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SUMMARY

High-speed multimaterial flows with strong shear deformations occur in many problems. Due to the nature
of shock wave propagation in complex materials, the arbitrary Lagrangian–Eulerian (ALE) methods are
currently the only proven technology to simulate such problems. In ALE methods, the mesh does not
move with the fluid, so that it is unavoidable that mixed cells containing two or more materials will
appear; such mixed cells require a special closure model to be well posed. In this paper, we will discuss
some of the possible models. Published in 2007 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

High-speed multimaterial flows with strong shear deformations occur in many problems of interest.
Due to the nature of shock wave propagation in complex materials, the arbitrary Lagrangian–
Eulerian (ALE) methods are currently the only proven technology that address such problems
numerically. In ALE methods, the mesh does not move with the fluid, and so it is unavoidable
that mixed cells containing two or more materials will appear.

Multimaterial cells are introduced in ALE methods to represent material interfaces that undergo
large deformation. The main difficulties in this case are how to accurately determine the thermody-
namic states of the individual material components and the nodal forces that such a zone generates,
despite the lack of information about the velocity distribution within multimaterial cells.
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A separate set of material properties is normally maintained for each material in every multi-
material cell along with the volume fractions that define the fraction of the cell’s volume occupied
by each material. The volume fractions can also be used to reconstruct material interfaces inside
a mixed cell.

A subcell model (closure) is then required to define how the volume fractions and the states of
the individual materials evolve during the Lagrangian step. This subcell model is required to close
the governing equations, which are otherwise underdetermined.

One of the important classes of methods is based on the assumption of pressure equilibrium (PE),
or on introducing some mechanism for pressure relaxation (PR) (see, e.g. [1–5]). The pressure
at a material interface should be continuous; however, the pressure within a computational cell
represents an average pressure integrated over the cell volume. This means that there is no physical
requirement for absolute PE within a multimaterial cell. In fact, for the entire computational cell
to come to PE, a shock wave would have to cross the cell many times, while the CFL stability
condition prohibits a shock wave from crossing any cell in a single time step. However, pressure
continuity at material interfaces does suggest that the pressure within a multimaterial cell should
move toward PE, rather than to diverge from it. This can be achieved by introducing a relaxation
mechanism like viscosity into the model (see, e.g. [2, 5]).

In addition to PE or PR, this class of method invokes conservation of volume and some form of
conservation of total internal energy, which is still insufficient to close the model. There are several
possibilities, e.g. methods like [2] assume that the flow is isentropic. Another model, in which the
change in entropy of each material is assumed equal, is proposed in [4] and has the important
property that it leads to a hyperbolic system of equations that satisfy an entropy inequality under
CFL-like restrictions. Methods in this class also differ with respect to how the equations are
approximated, ranging from fully implicit as in [4, 5], to fully explicit as in [2]. It is important
to note that in this class of method, one assumes no knowledge of the actual configuration of
materials in the cell.

Recently, a new class of closure models that attempts to emulate the behavior of separate
Lagrangian subcells has been developed [6–8]. In this class of methods, one estimates the velocity
normal to the interface between materials and then estimates the change in the volume for each
material. In an ideal situation, the position and orientation of the material interface may be known
(e.g. from interface reconstruction). Internal energy is updated separately for each material from
its own p dV equation. A common pressure for a mixed cell, which is used in the momentum
equation, is computed using the principle of conservation of total energy. One can also introduce
an exchange of internal energy between the materials inside a mixed cell, which allows more
freedom in the definition of the common pressure, [7, 8].

In this paper, we will describe two different closure models and present numerical comparisons
for 1D compatible staggered discretizations of the Lagrangian equations with mixed cells.

2. STAGGERED COMPATIBLE DISCRETIZATION—PURE CELLS

In this section, we describe a standard staggered compatible discretization for Lagrangian gas
dynamics (see, e.g. in [9, Chapter 5]) for the case that each cell (zone) of the computational
mesh contains just one material; that is, all cells are pure cells. In a staggered discretization, the
coordinates x j and velocities u j are located at the nodes j while the rest of the quantities: mass,
m j+1/2, density, � j+1/2, internal energy, � j+1/2, volume, Vj+1/2, and pressure, p j+1/2 are cell
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centered. We will also need nodal mass Mj . We will adopt operator notation and spatial indices
will be dropped almost everywhere.

Usually, the time integration of Lagrangian equations is implemented as a predictor–corrector
scheme. In the predictor stage, one ‘predicts’ coordinates xn+1/2 = xn + (�t/2)un , and volumes
V n+1/2 =V(xn+1/2), as well as pressure under the assumption that the flow is isentropic

pn+1/2 = pn − �n(cn)2 �V n+1/2/V n, �V n+1/2 = V n+1/2 − V n (1)

at the ‘half’ time step n + 1/2. In the corrector step, one updates velocity—M(un+1 − un)/�t=
−�(pn+1/2), coordinate xn+1=xn+�t un+1/2,un+1/2=(un+un+1)/2, volume—V n+1 =V(xn+1)

density—�n+1 =m/V n+1, internal energy—m(�n+1 − �n)/�t = −pn+1/2 �∗(un+1/2), and finally
pressure from the equation of state—pn+1 =P(�n+1, �n+1). In these formulas, we have used the
operator notation (��) j =� j+1/2−� j−1/2, (�

∗�) j+1/2 = � j −� j−1 and for simplicity have omit-
ted all terms related to artificial viscosity. The staggered compatible discretization is conservative
[9]. For conservation, it is important that the same p is used in the momentum and internal energy
equations; � and �∗ are adjoint operators; and un+1/2 is used in the internal energy equation.

3. MIXED CELL MODELS

In this paper, we consider two classes of closure models. The first class of models is based on
the assumption of PE (PR) and the assumption that the flow is isentropic. The second class of
models is based on modeling the dynamics of the pure subcells inside of a mixed cell. Let us
mention several design principles for closure models. The first principle is preservation of the
contact; that is, if initially all materials in a mixed cell have the same pressure, then that pressure
does not change due to the closure model. The second principle is pressure equilibration; that is,
after some transition time, all pressures in the mixed cell have to equilibrate. The third principle
is conservation of total energy; that is, total energy has to be conserved exactly. For practicality,
the closure models are implemented in the predictor stage.

3.1. Tipton’s mixed zone pressure relaxation model

As an example of a PR model, we consider our interpretation of the so-called Tipton’s mixed zone
pressure relaxation model [2]. In this model, one assumes that pn+1/2

i + Rn+1/2
i = p̂n+1/2, where i

is the material index, pn+1/2
i is the pressure in the i th material and Rn+1/2

i is the relaxation term.

An expression for pn+1/2
i is derived under the assumption that the flow is isentropic, dSi/dt = 0,

and a particular time centering, that makes it linear in �V n+1/2
i , and a relaxation term that resembles

linear viscosity

pn+1/2
i = pni − �ni (c

n
i )

2�V n+1/2
i /V n

i , Rn+1/2
i = −�ni c

n
i (L

n/�t)(1/V n
i )�V n+1

i

Here, Ln is a characteristic length related to the mixed cell; cni is the adiabatic speed of sound
for the i th material, V n

i is the volume occupied by the i th material at the previous time step, and

�V n+1/2
i (which is unknown) is the change in volume for the corresponding material.
As was done for a single material in the predictor stage, one now computes the new volumes

and the changes of volume for all cells including mixed cells. After this, one needs to solve a
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system of linear equations (closure model) for p̂n+1/2 and �V n+1/2
i

pni − B̃n
i (�V n+1/2

i /V n
i ) = p̂n+1/2,

∑
i

�V n+1/2
i = �V n+1/2

where B̃n
i = �ni (cni )

2[1 + Ln/(cni �t)] and �V n+1/2 is known change of the volume of the entire
mixed cell. This system has a very simple structure whose explicit solution is

p̂n+1/2 = pn − B
n �V n+1/2

V n
, �V n+1/2

i = V n
i

B̃n
i

[
(pni − pn) + B

n �V n+1/2

V n

]
(2)

where

pn = ∑
i

(
f ni
B̃n
i

pni

)/∑
i

(
f ni
B̃n
i

)
, B

n = 1

/∑
i

f ni
B̃n
i

= ∑
i

f ni

/∑
i

f ni
B̃n
i

and fi = Vi/V is the volume fraction. The equation for �V n+1/2
i indicates that the change in

volume in the i th material is due to the difference of pressure in this material with respect to
the ‘averaged’ pressure and also due to the change of the volume of entire mixed cell. Because
Vi = fi V , the equation for �V n+1/2

i implies the following equation for � f n+1/2
i :

� f n+1/2
i = f ni (pni − pn)/B̃n

i + f ni (B
n
/B̃n

i − 1)�V n+1/2/V n

In the corrector stage of Tipton’s method, the pressure p̂n+1/2 is used in the momentum equation
and � f n+1

i = 2 � f n+1/2
i is used to distribute the change in volume of the entire mixed cell among

the individual materials. The pressure p̂n+1/2 and �V n+1
i is then used in the internal energy

equations

mi (�
n+1
i − �ni ) =− p̂n+1/2(V n+1

i − V n
i ) (3)

Finally, a new pressure for each material is determined from its own equation of state. Conservation
of total energy directly follows from Equation (3).

3.2. Sub-cell dynamics approach to closure models

In the subcell dynamical closure models, each material has its own pressure, density and internal
energy. One of the main difficulties in such models is how to estimate the velocity of interface
between two materials. If we have an estimate for this velocity, we can also estimate how the
volume and density of each material will change. The next question is how to define the one
pressure of the mixed cell that will be used in the momentum equation? And finally, how does
one conserve total energy?

To estimate the interface velocity uI between two materials in 1D, one can use the acoustic
Riemann solver uI =[(�1c1)u1 + (�2c2)u2 + (p1 − p2)]/(�1c1 + �2c2), where the indices 1 and
2 denote states on different sides of interface. Clearly, different choices for u1, u2 are possible, as
well as other estimates for the interfacial velocity.

In subcell closure models, each material has its own ‘p dV ’ equation mi d�i/dt = −pi dVi/dt .
The conservation of total energy argument can be used derive one pressure for the mixed cell:

d

dt

(∑
mi �i

) =m
d�

dt
=−∑ pi

dVi
dt

=−p
dV

dt
→ p=∑ pi

dVi
dV
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The are several questions related to the formula p= ∑
pi (dVi/dV ). What to do if dV = 0? What

to do if some of dVi/dV have different signs? In such a case, the averaged pressure can be negative
even if all pi are positive.

3.2.1. Barlow’s method. As a specific example of a subcell dynamical closure model, we consider
our interpretation of Barlow’s method [6] for the case of two materials. The design principle for
Barlow’s method is to choose �i ∼ dVi/dV , such that 1��i�0 and

∑
�i = 1. Having �i , we can

define dVi = �i dV and p= ∑
�i pi .

In Barlow’s method, the interfacial velocity is defined from an acoustic Riemann solver under
the assumption that u1 = u2, and is obtained by linear interpolation of velocities uL, uR at the end
points of the mixed cell using volume fractions unI = f n2 unL + f n1 unR + (pn1 − pn2 )/(�

n
1 c

n
1 + �n2 c

n
2).

In the predictor stage, this velocity is used to compute the changes in volumes of each material.
Then if �V n+1/2 = 0 then �n+1/2

i = f ni ; if all �V n+1/2
i /�V n+1/2 have the same sign then

�n+1/2
i = �V n+1/2

i /�V n+1/2 (4)

otherwise, �V n+1/2
i are corrected as follows: if �V n+1/2

1 ·�V n+1/2<0 then �V n+1/2
1 = 0, �V n+1/2

2 =
�V n+1/2; If �V n+1/2

2 ·�V n+1/2<0 then �V n+1/2
1 = �V n+1/2, �V n+1/2

2 = 0, and formula (4) is used.
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Figure 1. Results of the Lagrangian computation of two-material Sod problem—pure cells.
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Updated values of �V n+1/2
i are used to compute the pressure in each material pn+1/2

i = pni −
�ni (cni )

2 �V n+1/2
i /V n

i . Finally, one pressure for the mixed cell is computed as follows pn+1/2 =∑
�n+1/2
i pn+1/2

i .

In the corrector stage, pn+1/2 is used in the momentum equation, �n+1/2
i are used to distribute

change in volume of entire mixed cell �V n+1
i = �n+1/2

i �V n+1, and finally �V n+1
i and pn+1/2

i are

used to update internal energy for each material mi (�
n+1
i − �ni ) =−pn+1/2

i �V n+1
i .

4. NUMERICAL EXPERIMENTS

In this section, we compare numerical results for the two-material Sod problem. The computa-
tional domain is [0 : 1], the initial discontinuity is at 0.5. Materials on the left and right side are
both ideal gases: left—� = 2, �= 1, p= 2, u = 0, right—�= 1.4, � = 0.125, p= 0.1, u = 0. First,
the Sod problem is computed on a mesh of 100 cells, where the interface coincides with the
discontinuity, that is, there are no mixed cells. Results are presented in Figure 1. In the two
pictures at the top, we present a snapshot of pressure and internal energy at t = 0.2. In the two
pictures at the bottom, we present the history of pressure and internal energy in the Lagrangian
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Figure 2. Two-material Sod problem—one mixed cell—Tipton’s closure model.
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Figure 3. Two-material Sod problem—one mixed cell—Barlow’s closure model.

cells left (marked by symbol ‘+’ (red)) and right (marked by symbol ‘×’ (green)) of the initial
discontinuity. In Figures 2 and 3, we present the numerical results for Tipton’s and Barlow’s
methods for the calculations where initially two cells adjacent to interface were combined in one
mixed cell, where the interface was in the middle and initial parameters are discontinuous inside
the mixed cell. In the graphs of pressure and internal energy values in pure cells are marked by
symbol ‘+’ (red), and values in different materials of the mixed cell are marked by symbol ‘+×’
(blue). On the history plots, in addition to the values in each material (right (marked by symbol
‘+×’ (blue)) and left (marked by symbol ‘+’ (red))), the common pressure in mixed cells is marked
by solid dots (black).
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