional measure of energy conservation that
should always be equal to zero to within numerical roundoff error.

2.1.3. Compatibility—fully discrete form.Although the basic ideas of a compatible
discretization have been illustrated by the semi-discrete derivation just given, it is useful to
consider compatibility starting from Eq.(14) for total energy, and the momentum equation,
Eq.(7), where these equations are both discretized with respect to time. Denoting the discrete
time variation of any quantity as1 applied to that object, the time variation of the total
energy equation, Eq.(15), yields the result∑

z

Mz1ez +
∑

p

MpEvn+1/2
p · 1Ev p = 1t

∑
i

Ef σ
bd,i · Evn+1/2

bd,i . (16)

The time centered velocityEvn+1/2
p ≡ (Evn+1

p + Evn
p)/2 follows directly from the time variation

of the kinetic energy defined at the points sinceEvn+1/2
p · 1Ev p = [(Ev2

p)
n+1 − (Ev2

p)
n]/2, where
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1Ev p ≡ Evn+1
p − Evn

p, 1ez ≡ en+1
z − en

z , and the superscriptn indicates time level. The discrete
time form of the momentum equation, Eq.(7), is given as

Mp1Ev p =
∑

z

Ef p,σ
z 1t. (17)

The time centering of the corner forces exterior to the boundary in Eq.(16) and in the above
momentum equation is given at some intermediate value, denoted byσ , between time level
n andn + 1.

Because both the internal energy and the kinetic energy must be defined at the same time
level so that the total energy,ET (t), is at a single time level, it follows that we must use an
even time integration scheme [15]. Schemes that have the definitions of variables staggered
in time are not appropriate when total energy is exactly conserved, since both the internal
energy and the kinetic energy must be at the same time level if they are to be exchanged by
common corner forces (these may still have arbitrary time centering.).

Substituting Eq.(17) into Eq.(16) yields∑
z

Mz1ez +
∑

p

Evn+1/2
p ·

∑
z

Ef p,σ
z 1t = 1t

∑
i

Ef σ
bd,i · Evn+1/2

bd,i , (18)

where the nodal massMp no longer enters. The crucial step is the interchange in the order of
the double discrete summation on the LHS of this equation. This is equivalent to a discrete
integration by parts. Regrouping all terms in Eq.(18) with the same integer indexz there
results

∑
z

[
Mz1ez +

∑
p

Evn+1/2
p · Ef z,σ

p 1t

]
= 1t

∑
i

Ef σ
bd,i · Evn+1/2

bd,i . (19)

The final step is to satisfy Eq.(19) in the strong form by setting the quantity in brackets
equal to zero for every value ofz (or for every zone). This yields the same equation as that
given by Eq.(12), but with the additional conclusion thatEv p = Evn+1/2

p , an important result.
Thus the equation for the evolution of specific internal energy becomes

1ez = −
∑

p

Ef z,σ
p · Evn+1/2

p 1t/Mz. (20)

The time centering of the forces, given byσ , is still left undetermined.
The strong solution is not the only solution to Eq.(19), but it is the only one that has any

physical significance for forces that originate from pressures or tensors that are constant
throughout a given zone. This important fact is shown in the next section. For the subzonal
forces mentioned earlier, other possible solutions have not been found useful in practice. The
solution of Eq.(19) in strong form has a simple physical interpretation. This is that a corner
force Ef z

p, whatever its origin, produces a momentum change by acting on its associated

point p, and does work at the rate− Ef z
p · Ev p with respect to its associated zonez. Finally, we

could just as well have specified the discrete form for1ez from Eq.(20) and inserted this
into Eq.(16). Then an analogous interchange of the order of a double summation results in
an outer sum over indexp, which when satisfied for every value of this index yields the
discrete momentum equation.

Next, we show how interface pressures that act between zones, and perform total work
on a zone, can be derived. These pressures produce changes in both the internal and kinetic
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FIG. 2. Coordinate-line mesh with half-edge vectors and force “contours” (curved lines) with respect to zone
1′ and pointp. Zones about pointp are indicated by numbers 1′ · · · 4′.

energy of a single zone. We denote them asPi , wherei = 1 · · · 8 for each quadrilateral zone,
and formally rewrite Eq.(19) as∑

z

[(P1 Ea1 + P8 Ea8) · Ev1) + (P2 Ea2 + P3 Ea3) · Ev2) + (P4 Ea4 + P5 Ea5) · Ev3

+ (P6 Ea6 + P7 Ea7) · Ev4]z =
∑

i

Pbd,i ESbd,i · Evbd,i . (21)

Then for pressure forces the terms on the LHS of Eq.(19) can be written as the sum of
the interface work terms and regrouped as coefficients of the eight half-edge vectorsEai to
give explicit forms for thePi . These are the interface pressures on the half-edges of the
zones; they do equal and opposite work with respect to each of their two adjacent zones.
All internal work sums to just the boundary term, as indicated. Choosing the corner defined
by point p and zone 1′ of Fig.2, we can use Eq.(17) and Eq.(20) to rewrite the coefficients
of vectorsEa2 and Ea3 in Eq.(19) as

Ea2 · Ev2

[
P1′ − (P1′ − P2′)

(
mp=2

z=1′ + mp=2
z=4′

)
Mp=2

]
,

Ea3 · Ev2

[
P1′ − (P1′ − P4′)

(
mp=2

z=1′ + mp=2
z=2′

)
Mp=2

]
.

By comparing these terms to those in Eq.(21), and recalling thatMp=2 = ∑4′
z=1′ mp

z , it
follows that the interface pressuresP2 andP3 are given by

P2 = [(
mp=2

z=2′ + mp=2
z=3′

)
P1′ + (

mp=2
z=1′ + mp=2

z=4′
)
P2′

]/
Mp=2, (22)

P3 = [(
mp=2

z=3′ + mp=2
z=4′

)
P1′ + (

mp=2
z=1′ + mp=2

z=2′
)
P4′

]/
Mp=2. (23)
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These pressures give the total work done on a given zone in terms of the grid point velocities;
interface velocities need not be defined! If we subtract the change of internal energy in a
zone, as given by Eq.(20), from this total work, we exactly obtain the change of kinetic
energy with respect to that zone. The change in kinetic energy is given from Eq.(17), with
Eq.(8) used to define the kinetic energy in a zone via the corner mass. This argument can
be reversed to compute the change of zone internal energy given the change in zone kinetic
energy. This situation is what we call “local conservation” form; that is, these quantities are
all internally consistent with each other and total energy conservation is valid on a single
zone basis. Lastly, note that we must define eight interface pressures for each quadrilateral
and not just four, as is often assumed with Riemann solutions [15].

2.1.4. Additional considerations.An important part of the derivations just completed
is that the nodal mass as well as the usual zonal mass is considered constant. Often in
Lagrangian algorithms only the zonal mass is constant, and the nodal mass is recomputed
on each timestep as a different number. This leads to a flux of momentum and kinetic energy
from the nodes and results in an extra termEv p(d Mp/dt) that should appear on the LHS of
the momentum equation, but which is often neglected in practice. By keepingMp constant
in time we have employed a stronger form of the Lagrangian assumption than usually given.
This has additional far-reaching consequences as now discussed.

BecauseMz is a constant no mass flows through the boundary of zonez in Fig.1. Also,
sinceMp is a constant no mass flows through the median mesh boundary about pointp
as shown in Fig.1. However, the intersection of these two boundaries, through which no
mass flows, defines a new volume in which the mass is constant, and thus defines a new
Lagrangian subzonal mass. From Fig.1 this is the corner massmp

z . Thus we have that
because bothMz andMp are constant, it follows that their intersectionmp

z must also be a
constant [4]. Therefore there exist auxiliary subzonal pressures in addition to the mean zone
pressurePz. These subzonal pressures arise from the subzonal corner densitiesρ p

z computed
asρ p

z = mp
z /V p

z (t), where theV p
z (t) are the corner volumes associated with the median

and coordinate-line meshes, as shown in Fig.1. The contributions to the corner forcesEf p
z

from these subzonal pressures result in the elimination of spurious grid distortion and the
resultant grid tangling that has plagued these methods. This type of integration, whereby
four pressures per quadrilateral zone are utilized, is a common practice in finite element
formulations [7]. However, we stress that these pressures arise only from subzonal densi-
ties and not from subzonal internal energies. Although this does, by intent and necessity,
increase grid stiffness, this is not found to present difficulties in the wide range of problems
investigated. Also, artificial grid stiffness is mitigated by the fact that we employ subzonal
quadrilaterals and not subzonal triangles, as has often been used previously. Rayleigh–
Taylor instability problems have been run far into the nonlinear regime successfully, and
long after traditional Lagrangian algorithms would terminate due to excessive grid tangling.
The full development of this subject considered in the framework given here is pursued in
depth elsewhere [4].

It is sometimes useful to define the forces in a zone solely with respect to the individual
pieces of the median mesh within that zone. For example, the pressure forces can be defined
as Ef z

i = Pz ESi in zonez, wherei = 1 · · · 4, as shown in Fig.1. Then the pressure forceEf z
i =1

acts with a plus sign in the momentum equation on point 1, and with a minus sign in the
momentum equation on point 2, of Fig.1. The rate of change of internal energy due to this
force with respect to zonez is thus− Ef z

i · (Ev1 − Ev2). From this rearrangement of terms,



            

COMPATIBLE HYDRODYNAMICS ALGORITHMS 239

Eq.(20) can be rewritten equivalently as

1ez = −
4∑

i =1

Ef z
i · δEvn+1/2

i 1t/Mz, (24)

whereδEvn+1/2
i ≡ Evn+1/2

i − Evn+1/2
i +1 and the cyclic indexi is as denoted in Fig.1. This form

explicitly displays the Galilean invariance of the internal energy equation. It is most useful
in the development of an edge-centered artificial viscosity where the tensor term for the
force that is computed from eachESi of a given zone is different, and where each term of
Eq.(24) is required to be positive definite [5].

A nondynamical, but still useful, way to construct an equation for the change in specific
internal energy is just to substitute the definition ofMp from Eq.(5) into Eq.(16) with
boundary forces neglected. One then changes the order of the double summation, as before,
to arrive at the kinematical expression

1ez = −
∑

p

mz
pEv p · 1Ev p/Mz, (25)

valid in each zone. This equation involves only the corner masses of a zone and the velocities
of its associated points. It is useful when one wishes to make kinematical adjustments to
the velocity field without specifying any forces and still conserve total energy. It just gives
a way of distributing a prescribed change of kinetic energy at a node among its associated
zones.

To simulate problems involving instability it is useful to incorporate a constant gravita-
tional force into our preceding formulation. To do this one must add the potential energy
term

∑
p Mpgyp defined with respect to the nodes into Eq.(14) for the total energyET .

Hereg is the strength of the constant gravitational field that acts in the negativey direction,
denoted aŝy. Then the force term−(Mpg1t)ŷ is entered into the RHS of the momentum
equation as given by Eq.(17). If one then follows the algebra leading to Eq.(19) it is seen
that this equation is unchanged (recall that1y/1t = vy). Thus the internal energy equation,
Eq.(20), is unchanged, as it should be for nodal masses moving in a gravitational field, since
only the potential and kinetic energy are interchanged. With this modification total energy
is still exactly conserved.

2.2. Relation to Method of Support Operators

2.2.1. Staggered grid formulation.The method of support operators utilizes the vector
identities of differential calculus to derive compatible sets of the fundamental vector differ-
ential operators: gradient, divergence, and curl (GRAD, DIV , andCURL ) in discrete form.
This is done by first specifying one of these operators and then using the vector identities
written in discrete summation form to consistently determine the others. In the case of a
staggered grid the gradient can act to produce a vector function defined at the points, as
in Eq.(17) with zone centered pressures, but it can also act on scalar functions defined at
the points to produce a vector function centered in the zones. We will denote the first of
these operators asGRADz→p, and the latter asGRAD p→z. Since this also holds for the
divergence and the curl, there are six discrete operators to determine for the staggered grid
case considered here. This leads to two forms of the discrete Laplacian, one defined on the
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points via the zones, and vice versa. For the point-centered case there are only the usual
three operators. In the case where variables are defined with respect to points, zones, and
sides of zones, more complicated possibilities result [16].

The principal idea of the method of support operators is that because the equations of
mathematical physics are given in terms of differential vector operators it is enough to
determine these operators in discrete form in order to spatially discretize all such equations.
In addition, the proper relations between various dependent variables are automatically built
into the discrete equations, at least in integral form. It is next shown that the procedure just
given for connecting the momentum and internal energy equations through the conservation
of total energy on a staggered spatial grid includes, as a subset for this application, the method
of support operators. Conservation of energy is more general in that it allows one to specify
forces that arise from subzonal pressures and tensors and still calculate the work performed
by them in an automatic manner. These latter forces originate as discrete objects and are
not a priori written as a function of the vector operators in continuum form.

Consider the time derivative of total energy as given by Eq.(11), where Eq.(12) has been
utilized to replace the termMz

dez

dt to obtain

−
∑

z

∑
p

Ef z
p · Ev p +

∑
p

∑
z

Ef p
z · Ev p =

∑
i

Ef bd,i · Evbd,i . (26)

Let us focus on the LHS of this expression, recalling that the term on the RHS is due to forces,
Ef bd,i , exterior to the boundary, that act on the system through the momentum equation. We

now examine what this statement amounts to for forces determined by piecewise constant
zonal pressures.

Consider the staggered grid of Fig.2 where zones labeled 1′ · · · 4′ and the associated
coordinate-line mesh associated with zonez= 1′ and pointp is shown. Half-edge vectors
are indicated by the arrows labeledEai , that are sufficient to describe the divergence of the
velocity with respect to zone 1′, and the pressure gradient with respect to pointp. The curved
lines indicate “force lobes” that connect the side midpoints with the coordinate points. They
are straight lines that are shown as curved only so they can be distinctly seen apart from the
coordinate lines. They indicate that there are distinct discontinuous forces on either side of
these lines. Define the corner vectorECp

z=1′ ≡ ( Ea2 + Ea3), that is associated with zone 1′ and
point p; then the piece of the corner force that acts from zone 1′ to form part of minus the
pressure gradient at pointp in Fig.2 is Ef p

z=1′ = Pz=1′ ECp
z=1′ , while the part of the divergence

of the velocity field associated with this same corner is given byECp
z=1′ · Ev p.

The control volume differencing of the divergence of the velocity in zone 1′ is given by

(∇ · Ev)z=1′ = 1

V1′
[( Ea1 + Ea8) · Ev1 + ( Ea2 + Ea3) · Ev2 + ( Ea4 + Ea5) · Ev3 + ( Ea6 + Ea7) · Ev4]

≡ 1

V1′

∑
p

ECz=1′
p · Ev p. (27)

Next, the discrete form of the vector identity that expresses the divergence of pressure times
velocity can be written in summation form as∑

z

VzPz∇ · Ev +
∑

p

VpEv p · ∇ P =
∑

i

Pbd,i ESbd,i · Evbd,i , (28)
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whereVz andVp are the zone and point volumes, respectively. The explicit functional forms
of ∇ · Ev and∇ P are left unspecified. Now if we insert the result given in Eq.(27) for the
divergence into the first term on the LHS of Eq.(28), for all zonesz, and interchange the
order of the double summation in that term, then, by setting the resulting equation to zero
for each value of the indexp one obtains for the interior points

(∇ P)p = 1

Vp
[−P1′( Ea2 + Ea3) + P2′( Ea2 + Ea9) − P3′( Ea9 + Ea10) + P4′( Ea3 + Ea10)]

≡ −
∑

z

Pz ECp
z

/
Vp, (29)

which is the compatible discrete form of the gradient operator defined with respect to the
grid points, written here for the point labeledp in Fig.2. We could just as well have specified
∇ P as Eq.(29) and derived the divergence as given by Eq.(27) by a completely analogous
set of steps.

The above arguments can all be translated directly into the language involving cor-
ner forces that was employed earlier. To see this note that in the zonez= 1′, (V P∇ ·
Ev)z=1′ = ∑

p
Ef z=1′

p · Ev p; and likewise for pointp, (V∇ P)p = −∑
z

Ef p
z . Using these ex-

pressions in Eq.(26) results in the vector identity, Eq.(28). Thus, an explicit specification
of the corner force can be viewed as specifying∇ P. Then the work done can be found by
the series of steps starting from conservation of total energy and leading to Eq.(19). Thus
the previously stated procedure using conservation of total energy encompasses the method
of support operators; however, because the former can be derived in a very generic form
that involves only the corner forces it is more general for the staggered grid case. However,
it is important to note that the compatibility of the gradient and divergence operators, as
given by Eqs.(27)–(29), justifies the solution given for Eq.(19) that yields the equation for
specific internal energy. This is seen to be the only solution that leads to compatible, discrete
forms for the vector operators. Thus, a proper determination of the corner forces becomes
the central issue. This involves the specification of the corner vectors of the coordinate-line
mesh, or alternatively, the associated vectors of the median mesh.

The corner vector,ECp
z , is not necessarily a simple object. It is composed of two “half-

edges” in two dimensions and many analogous “edges” in three dimensions. These half-
edges may depend on some or all of the dynamical grid point coordinates and not on just
those of two points connected by a straight line, as indicated in Fig.2. The definition of
these edges depends on the definition of the zone volume which is of arbitrary complexity
and, as will be seen for the “area-weighted schemes” investigated in the next section, can be
non-integrable. In the language of the method of support operators one defines one operator,
sayDIV p→z acting from points to zones (this can always be found from a specification of
the zone volume), and then by an interchange of the order of discrete double sums one
derivesGRADz→p acting from zones to points. Note that what is important here is not the
entire edge between two points, but the corners or half-edge vectors that are common to
both the gradient and divergence operators. (The procedure for obtaining the corner vectors
ECp

z is given in Appendix A for a simple case where the functional form of the zone volume
is specified.)

The support operators method can be viewed in the following intuitive terms for piece-
wise constant functions, and for the staggered grid placement of variables given here.
Consider a set of specified corner vectorsECp

z , and a set of scalars and vectorsQp, Pz, EAp,
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EBz, where those with the subscriptp are defined at points and those with subscriptz
are defined in zones. Then the corner pieces of the operators for gradient, divergence,
and curl that take data defined at points and produce data defined in zones are given
by gradp→z = Qp ECz

p, div p→z = EAp · ECz
p, and curl p→z = EAp × ECz

p. The full operators
GRAD p→z, DIV p→z, andCURL p→z are then given as sums of these corner pieces with
respect to indexp, and divided by the zone volumeVz. To obtain the operators going
from zones to points we may consider the vector identities to be effectively defined col-
lectively by conservation of total energy, or individually as in Eq.(28). For the control
volume differencing used here this will result ingradz→p = Pz ECp

z , divz→p = EBz · ECp
z , and

curl z→p = − EBz × ECp
z (recall that ECp

z = ECz
p), where the full operatorsGRADz→p, DIV z→p,

andCURL z→p are then given as sums over the indexz, and divided by the volume,Vp,
associated with the pointp. For our particular staggered grid formulation it is this latter
set of operators that make up the corner forcesEf p

z , whereas the former set compose the
equation for internal energy.

The other important operator expressions that can be obtained from gradient, divergence,
and curl [∇ × ∇ p= 0 and∇ ·( E∇ × EA) = 0, for arbitraryp and EA] are not generally satisfied
locally in discrete form. This is not surprising since we utilized the vector identities only
in integral form. Spurious numerical errors arising from the fact that these relations are not
valid do occur. This is a more general problem associated with all discretization methods. It
has important implications that are discussed after momentum conservation is considered.

2.2.2. Point-centered formulation.It is interesting to compare the staggered grid formu-
lation just given with that obtained with a point-centered placement of variables. Consider
the grid shown in Fig.3 with all variables placed at the zone center points indicated by
solid dots. Zone boundaries are indicated by solid lines labeled as the vectors,ESj,i where
j = 1 · · · 4, that connect auxiliary points given as asterisks. The position of these auxiliary
points is specified in terms of the zone points in some manner. The mass,Mi , associated
with the zone points is a constant, Lagrangian quantity. The momentum equation for the ith
zone point is given by

Mi
dEvi

dt
=

∑
j

Ef j,i , (30)

where the forcesEf j,i are calculated as functions that are piecewise constant on the zone
boundaries,ESj,i , of the ith zone. For forces that originate from a scalar pressure,Ef j,i =
−Pj,i ESj,i , where the pressure on the jth boundary segment,Pj,i , must be determined in

FIG. 3. Zone surrounding pointi with grid lines for point-centered grid. Asterisks are nondynamical points
used to define zonei with edge vectors,ESj,i , for j = 1 · · · 4.
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some manner. This is usually done as an interpolation from the zone pressures, or from the
solution of a local Riemann problem across this edge. (Note that with respect to the zone
adjacent to the ith zone,i + 1, on the opposite side of the jth edge,ESj,i +1 = − ESj,i .)

Multiplying Eq.(30) by the zone velocityEvi gives the time evolution of the kinetic energy
as

d

dt

(
Mi Ev2

i

2

)
= Evi ·

∑
j

Ef j,i = −Evi ·
∑

j

Pj,i ESj,i . (31)

Next we find the equation for the evolution of the internal energy by integrating Eq.(3) over
the ith zone. This yields

Mi
dei

dt
= −Pi

∫
Vi

∇ · Ev dV = −Pi

∑
j

ESj,i · Ev j,i , (32)

where now we must also define the velocity along the jth edge,Ev j,i . This can be given by the
same procedure used for determining the edge pressures. Summing the internal and kinetic
energies we can write an equation for the total energy change inside the ith zone as

d

dt

(
Mi Ev2

i

2
+ Mi ei

)
= −Evi

∑
j

Pj,i ESj,i − Pi

∑
j

ESj,i · Ev j,i . (33)

In the staggered grid case both the momentum and internal energy equations involved
the same entities, the corner forces. This is seen not to be true for the point-centered case.
The equation for kinetic energy evolution involves forces, but these forces must be broken
apart to obtain the internal energy equation. If we specify bothPj,i andEv j,i independently,
then the sum of Eqs.(31),(32), as given by Eq.(33), will not in general be a quantity that can
be written in divergence form, and thus reducible to a boundary integral. Unless this is the
case, conservation of total energy will be violated.

A crude way around this difficulty is to specify bothEv j,i and Pj,i at the cell interfaces
and redefine the RHS of Eq.(33) to be given as−∑

j Pj,i ESj,i · Ev j,i . One then uses this
equation directly to evolve the total energy as a function of time. This equation along with
the momentum equation is advanced in time, after which the kinetic energy computed from
the advanced velocity is subtracted from the total energy to obtain the internal energy that
is needed to compute the pressure using the equation of state. This completely eliminates
Eq.(32) and guarantees exact conservation of total energy. However, this can result in large
errors if the kinetic energy is large, since quantities sometimes nearly equal in size are
subtracted to obtain a small difference. Compatibility is never an issue since the errors are
simply hidden and subsumed by the total energy equation.

In the support operators prescription no interface work is defined; instead it is required
that the RHS of Eq.(33) be expressed as

∑
i

(
Evi ·

∑
j

ESj,i Pj,i + Pi

∑
j

Ev j,i · ESj,i

)
=

∑
bd

Pbd ESbd · Evbd, (34)

where the RHS of Eq.(34) is evaluated at the boundary. Given a specification forPj,i in the
above equation is equivalent to specifying the form of the gradient operator, and specifying
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Ev j,i is the same as specifying the form for the divergence operator. This equation is thus
the vector identity for∇ · (PEv) in summation form. By specifying one or the other of these
quantities, Eq.(34) is used to determine the coefficients of the unknown operator. However,
this equation is satisfied only globally, and never in the strong sense of setting each term
with respect to an outer summation index equal to zero, as was true for the staggered grid
case in Eq.(19). Therefore, unlike in the staggered grid case, the particular functional form
of the undiscretized terms that enter into both the momentum and internal energy equations
must be known for this procedure to be carried out. Many examples of this method have
been given [17,18,14,19].

Direct specification of a force that acts between two points lies outside of the domain of the
method of support operators. For the case of a staggered spatial grid scheme conservation
of total energy can be used to compute work given force, or vice versa, in a way that
is not possible for a point-centered placement of variables. When forces are specified in
a heuristic manner, as is the case for an artificial viscosity, the conservation of energy
approach enables one to construct the work equation in a simple, unique, and generic
manner when the functional form of this equation would not at all be obvious otherwise.
In the case of a point-centered scheme, if one simply specifies a discrete form for a force
acting between two points, additional information must be provided in order to decide how
the work performed by that force on a given zone is to be partitioned between the kinetic
and the internal energy of that zone. In the staggered grid case this information is already
given by the assumption that a corner forceEf p

z , whatever its origin, acts on a pointp and
does work with respect to zonez. This was seen to be a consequence of satisfying Eq.(19)
in the strong form for every zone labelz. There is no arbitrariness in this arrangement that is
also necessary for the discrete vector operators to be compatible with one another. Thus, for
a staggered placement of variables the conservation of total energy procedure, as developed
here, includes the method of support operators and allows for an important extension in an
automatic manner.

2.3. Entropy Errors and Volume Consistency

In both point-centered and staggered spatial grid formulations two definitions of volume
have been introduced. The first is through the definition of a cell volume,V1(t), used to
compute the cell density, given the initial cell mass. The second volume,V2(t), is implicitly
defined through the change of internal energy caused by the pressure as−Pz dV2. This latter
volume is not necessarily the same as the first. In particular, when work is done compatibly,
for instance by Eq. (20), the change of the second volume has been constructed by the use
of mesh vectors and point velocities, and not by subtracting volumes defined by coordinate
positions at different time levels. For a staggered spatial grid scheme implemented with total
energy conserved to roundoff error these two definitions of volume will agree (to within
truncation error with respect to time) only if we choose the divergence of the velocity field
defined from Eq.(1) as the determining operator from which the others are derived from
the requirement of compatibly. In the case of two-dimensional cylindrical geometry, for
example, the median and coordinate-line meshes describe different volume elements and
are not equivalent within a single zone, as is the case for Cartesian geometry. Thus for the
compatible change of internal energy caused by the zone pressure to be consistent withdV1

of the coordinate volume, the gradient operator that determines the pressure forces acting
on the points should be defined with respect to the same mesh as the divergence operator.
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The divergence operator is naturally defined with respect to the coordinate-line mesh in
order to correspond to the time derivative of the zone volume. In other instances, as will be
seen in Section 3, the zone volume and the volume compatible with the gradient operator
may be guaranteed to agree only for certain kinds of velocity flow fields.

The error that results from an inconsistency in these two volumes appears as an entropy
error. To see this consider the second law of thermodynamics written for an isentropic flow as

T1S = −Pz(V1, ez)[1V2 − 1V1]. (35)

T1S is the entropy production term, which for an isentropic flow should vanish;Pz is given
as a function ofV1 through its dependence on density.1V2 is the volume change used in
the internal energy equation and1V1 is the actual volume change calculated from the zone
coordinates. For1V1 6= 1V2 the error in the internal energy term shows itself as an addition
to the entropy; it can obviously have either sign.

Point-centered schemes can also have this same kind of entropy error. In fact, for some
such schemes, where interpolation functions are used to smear the cell mass over some
characteristic length, the computation of density and work are not related in a manner
that even makes the assessment of this error simple to estimate [20]. Where one has easy
estimates of these two volumes, for instance, by integrating Eq.(1) in time and comparing
the result to that obtained from computing the volume directly as a function of the point
coordinates, it is possible to construct a nondimensional estimate of this error term.

2.4. Momentum Conservation

Unlike the total energy, one does not usually care what the value of the total momentum
is. However, momentum must be conserved. In general, this is the statement of Newton’s
third law in discrete form and says that the action and reaction of a given force should be
equal in magnitude and opposite in direction. For the case of forces that are computed with
respect to the median mesh of a staggered spatial grid discretization this is automatic. This
is seen from the arguments that led to the form for the specific internal energy equation
given as Eq.(24). There it was seen that each piece of force along a part of the median mesh
acts with equal magnitude and opposite sign with respect to the two dynamical points with
which it is associated. Likewise, for point-centered schemes momentum will be conserved
for the same reason.

For the case where there are no boundary forces the statement of conservation of mo-
mentum is given simply as ∑

p

EFp =
∑

p

∑
z

Ef p
z = 0. (36)

Now consider the case when the forces are due to piecewise constant zone-centered pres-
sures, and interchange the order of the double sum in the above equation. Then for these
forces calculated along the coordinate-line mesh in Cartesian geometry we have the result

∑
p

Ef z
p = Pz

8∑
i =1

Eai ≡ 0, (37)

since the sum of the outward normal vectors of any closed volume is always zero. This
result followed from the equivalence of the median and coordinate-line meshes in Cartesian
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geometry, since momentum was seen to be trivially conserved in the former case. It expresses
a simple topological property of the zones: namely, they consist of closed surfaces. This
simply says that when we construct a zone from edge vectors, those lengths should join
without gaps or overshoots.

In an exactly similar manner angular momentum is also perfectly conserved on a single
zone basis. The change in angular momentum is computed by taking the cross product of
the radius vector of each pointERp with the momentum equation and summing over all
points p. Then decomposing this sum on a single quadrilateral zone basis yields∑

p

ERp × Ef z
p = Pz

∑
p

ERp × ECz
p = 0, (38)

where the sum that vanishes identically is again a purely geometrical property of any closed
zone that is valid independently ofPz.

While the above may seem simple enough, there are schemes in cylindrical geometry that
achieve important physical properties by allowing both linear and angular momentum to be
violated at truncation error levels by modifying the zone normal vectors such that gaps and
overshoots are present [13]. This is done in order to preserve certain symmetry properties
that are broken by angular momentum, or spurious vorticity, errors that are present with
control volume, as well as other, discretizations. This is in spite of the fact that angular
momentum is exactly conserved on a zone basis, and thus appears rather paradoxical. The
important criterion that must be satisfied to prevent the generation of spurious vorticity is
that the force density due to the scalar pressure have zero curl, or∇ × ∇ p= 0 [21]. This
is a property that, as previously noted, is not generally satisfied locally. For our staggered
grid, control volume differencing, this criterion is operationally measurable in each zone as

∇ ×
( EFp

Vp

)
= 0, (39)

where EFp is the total force on a pointp due to the scalar pressure, andVp is the total
volume associated with this point (the sum of the corner volumes with the indexp). In
calculating Eq.(39) one always uses the surface normals of a particular zone in unmodified
form, although for the symmetry preserving procedure given in [13] these normals are
modified when used to compute the pressure forces. To satisfy the above criterion in this
instance it is necessary to violate at truncation error levels both linear and angular momentum
conservation. In the special case of symmetry preservation investigated in [13], the procedure
presented there results in Eq.(39) being satisfied to roundoff error for very particular kinds
of flow conditions. (In these instances the total force density also has zero curl since the flow
is one-dimensional, although∇ × ∇ · ¯̄Q 6= 0 for an arbitrary tensor̄̄Q.) However, making
∇ × ∇ p= 0 in discrete form does not generally mean that all spurious vorticity generation
has been eliminated. This is because given any analytical prescription for∇ p, which is then
projected onto a grid with arbitrarily spaced points, one finds that∇ × ∇ p 6= 0 in discrete
form. Thus, Eq.(39) is not a general, well-defined measure.

With the above said, it is still a central requirement that momentum be conserved, even
if it might be violated at truncation error levels in some instances. In the case of forces that
arise from subzonal pressures or tensors, and that are added toEf p

z , this must be done so
that Eq.(37) is obeyed. This places an important restriction on how these subzonal pieces
of force may be distributed among the corner forces of a given zone [5].
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Finally, we note that the concept of closure of a volume for proper momentum conser-
vation is important in three dimensions. If one uses arbitrary interpolations between points
to approximate curved surfaces, each described by a single normal vector, it is not clear
that the sum of all such vectors about a closed figure will actually vanish. If this does not
happen then, not only is momentum conservation violated, but there exists no median mesh
that can be equivalent to the coordinate-line/surface mesh, since, as just argued, for forces
calculated with respect to the median mesh momentum is always conserved for piecewise
constant pressures. This restriction thus places some limitations on the definition of the
normal direction used in these interpolations.

3. AN EXAMPLE: AREA-WEIGHTED DIFFERENCING

The most straightforward way to derive a scheme that is compatible in any geometry or
number of dimensions is to use what we now define as “proper” control volume differencing.
In this kind of scheme one uses a staggered placement of variables, as previously discussed,
with piecewise constant functions. The main starting point is then to use Eq.(1) to define
the operatorDIV p→z, given some specified form for the zone volume as a function of its
defining coordinates,Vz( ER1, ER2, . . .). Then using Eq.(28) one can derive the compatible
gradient operatorGRADz→p. This essentially determines the form of the vectorsECp

z that
mutually compose the coordinate-line and median meshes. Then the corner masses are
defined, and thus the zone and nodal masses. Postulated forces, such as those arising from
artificial viscosity, can also be specified; all change in internal energy is calculated using
Eq.(20) since the complete corner forces can now be constructed. Except for numerical error
associated with time integration, there is no entropy problem because the volume used to
compute work is automatically the same as that used to compute the zone volume and density.
Momentum is also conserved since this volume is closed, and total energy is conserved.

The problem is that in some instances the kind of scheme detailed above will not preserve
other important properties. An example of this situation is two-dimensional, cylindrical(r, z)
geometry in the case of spherical flow. Here one can specify one-dimensional, spherically
symmetric initial and boundary conditions and the numerical solution, computed with the
control volume scheme described above, will not remain spherical in time. Since it is
important to investigate perturbations in two dimensions of this type of one-dimensional
symmetry, other kinds of schemes were developed for solving this type of problem. These
are the so-called “area-weighted” schemes [10–12,18]. They have been used extensively for
almost 40 years and have arisen in several incarnations that sometimes look quite different
but are the same in their principal features. They have a staggered spatial placement of
variables that are piecewise constant functions. All have the useful property that they will
preserve spherical symmetry in cylindrical geometry for an equal angle zoned initial grid.
This subject, its extension to unequal angle zoning, and the rectification of this difficulty
for a control volume scheme are given elsewhere [13]. However, a detailed analysis of the
salient features of area-weighted schemes proves very useful for displaying the possible
difficulties previously discussed. This is because for this type of scheme one essentially
begins by postulating the form of the gradient operatorGRADz→p, based on physical
reasoning of what is necessary for symmetry preservation for a grid that is constructed with
equal angle zoning. This implicitly determines the zone volume, and leads to an interesting
set of problems that are amenable to analysis in the framework given here. These schemes
violate strict momentum conservation; in compatible form they possess a non-integrable
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volume element, and thus may give rise to entropy errors of the type previously mentioned.
Nonetheless, they have been used extensively because of the above mentioned symmetry
property.

The formalism introduced in Section 2 allows the area-weighted schemes to be derived
and analyzed in a most economical manner. This is done starting from the momentum
equation. To transform the momentum equation of the control volume scheme in two-
dimensional(r, z) Cartesian geometry into two-dimensional(r, z) cylindrical geometry one
must multiply the normal vector edge lengths of a quadrilateral zone,Eai or ESi , from which
the forces are computed, by a factorr̄ that is defined as the average of ther coordinate values
at the respective endpoints of the straight line segments. This gives “true” zone volume, or
nodal volume, in cylindrical geometry depending on whether one calculates along a closed
segment of the coordinate-line, or the median, mesh.

Spherical symmetry in cylindrical geometry is not preserved with the control volume
scheme because the areas along the angular direction are not equal even when the angles
between the radial lines are equal. Thus for pressures that are radially symmetric the force is
not in the radial direction, leading to the aforementioned violation of symmetry. However,
for an equal angle zoned grid cylindrical symmetry is preserved in Cartesian geometry. This
is because the lengths along the angular direction are then equal, and thus the net force on a
node perpendicular to the radial direction vanishes for a spherically symmetric distribution
of pressures [13]. It is this fact that is used to construct the area-weighted schemes in
cylindrical geometry that preserve spherical symmetry.

To obtain the area-weighted schemes one simply multiplies the vector lengths, as defined
in Cartesian geometry, of the entire force contour defined with respect to a given grid point,
p, by the value of the coordinater p at that point. This is done in place of multiplying the
separate vector lengths that make up this contour by their respective values ofr̄ that would
result in true volume for cylindrical geometry. Then the Lagrangian nodal mass is also
defined at pointp as an effective “areal inertia” timesr p so that the momentum equation in
cylindrical geometry becomes

MP
dEv p

dt
≡ r p(ρ A)p

dEv p

dt
= r p

∑
z

Ef p
C,z, (40)

where we indicate asEf p
C,z the force as computed in two-dimensional, Cartesian geometry.

Now the common factor ofr p cancels in Eq.(40) and one is left with essentially the same
momentum equation as was used in Cartesian geometry, hence the term “area-weighted.”
This modification to control volume differencing points the acceleration in the radial di-
rection and can be shown to preserve spherical symmetry in cylindrical geometry for equal
angle initial zoning if(ρ A)p is the same for all points on an arc of constant radius [13,7].

The first difficulty encountered with the above is the proper definition of the nodal mass
Mp. (The definition of the zonal mass and the areal inertia is the place where differences
in the various forms of the area-weighted schemes arise.) We require that the total values
of the zone and nodal mass be the same over the entire grid and that the zone mass be
the “true” initial mass in the cylindrical quadrilateral volume. That is, the relations given
by Eqs.(5),(6) must be satisfied. The areal inertia used in this equation can be obtained
by (ρ A)p = Mp/r p, as seen from Eq.(40). Consider the center pointc of the quadrilateral
zone defined in Fig.4. There we indicate four triangular subzones labeled as numbers 1· · · 4
inside circles, each corresponding to an edge of the zone. We denote the areas of these
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FIG. 4. Quadrilateral zone with center pointc and coordinate-line mesh (solid) vectorsEai , and median mesh
(dotted) vectorsESi . Triangular sub-division indicated by dashed lines and their associated solid coordinate lines.

respective triangles by the symbolAi . Then from the fact that the true volume of the ith
triangular subzone of the quadrilateral isAi (ri + ri +1 + rc)/3 we have

Mz = ρz

4∑
i =1

Ai (ri + ri +1 + rc)/3. (41)

Using the fact that ther coordinate of the center pointrc is given byrc = (r1 + r2 + r3 + r4)/4
allows us to find the corner massesmp

z by simply decomposing Eq.(41) with respect to the
factorsri . For instance, for point 1 of the zone shown in Fig.4 we have the result that
m1

z = ρzr1(5A1 + 5A4 + A2 + A3)/12. Now the relations given by Eq.(5) can be applied
directly and Eq.(6) will be satisfied. This construction can obviously be used to find the
corner masses in area-weighted form for a zone of any number of sides in two dimensions.
It provides a solution to what has heretofore been a major difficulty in the formulation of
these types of schemes.

The only problem with this definition of nodal mass is that along thez-axis where
r p = 0, the nodal massMp = 0, and the areal inertia is indeterminate. This defect can be
remedied in more than one manner. One can simply extrapolate its value from nearby
points or calculate the areal inertia fromρ A taken with respect to the median mesh about
these points. The first curious property of the area-weighted scheme just specified is that
sinceMp = 0 on thez-axis these points carry no momentum or kinetic energy. They just
serve as marker points to determine the size of the zones (and thus their density) adja-
cent to thez-axis. Total energy will be conserved regardless of how these points move in
time.

The last step in our derivation of the area-weighted scheme is the specification of the
equation for the evolution of specific internal energy. This we do for forces defined with
respect to the median mesh. Note that the force acting on a pointp from a piece of the
median mesh of a given zone is notEf z

C,i , butr p Ef z
C,i . Using this fact in Eq.(24) we have that

the rate of change of internal energy due to forces applied from zonez is

Mz
dez

dt
= −

4∑
i =1

Ef z
C,i · δ(r Ev)i

def= −Pz
dVz

dt
. (42)
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The forces Ef z
C,i are evaluated with respect to the median mesh vectorsESi of zonez in

Cartesian geometry. Sinceδ(r Ev)i = (r Ev)i +1 − (r Ev)i , in this equation, unlike in the momen-
tum equation,r p enters; this is necessary to approximate a zone volume in cylindrical
geometry. The last equality in Eq.(42), which is true only for pressure forces, is the real
concern. Since for pressure forcesEf z

C,i = Pz ESi , Eq.(42) defines a rate of change of the
differential volume of zonez with time. What this volume is and how it is related to the
true volume of a quadrilateral zone in cylindrical geometry is the important question. First,
notice from Eq.(42) that momentum is not in general conserved by this scheme. This is
because the forceEf z

C,i acts with a factorri on pointi , and with a different factorri +1 on
point i + 1, of zonez. These forces have opposite signs but not equal magnitudes, and thus
Eq.(36) is not exactly satisfied.

SubstitutingEf z
C,i = Pz ESi into Eq.(42) yields the result fordVz/dt given as the first equality

in the equation

dVz

dt
= −

4∑
i =1

ESi δ(r Ev)i = Az

(
∂r vr

∂r
+ ∂r vz

∂z

)
c

= Vz

〈r 〉z
∇c · r Ev; (43)

the second equality in this equation follows from the form for the discrete divergence in
Cartesian geometry, as given by Eq.(62) of Appendix A with argumentr Ev inserted in place
of Ev. The partial derivatives are understood to be the discrete form of these objects. The
last equality in this equation follows from using the identityAz ≡ Vz/〈r 〉z, which defines an
averager coordinate for zonez (Az is zone area); by∇c we understand the Cartesian form
of the divergence operator where there are no unit vector differentiation contributions. From
this last term of Eq.(43), and using Eq.(1), the divergence of the velocity field in cylindrical
geometry is given by

∇ · Ev = 1

〈r 〉z
∇c · r Ev ≈ 1

r

∂r vr

∂r
+ 1

r

∂r vz

∂z
, (44)

where we have let〈r 〉z → r . We thus see that we have obtained from Eq.(42) a consistent
discrete representation of the divergence operator, and thus the discrete volume, in cylin-
drical geometry. One derivation of an area-weighted scheme starts with∇ · Ev written in
continuum form as given above [12]. Then the full system of hydrodynamics equations
is discretized using what amounts to formulas given by Eqs.(58),(59) of Appendix A. An
area-weighted scheme is then derived, but by a much more involved path.

The time rate of change of the compatible zone volume given by Eq.(43) can be explicitly
written in terms of the coordinates of the quadrilateral zone shown in Fig.4 as

dV2

dt
= 1

2
[(r2vr 2 − r4vr 4)(z3 − z1) + (r1vr 1 − r3vr 3)(z2 − z4)

+ (r3vz3 − r1vz1)(r2 − r4) + (r2vz2 − r4vz4)(r1 − r3)]. (45)

(This is most easily seen by the use of Eqs.(58),(59) of Appendix A in Eq.(43) withr vr and
r vz as arguments.) We label this volume asV2 to denote that it is the second (and compatible)
form of the zone volume. Given any functionV( ER1(t), ER2(t), . . .) that depends on time
only implicitly through its arguments, it is true in general that

dV

dt
=

∑
i

Evi · ∇i V, (46)
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whereEvi = d ERi /dt, and by∇i is meant the generalized gradient with respect to all vector
arguments of the volumeV . By simply comparing the expressions given by Eq.(45) and
Eq.(46) one can find the partial derivatives ofV with respect to all zone coordinates. For
point 2 of Fig. 4 this is

∂V2

∂r2
= 1

2
r2(z3 − z1),

∂V2

∂z2
= 1

2
r2(r1 − r3), (47)

as is seen from the coefficients ofvr 2 andvz2 in Eq.(45). Forming the second mixed deriva-
tives of these quantities with respect to the index 2 leads to the interesting result

∂

∂z2

∂V2

∂r2
= 0 6= ∂

∂r2

∂V2

∂z2
= 1

2
(r1 − r3). (48)

Thus, the compatible volume of the quadrilateral zones defined by area-weighted differenc-
ing in cylindrical coordinates is non-integrable; there exists no scalar functionV2( ER1(t),
ER2(t), . . .) whose time derivative yields Eq.(45). Since Eq.(45) does not define the true

volume of the zones, we show how this expression is related to this volume.
If we write Eq.(43) along the coordinate grid lines, then the rate at which volume is swept

in time along any edge described by the outward normalEa as calculated by area-weighted
differencing is given by

dVedge

dt

∣∣∣∣
area weight

= 1

2
(r1Ev1 + r2Ev2) · Ea, (49)

where the labels 1 and 2 denote the endpoints of this edge. The rate at which volume is
swept in time along this edge as calculated from true “control volume” differencing is given
by

dVedge

dt

∣∣∣∣
true

= 1

4
(r1 + r2)(Ev1 + Ev2) · Ea. (50)

The difference between these two rates is due to the factorr̄ = (r1 + r2)/2 that appears in
Eq.(50) versusr p (p= 1, 2) in Eq.(49). Subtracting these two equations, the difference in
these two rates of change of volume can be written as

dVedge

dt

∣∣∣∣
area weight

− dVedge

dt

∣∣∣∣
true

= 1r

4
(1El × 1Ev), (51)

where1Ev = Ev2 − Ev1 and1El is the vector along the given coordinate-line edge (perpendicular
to Ea and with the same magnitude). Thus it is seen thatif the velocity difference along an edge
is parallel to the direction of that edge, then there is no difference in the volume change
calculated with area-weighted differencing relative to true control volume differencing.
Now consider a spherically symmetric velocity field as shown in Fig.5. For this type of flow
field it is obvious that the above condition is satisfied along all edges of the quadrilateral
zones. Thus the volume change calculated for this kind of flow field with the area-weighted
scheme gives the same volume change as calculated from the control volume scheme.
The latter is what is obtained from computing the difference of the quadrilateral volumes
at two different time levels to obtaindV of a zone. So there is no volume consistency
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FIG. 5. Grid lines for a 180◦ symmetric flow (radially inward arrows) problem with pointc as a center of
convergence.+z axis is a reflective boundary containing grid points;−z axis is a reflecting boundary without grid
points on this line (dashed and dotted). Dotted lines indicate degenerate quadrilateral zones that are common to
the center of convergence.

problem or associated entropy error for spherically symmetric flow, although there is for an
arbitrary velocity flow field. The reason that area-weighted differencing preserves spherical
symmetry in cylindrical geometry for equal angle zoning is because the criterion given
by Eq.(39) is unchanged in moving from Cartesian to cylindrical geometry for this type
of differencing. This is because the termsEFp and Vp that are divided in that expression
both acquire only a common factor ofr p in cylindrical geometry. Thus the force density
that was curl free for equal angle zoning in Cartesian geometry remains so in cylindrical
geometry.

Although the zone mass of this area-weighted scheme and the control volume scheme
is equal, their nodal masses,Mp, and corner masses,mp

z , are not. As shown earlier, the
assumption ofMz and Mp as both constant, Lagrangian masses leads to the conclusion
that the corner massesmp

z are also constant. When this concept is used to derive subzonal
pressures as described in [4] for use with an underlying area-weighted force differencing,
these subzonal pressures are calculated from subzonal masses and volumes computed from
the true volumes of the corners of the quadrilaterals. The corner masses used to construct
Mp for an area-weighted scheme do not turn out to be useful Lagrangian objects because
of their dependence onr p.

Lastly, in the variant of the area-weighted scheme due to Schulz, the quadrilateral zone
volume is defined as the zone area timesrc, the r coordinate of the center point of the
zone. This never exactly matches the true zone volume so that this form of area-weight
differencing can never be cast in a form that is compatible with total energy conservation.
In this case the work done in a zone by pressure forces is calculated as−PzdV, wheredV
is the change in zone volume computed from the “postulated” functional form.

4. PRACTICAL CONSIDERATIONS

Here we briefly discuss other issues that are of importance for constructing a complete
numerical implementation of the ideas developed in this paper. Principal among these are
time integration and a proper implementation of appropriate boundary conditions. These
subjects are treated here only to the extent that our specific numerical formalism impacts
upon them. In particular, we describe how we have implemented time integration and
boundary conditions in a working code, results from which are shown here only to clarify
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very specific issues; however, numerical examples in a much larger context and with respect
to a much broader range of problems, obtained from the same code, are given elsewhere
[13,4,5].

4.1. Time Integration

It was already noted in Section 2 that an even time integration scheme must be used with
this model since we wish to have all quantities that enter into the definition of total energy
at the same time level. Given this fact there remain three issues to be addressed: numerical
stability, time centering of the corner forces, and timestep control. Our time integration
method is a predictor-corrector technique where on the predictor we always advance all
variables a full timestep to then + 1 time level.

Our discretization that conserves total energy to numerical roundoff error implies a
specific ordering to the solution of the equations: namely, that the momentum equation is
first advanced to obtainEvn+1

p , and only then is the internal energy equation advanced. When
the latter is advanced information from the velocity field at the(n + 1) level is used, since
in Eq.(20),Evn+1/2

p = (Evn+1
p + Evn

p)/2 is what enters. This sequence forms our initial predictor
step, as well as following corrector steps.

If the momentum and internal energy equations, Eqs.(17),(20), are linearized for pressure
forces in one spatial dimension it is readily found that this sequence of steps yields the usual
CFL stability constraint with respect to the sound speed. Thus, this system is stable for just
one predictor step. Therefore, the very structure of these equations, in which they obey
discrete conservation of total energy, appears to imply linear stability.

Although a single predictor step is numerically stable, and we could simply advance all
variables at this point, we always do at least one additional corrector step. The sequence
of operations in performing either a predictor or a corrector step is advance velocity, then
specific internal energy (usingEvn+1/2), and last coordinates, and therefore zone volume
and density. To advance coordinates one always uses the average of the velocity at the old
and new time levels; this is formally second order accurate. However, on the predictor step
we have effectively calculated a volume change in computing the time advanced specific
internal energy. This step uses forces centered at the old time level and is thus only first
order accurate, and will result in an entropy error for the reasons previously mentioned.
(This is measured since we also integrate Eq.(1) in time and compare this zone volume to
that defined by the coordinates.) Thus, on the corrector step we always time center the grid
lines, Eai and ESi , at the(n + 1/2) time level by averaging the old and new values of the
coordinates. Then the time advance of the compatible volume and work has the same order
of accuracy as the coordinate advance. This still results in a residual numerical integration
error between the compatible volume and the coordinate volume since the velocity at the
n + 1 time level that is used to time center the grid lines is not the same velocity that is
used to advance the coordinates at the end of the corrector step. The pressure may also
be centered at the(n + 1/2) level or used fully advanced; we observe little difference in
these choices. However, the pressure used in the momentum and internal energy equations
is always the same since the corner forces are common to both. In the case where we have
an artificial viscosity, the subzonal tensors from which this force is computed are always
kept at the unadvanced time level; this centering choice is found to produce less numerical
noise than any others. More than one corrector step may be employed and the results from
all preceding steps can be easily factored into the calculation of the time-centered corner
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forces and grid lines [22]. Time is always advanced after some fixed, predetermined number
of corrector steps; usually, only one corrector step is utilized.

A new value for the timestep is always chosen on the predictor step. This is done as
follows for quadrilateral zones in two spatial dimensions: first we define a characteristic
zone length,l z, as the minimum distance of the two sides of the median mesh of a given zone.
Next we compute a generalized sound speed,c∗

z, in every zone. This is defined by adding
the maximum pressure in a zone to the maximum value of the scalar part of the artificial
viscosity tensors in a zone to form a generalized pressure,p∗

z: then,c∗
z = (γ p∗

z/ρz)
1/2, where

γ is the ratio of specific heats andρz is the mean zone density. We then require that

c∗
z1t

lz
≤ f1 ≈ 0.25, (52)

be satisfied for every zone. In addition, we also require that a zone not change its volume
by too large an amount in a timestep; namely,

∣∣(∇ · Ev)n
z

∣∣1t ≤ 0.8 f1, (53)

where(∇ · Ev)n
z is known at time leveln. Although Eq.(52) almost always sets1t , the

criterion given by Eq.(53) is a useful supplement in certain, some what pathological, sit-
uations. The increase of a given value of the timestep over the previous one is limited to
no greater than 10% to 20%, while the decrease is unrestricted in order to always maintain
numerical stability. If there are characteristic speeds due to sources other than pressure and
artificial viscosity, for example, shear wave speeds that result from material strength, then
the maximum value of these characteristics speeds is used in Eq.(52).

4.2. Boundary Conditions

Initial and boundary conditions are crucial to the complete description of any physical
problem. The latter must be treated carefully in any numerical model. Here we consider
the following cases: externally applied force, specified velocity at a boundary, a reflective
boundary, and a center of convergence that can move with time. As before, conservation of
total energy is central to our development.

For an externally applied force one can compute the velocity with time of the boundary
points in the same manner as for the interior points. Since there is assumed to be no mass
outside the boundary, the nodal mass of the boundary points is due only to the interior zones
adjacent to the boundary. The equation for total energy, Eq.(15), becomes

ET (t) = ET (0) +
n∑

m=1

∑
i

Wm
bd,i , (54)

where the rate of boundary work performed at pointi on the mth cycle is computed as
Wm

bd,i = Ef m
bd,i · Evm+1/2

bd,i 1tm. Since the external boundary forces,Ef bd,i , are specified, energy
balance is complete.

Suppose the velocity at the boundary is specified. Then in order to compute total energy
balance from Eq.(54) we must find the work,Wm

bd,i , that is effectively performed by the
exterior boundary forcesEf m

bd,i . Since the velocity is known the momentum equation, given
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as Eq.(17), can be used to findEf bd,i ; thus the boundary work is given by

Wm
bd,i = Ef m

bd,i · Evm+1/2
bd,i 1tm = Evm+1/2

bd,i ·
(

Mi 1Evbd,i −
∑

z

Ef i,σ
z 1tm

)
, (55)

where Ef i,σ
z is an interior corner force that acts on the ith boundary point.

While the above is simple enough, a more complicated situation that can be viewed as a
combination of the above two cases is that of a slide line between two different materials
[10,7]. Since the equation of state is different for each material, the force and thus the
velocity in the direction tangential to be interface can be discontinuous. In addition, one can
have friction forces that act between the two sides of an interface; these must be specified
by some prescription that is consistent with momentum conservation. Once this is done the
corner forces are completely known on both sides of the sliding interface, but simply do not
line up so that they can be summed about a point to obtain the complete momentum equation.
What one does in this instance is to interpolate both the corner masses and forces from one
side to the other to complete the momentum equation at all points on the interface. (In this
way the construction of “ghost cells” to complete the force on either side of the interface is
avoided.) Then this completed momentum equation is advanced in time with respect to the
direction normal to the interface, while in the tangential direction only the uninterpolated
forces (including friction) and masses are used to advance this component of the velocity.
The internal energy equation, Eq.(20), is then advanced using the uninterpolated corner
forces (including friction) dotted into the velocity of their associated points, just as before.
This equation is unmodified by the interpolation of corner forces and masses.

By the above procedure one essentially specifies the advanced velocity at either side of the
interface, wherein total energy is therefore exactly conserved for each region. In computing
the boundary work for each region by means of Eq.(55) all nodal masses on either side of
the interface consist of a single material with the corner masses of the opposite material set
to zero, but with boundary velocity specified. Then the total interface work done by each
material on the other should be equal in magnitude and opposite in sign so that there is no
net interior energy source. This is not exact due to numerical truncation error in the interface
treatment. However, how closely this is satisfied gives a goodness criterion for this type of
interior boundary condition. Kinematical adjustments in the velocity of the interface points
may be needed to prevent material interpenetration. In this case total energy can still be
exactly conserved by using Eq.(25) to modify the internal energy of the zones associated
with the affected interface points.

In principle, a center of convergence need not be treated in any special form since this is
an arbitrary property of the solution of the equations that can occur at any spatial location.
However, in practice one often constructs the initial grid knowing approximately where this
point is likely to occur: for example, along a given axis or at a fixed, predetermined location.
In this case this point can be allowed for in a special manner that increases code robustness.
Such an instance is shown as pointc of Fig.5. In this case we choose to treat this point as
the center of a zone that has more nearest neighbors than other zones. As shown in Fig.5 this
zone is composed of triangles, indicated by dotted lines, that are degenerate quadrilaterals
adjacent to pointc. These triangles all have the same values of density and specific internal
energy since they are all part of the same zone. The position and velocity of pointc is com-
puted in the same manner as any other zone center; namely, by a simple arithmetic average
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of the positions and velocities of the points that compose the zone. It is important to note
that because this point is the center point of a zone there is no nodal mass associated with it.

Reflective boundary conditions can be implemented in two forms, as shown with respect
to the z-axis in Fig.5, where a spherically symmetric flow is indicated by the velocity field
arrows that point radially inward. The more usual case, shown with respect to the line
labeled+z in Fig.5, is where points lie on the reflective boundary but are constrained to
move parallel to some specified direction defined asĉ. This is thezdirection in Fig.5. Along
this kind of reflective boundary one simply modifies the velocity at these points after the
advance of the momentum equation to be equal to(Evn+1

bd,i · ĉ) ĉ. Note that any motion of
these points along thêc direction is consistent with this boundary condition, and in this
sense these points are unconstrained. If they carry little or no nodal mass, as in the case of
two-dimensional cylindrical geometry, this can lead to spurious motion and grid distortion.
A remedy for this difficulty when using area-weighted differencing is to enslave these points
to their nearby neighbors since they carry no mass. One way to achieve this is to require that
1El × 1Ev = 0, as suggested by Eq.(51), for these points relative to their nearest neighbor
that is not on the z-axis. IfEvk is the velocity of points on the z-axis, andEvk−1 is the velocity
of their associated nearest neighbors not on the z-axis, this yieldsvk

z = vk−1
z − vk−1

r δz/δr ,
whereδr andδz are the difference in ther andz coordinates of these points.

The reflective boundary condition as implemented in Fig.4 with respect to the−z-axis
has no points on the actual boundary. Instead, points on the line labeledk + 1 are reflected
from the line labeledk about thez direction to obtain their velocity. In this case the velocity
of points on the linek + 1 is given in terms of the velocity on their associated points on
line k by the relationEvk+1 = 2(Evk · ĉ) ĉ− Evk. This type of reflective boundary condition is
better constrained than the previous one in that there is no extra freedom that can be asso-
ciated with it. However, caution must be exercised with this implementation. For the case
of an area-weighted scheme in cylindrical geometry, as discussed in Section 3, the com-
patible work computed with this kind of reflective boundary condition about the z-axis
can be shown to result in a volume change that is different from that obtained from “true”
coordinate volume in zeroth order. This results in zeroth order errors in the internal energy
equation for all zones that lie next to the z-axis. It is therefore recommended only for use
with a proper control volume differencing where compatibility is always obeyed.

4.3. A Numerical Example

The Sedov blast wave problem [23] is used here to demonstrate the differences that can
be encountered with the two types of reflective boundary conditions just discussed. This
problem gives a diverging shock wave; it is run in two-dimensional cylindrical geometry.
Our initial setup consists of a square grid with an edge of length 1.125 divided into 45× 45
square zones. Two of these edges correspond to ther andz axes where reflective boundary
conditions are specified. The initial density is unity and the initial velocity is zero. The
specific internal energy is zero except in the first zone where it has a value of 5027.7. We
use an artificial viscosity that is detailed in [5], and corner pressure forces with a fixed

FIG. 6. Sedov blast wave in cylindrical geometry: (a) grid at unit time for reflective boundary conditions
with dynamical points on both ther andz axes. (b) grid at unit time for reflective boundary conditions with no
dynamical points on ther or z axes. These axes are indicated by dashed lines through zone centers.
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strength factor of 0.25 as discussed in [4]. The hydrodynamics equations are discretized
using a proper control volume differencing. For these parameters the analytic solution
predicts that the expanding shock wave should be at a major radius of unity at a time of
unity, with a peak density of four. In Fig.6a the grid is shown at this time, wherein we have
used the first form for the reflective boundary conditions; points are present on both ther
andz axes. Note that difficulties arise in the grid along the z-axis for this problem. These
points carry less nodal mass than other points and are more sensitive to numerical error than
the ones along ther axis. In Fig.6b is shown results with identical run parameters but with
the reflecting boundary conditions implemented as a line reflected about each of ther andz
axes. Note that the first zone, where all energy is initially deposited, is divided into quarters
by the intersection of these two axes; they are shown in Fig.6b as dashed lines through the
centers of the zones that contain them. No difficulties with spurious grid distortion occur
along the z-axis with this type of boundary condition, as can be seen from this figure. In the
case where this problem is run using area-weighted differencing (cf. [5, Fig.8]). we find that
enslavement of the points on the z-axis using the first form of reflective boundary condition
is the best solution to this difficulty. (Recall that the second form of the reflective boundary
condition is not appropriate for the z-axis with area-weighted differencing.)

5. SUMMARY AND CONCLUSIONS

The central feature of this paper was to show how conservation of total energy could be
used to construct difference equations for the system of hydrodynamics equations in such
a way that the discrete equations that one numerically solves obey the relationships that
occur in the equations that compose the original continuum system. A crucial part of this
development was the staggered placement of variables in space. This allowed a set of useful
definitions of corner objects, masses and forces, that are common to both a zone and a
dynamical grid point to be made. Given these definitions it was shown how conservation of
total energy could be utilized to link the momentum and specific internal energy equations
in a completely generic manner that is true algebraically given any set of corner forces.
This was true independent of the precise functional form of these terms. This allows for
enormous generality and rests on a simple physical assumption; namely, the corner forces
act on their associated nodal point to produce a change in momentum, and do work with
respect to their associated zone at rate given by minus their dot product with the velocity
of that point, independent of their functional form or origin. That this assumption was also
mathematically necessary followed from comparing the results obtained from it to those
of the support operators method. This showed that the assumption stated is required for
the vector identities of differential calculus to be valid in discrete form for this kind of
differencing. By satisfying these identities in discrete form one ensures that the algebraic
manipulations that are performed on the continuum system of equations to prove properties
such as conservation of energy all have discrete analogs. This then ensures that these
properties are mirrored into the discrete equations. (The exception being that∇ × ∇ p= 0
is not locally satisfied.) The conservation of energy approach allows for an extension of the
support operators method in the staggered grid case in that forces in discrete form may be
specified, and their associated energy contributions calculated, regardless of their functional
form. The specification of such forces is of extreme importance to the development of robust
and advanced hydrodynamics algorithms [4,5].
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An extension of the usual Lagrangian assumption of constant mass in a zone was also
given. By noting that if the nodal mass is not constant there will be momentum flux from
a node, it was concluded that this mass should also be constant. This is necessary for the
momentum equation to appear in the form in which it is almost always used in Lagrangian
calculations. Because these two masses were defined in terms of common corner masses
it then follows that these latter masses must also be constant, Lagrangian objects. This
conclusion leads to the important concept of subzonal corner pressures and forces that
inhibits spurious grid distortion in these algorithms [4].

Other concerns with the numerical solutions of the equations of fluid dynamics, both
fundamental and practical, were explored. Among these were difficulties with momen-
tum, volume, and entropy conservation in the former context: and, the proper treatment
of boundary conditions and time integration in the latter. The possible difficulties that can
be encountered were illustrated by a first principles analysis of the so-called area-weighted
schemes that have been used for many years in different forms, and have heretofore remained
somewhat of an enigma.

Although numerical results were shown here only to explore practical concerns with the
implementation of reflective boundary conditions, a much larger set of results is presented
as part of the wider development of this work. This is contained in the related papers [13,4,5]
that have been referenced extensively throughout this one. Finally, we wish to note that the
ideas developed here in two spatial dimensions are directly applicable to any number of
dimensions [24].

APPENDIX A

In this appendix we illustrate the derivation of difference operators given a prescription
for the volume of a zone element. (Our development here somewhat parallels that in [25].)
This is done for a quadrilateral zone in two-dimensional, Cartesian geometry specified by
the coordinates(r, z). Necessary changes in going to two-dimensional, cylindrical geometry
are indicated. The area,A, of a quadrilateral zone in terms of the coordinates of its defining
points, as shown in Fig.4, is given by

A = 1

2
[(r2 − r4)(z3 − z1) + (r1 − r3)(z2 − z4)]. (56)

From the Lagrangian assumption, as stated by Eq.(1), and the expression for the diver-
gence in Cartesian geometry we have

∇ · Ev = ∂vr

∂r
+ ∂vz

∂z
= 1

A

d A

dt
. (57)

Using the fact thatEvi = d ERi /dt, where ERi = (ri , zi ), the above expression can be explicitly
evaluated and the partial derivatives with respect to both coordinates can be obtained as

∂vr

∂r
= 1

2A
[(vr 2 − vr 4)(z3 − z1) + (vr 1 − vr 3)(z2 − z4)], (58)

∂vz

∂z
= 1

2A
[(r2 − r4)(vz3 − vz1) + (r1 − r3)(vz2 − vz4)]. (59)

The important fact to note about the above formulas is that not only do they express the
partial derivatives ofvr andvz with respect to coordinatesr andz, respectively, but they
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also give the formulas for the partial derivatives of any function defined at the grid points of
the quadrilateral with respect to these coordinates. For example, if one wants the expression
for the cross derivatives inside zonez, ∂vz/∂r and∂vr /∂z, one simply substitutesvz for vr

in Eq.(58), andvr for vz in Eq.(59), respectively. Thus, by the procedure outlined we have
derived operator expressions that can act on any data that are given at the respective points
to obtain a discrete form of the derivatives of that data inside the zone. Another feature
of Eqs.(58),(59) as operator expressions is that they obey the results of simple calculus
to lowest order. For example, insertingz in place ofvr in Eq.(58) andr in place ofvz in
Eq.(59) gives∂z

∂r = ∂r
∂z = 0. However, insertingz2 for vr in Eq.(58) does not yield zero for an

arbitrary spacing of the quadrilateral grid points. This shows that these formulas are only
first order accurate.

Our next goal is to write the derivative formulas given by Eqs.(58),(59) in vector form by
the use of either set of vectors,Eai or ESi , as shown in Fig.4. To this end, the representation
that corresponds quantitatively to the notation in Fig.4 of the vectorsEai is defined by

Ea1 = Ea2 = (z2 − z1)

2
r̂ − (r2 − r1)

2
ẑ, (60)

etc., which gives the outward normal prescription. Then the form for the divergence of
velocity given by the usual control volume differencing in Cartesian geometry is

A(∇ · Ev) = ( Ea1 + Ea8) · Ev1 + ( Ea2 + Ea3) · Ev2 + ( Ea4 + Ea5) · Ev3 + ( Ea6 + Ea7) · Ev4. (61)

It is easy to verify by straightforward algebraic manipulation that this equation is identical
to Eqs.(58),(59) obtained by time differentiation ofA. By vector manipulation the above
expression can be written in an equivalent form with respect to the median mesh. By use of
the vector relations between the two sets,( ES1 − ES4) = Ea1 + Ea8, ( ES2 − ES1) = Ea2 + Ea3, . . . ,
etc., there follows that

A(∇ · Ev) = ES1 · (Ev1 − Ev2) + ES2 · (Ev2 − Ev3) + ES3 · (Ev3 − Ev4) + ES4 · (Ev4 − Ev1)

≡ −
4∑

i =1

ESi · δEvi , (62)

whereδEvi = Evi +1 − Evi , andi is cyclic as before.
To complete this discussion we now have that the partial derivatives given by Eqs.(58),

(59) can be written with respect to these sets of vectors. For example, the partial derivative
with respect to the coordinater using the vectorsEai for any grid point function∗ is given
by

∂∗
∂r

= 1

A
[(a1r + a8r )∗ + (a2r + a3r )∗ + (a4r + a5r )∗ + (a6r + a7r )∗], (63)

whereair is ther component of vectorEai ; a similar expression holds for the partial deri-
vatives with respect to the coordinatez. These derivatives expressed in vector form can be
used to define all vector operators (GRAD, DIV , andCURL ) in Cartesian geometry with
respect to functions defined on the grid points.

We wish to note that the procedure carried out here for Cartesian geometry can be done
for two-dimensional(r, z) cylindrical geometry with minor modifications. For this case the
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volume element given by Eq.(56) becomes more complicated but the net result obtained for
the divergence, as given by either Eq.(61) or Eq.(62), is modified simply by multiplying each
vector length by a factor̄r , This factor is given as the average of the value of the coordinate
r at the endpoints that define each vector length. So, for instance,Ea1 → Ea1(3r1 + r2)/4 and
Ea2 → Ea2(3r2 + r1)/4, etc., as seen from Fig.4; for the vectorsESi the endpoints are defined
by the midpoints of the associated side and the common center point of the zone.

Finally, in the case of curvilinear coordinates it is not possible to uniquely distinguish
single derivatives since, for example, in cylindrical coordinates the term∂ P

∂r = 1
r

∂r P
∂r − P

r
can have different discrete representations. However, if one is given the vector setEai or
ESi as functions of the coordinate points, then the discrete form of the differential vector
operators can still be completely specified directly in vector form. The specification of the
half-edge vectors that compose these operators is what is important. This can often be a
very complicated step since the half-edge vectors can be given as arbitrary functions of the
grid point coordinates.
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