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Abstract

We study the mimetic finite difference discretization of diffusion-type prob-

lems on unstructured polyhedral meshes. We demonstrate high accuracy of the

approximate solutions for general diffusion tensors, the second-order convergence

rate for the scalar unknown and the first order convergence rate for the vector

unknown on smooth or slightly distorted meshes, on non-matching meshes, and

even on meshes with irregular-shaped polyhedra with flat faces. We show that in

general the meshes with non-flat faces require more than one flux unknown per

mesh face to get optimal convergence rates.

1 Introduction

The development of new mathematical models and numerical methods results in the need
for discretization methods handling unstructured polyhedral meshes. For instance, such
meshes appear in the basin modeling where mesh cells have to approximate sophisticated
geological structures. Other examples come from applications using adaptive mesh
refinement algorithms or non-matching meshes where some of the mesh elements are
degenerate and even non-convex polyhedra.

The mimetic finite difference discretization has been successfully employed for solving
problems of continuum mechanics [14], electromagnetics [8], gas dynamics [5], and linear
diffusion on simplicial and polygonal meshes in both the Cartesian and polar coordinates
[7, 9, 10, 13, 16]. The family of mimetic discretizations contains the classical mixed finite
element discretizations (on tetrahedral and hexahedral meshes) [17] and the symmetric
version [3] of multi-point flux approximation methods [1].

The discretization methodology is based on the support operator approach (see [7]
and references therein). According to this approach, the constructed discrete opera-
tors have to preserve critical properties of the original continuous differential operators.
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Conservation law, solution symmetries and relationships between differential operators
are examples of such properties. For the linear diffusion problem, this means that the
mimetic discretization mimics (a) the Gauss divergence theorem to enforce the local
conservation law, (b) the symmetry between the gradient and divergence operators,
G = DIV ∗, to guarantee symmetry and positivity of the discrete operator DIV G, and
(c) the null spaces of the involved operators to prove stability of the discretization.

In this paper, we consider a general diffusion problem on a conformal polyhedral
partition. The diffusion problem is formulated as a first-order system consisting of the
mass balance equation and the constitutive equation describing the relationship between
the vector unknown (flux) and the scalar unknown (pressure). The later equation is
known as the Darcy law in porous media applications. We assume that the material
properties are described by a 3 × 3 full tensor.

The discretization methodology employes the divide and conquer principle. First,
we consider each mesh polyhedron as a separate domain and construct an independent
discretization for this polyhedron. If the polyhedron has flat faces and the diffusion
tensor is constant, this discretization will be exact for linear pressures. Second, the
system of element-based discretizations is closed by imposing continuity and boundary
conditions on polyhedron faces for pressure unknowns and normal flux components.

For sufficiently smooth solutions, it was proved in [4] that the mimetic discretization
is second order accurate for the pressure unknown on unstructured polyhedral meshes
having degenerate and non-convex polyhedra with flat faces. In this paper, we extend
the analysis to meshes with more general polyhedra. If the faces of a polyhedron are
not flat, we shall refer to them as curved faces. We show with numerical experiments
that the optimal convergence rates are held for polyhedral meshes with slightly curved
faces. More specifically, the deviation from a flat face should be of order h2 where h
is the local mesh size. In the case of meshes with strongly curved faces (see Section
6.3), we show that more than one flux unknown per curved face is required to get the
optimal convergence rate. To the best of our knowledge, there is no locally conservative
discretization method which uses 1 flux unknown per mesh face, 1 pressure unknown
per mesh element and converges on randomly perturbed meshes.

More than one flux unknown per mesh face is also used in the multi-point flux ap-
proximation method (see e.g. [1, 15]). However, the method results in the discretization
scheme with a non-symmetric coefficient matrix whose positivity has not been proved
yet. The recently proposed mimetic finite element method [11, 12] on polyhedral meshes
is close to our method, but its convergence on randomly perturbed meshes has not been
studied yet. The advantage of our approach is flexibility imbedded in definition of inner
products.

The results obtained in this paper are fundamental extensions of the 2D results
presented in [10]. In particular, we address new issues related to curved mesh faces and
propose a new algorithm for computing interior fluxes through boundary fluxes.

The paper is organized as follows. In Section 2, we formulate the general diffusion
problem. In Section 3.1, we describe the local support operator approach and build the
mimetic discretization over a single mesh polyhedron. In Section 3.2, we impose interface
conditions and determine how the boundary conditions are involved in the discretization.
In Section 4, we derive the inner product in the space of fluxes. The solution algorithm
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is described in Section 5. The accuracy and robustness of our discretization method are
analyzed numerically in Section 6.

2 Problem formulation

Let us consider the 3D linear diffusion equation

− div
(

K grad p
)

+ c p = Q in Ω, (2.1)

where p is an unknown scalar function that we refer to as the pressure, K = K(x) is
a full diffusion tensor, c(x) is a nonnegative function, Q(x) is a source function, and
Ω ⊂ R3 is a bounded domain. We assume that K is a symmetric, bounded uniformly
positive definite matrix, i.e.

α1

(

ξ, ξ
)

≤
(

K(x) ξ, ξ
)

≤ α2

(

ξ, ξ
)

, ∀ ξ ∈ R3, ∀x ∈ Ω,

with a positive constants α1 and α2 independent of x and ξ. We assume that the domain
boundary ∂Ω is partitioned into two non overlapping sets ΓD and ΓR such that ΓD is a
closed set and the closure of ΓD ∪ ΓR is equal to ∂Ω.

Equation (2.1) is complemented with two boundary conditions

p = gD on ΓD,
(

K grad p
)

· n + σ p = gR on ΓR,
(2.2)

where n is the outward unit normal vector to ΓR, σ(x) is a nonnegative function, and
gD and gR are given functions. We also assume that the data are smooth enough so that
problem (2.1)-(2.2) has a unique solution [6].

We replace the second order problem (2.1) by an equivalent system of first-order
equations:

F + K grad p = 0 in Ω,

div F + c p = Q in Ω,
(2.3)

where F denotes a vector-valued function that we refer as the flux.
Let Ωh be a non-overlapping conformal partition of Ω into polyhedral elements ei:

Ωh =

N
⋃

i=1

ei.

The element ei is a closed simply-connected ”generalized” polyhedron. In particular, ei

may be a non-convex polyhedron or may have 2D angles equal to π. However, we assume
that there are no zero 2D angles. The conformal partition implies that closures of any
two elements have either a common vertex, or a common whole edge, or a common
whole face, or do not intersect.

A curved (non-planar) face of a ”generalized” polyhedron is defined by a set of or-
dered vertices in 3D which makes its precise definition a non-trivial task. We assume
that there exists a one-to-one map which transforms the curved face to a regular (flat)
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polygon. Many production codes using polyhedral meshes specify this map by approx-
imating the curved face with a piecewise linear surface. In this paper, we employ the
same approach. First, we define an arbitrary point and call it the center of the curved
face. Second, we connect this point with vertices of the curved face to get a triangular
piecewise linear surface which we still refer to as the curved face.

It is obvious to require that the curved faces defined by the piecewise linear surfaces
do not overlap and result in the valid mesh. In numerical experiments, we use the
geometric center as the face center and perform a few checks of mesh validity.

Later, we use notation of a polyhedron center. In general, the center of polyhedron e
can be an arbitrary point inside e. However, to simplify the presentation, we assume that
this point is the center of mass of e. We shall also refer to a ”generalized” polyhedron
simply as a polyhedron.

3 Mimetic finite difference method

Let us integrate the mass balance equation (the second equation in (2.3)) over arbitrary
polyhedron e. The Gauss divergence theorem gives

∑

A∈∂E

∫

A

F · n dA +

∫

e

c p dV =

∫

e

Q dV.

It implies that one of the natural choices for the discrete unknowns are the normal
components of the flux averaged over the polyhedron faces and the pressure averaged
over the polyhedron. The mimetic finite difference method uses these unknowns to
discretize the constitutive equation (the first equation in (2.3)) and to preserve the
essential properties of system (2.3). In order to formulate these properties, we introduce
the generalized gradient, G, and the divergence, D, operators:

G p = −Kgrad p and DF =

{

div F on e,
−F · n on ∂e.

(3.1)

For simplicity, we shall refer to the generalized gradient operator as the flux operator.
Let us define the following inner products:

(F, H)X =

∫

e

F · K−1H dV and (p, q)Q =

∫

e

pq dV +

∫

∂e

pq dA.

Then, the Gauss-Green theorem,
∫

e

F · grad p dV +

∫

e

p div F dV =

∫

∂e

pF · ndA,

gives us the following relationship between the generalized gradient and divergence op-
erators:

(F, G p)X = (DF, p)Q.

The last expression clearly states that these operators are adjoint to each other:

G = D∗.

We show in the next section that the mimetic discretization preserves this property.
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3.1 Discretization on element

In this section, we describe the mimetic discretization over the polyhedron e. First,
we introduce vector spaces of discrete functions and inner products on them. Then,
we construct the discrete generalized divergence operator and derive the discrete flux
operator as the adjoint to it.

We begin by specifying the degrees of freedom for physical variables p and F and
their location. The scalar unknowns are defined at the polyhedron center, p0, and at
the centers of its faces, p1, p2, . . . , ps, where s is the number of polyhedron faces. We
denote the vector space of discrete pressure functions ~p = (p0, p1, . . . , ps)T as Qh. The
dimension of Qh is equal to s + 1. The inner product on this space is given by

(~p, ~q)Qh
= p0 |Ve| +

s
∑

k=1

pkqk|Ak|, ∀~p, ~q ∈ Qh,

where |Ve| is the volume of e and |Ak| is the area of the k-th face. It is not difficult
to determine the relationship between this inner product and the standard dot product
< ·, · > on the Euclidean space Rs+1:

(~p, ~q)Qh
= < L~p, ~q >, L = diag {|Ve|, |A

1|, . . . , |As|}.

The vector unknowns are defined as the face-normal components, f 1, f 2, . . . , f s, lo-
cated at centers of polyhedron faces (see Fig. 1). For instance, f 1 approximates the dot

product of F with the outward unit normal n1. Let ~f = (f 1, f 2 . . . f s)T be a vector of
these face-normal components. We denote a discrete space containing such vectors as
Xh. The dimension of this space is equal to s. The inner product on Xh is defined as
follows:

(~f, ~g)Xh
= < M ~f, ~g >, ∀~f, ~g ∈ Xh,

where M ∈ Rs×s is a symmetric positive-definite matrix. The choice of the matrix
M is crucial and one of the most difficult problems in the support operator approach.
In particular, this inner product has to approximate the continuous one with sufficient
accuracy. In the next section, we present an algorithm for constructing a suitable matrix
M .

Now, we specify the discrete extended divergence operator. Based on the Gauss
divergence theorem,

∫

e

div F dV =

∫

∂e

F · n dA,

and definition of discrete unknowns, we define the discrete divergence operator,

DIV h ~f ≡
1

|Ve|

s
∑

k=1

fk|Ak|, (3.2)

and the generalized discrete divergence operator:

Dh ~f ≡ (DIV h ~f,−f 1,−f 2, . . . ,−f s)T . (3.3)
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Figure 1: Two possible elements and the normals to their faces.

Finally we derive the discrete flux operator Gh which is adjoint to Dh with respect
to the inner products defined on spaces Xh and Qh:

(~f, Gh~p)Xh
= (~p, Dh ~f)Qh

, ∀~p ∈ Qh, ∀~f ∈ Xh. (3.4)

Since vector ~f is arbitrary, formula (3.4) implies that

Gh~p = M−1L̂







p0 − p1

...
p0 − ps






, L̂ = diag {|A1|, . . . , |As|}. (3.5)

It is pertinent to note that one of the important properties of the continuous flux
operator is that grad p = 0 if and only if p is a constant function. It is highly desirable
to have the same property for the null space of the discrete flux operator. Indeed, if a
high-frequency mode enters the null space of the discrete gradient operator, a special
procedure for filtering noise from the solution will be required. Since M is the positive
definite matrix, the null space of G contains only constant vectors.

The definitions of the discrete divergence and gradient operators result in the fol-
lowing local equations:

~f = Gh~p,

DIV h ~f + ce p0 = Qe,
(3.6)

where

Qe =
1

|Ve|

∫

e

Q(x) dV and ce =
1

|Ve|

∫

e

c(x) dV.

3.2 Interface conditions

The system of discrete equations (3.6) is closed by imposing continuity conditions on
mesh faces for primary variables p and F. Hereafter, we shall use the subscript i for
vectors, matrices and inner products which are associated with the polyhedron ei and
the superscript k for polyhedron faces. For instance, |Ak

i | is the area of the k-th faces
of ei. The corresponding pressure variable located on that face is pk

i and the normal
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component of the flux is f k
i . For the continuous problem (2.3), we have continuity of the

pressure and of the normal component of the flux across mesh faces. For the discrete
problem, it means that:

fk1

i1
= −f k2

i2
and pk1

i1
= pk2

i2
(3.7)

if polyhedron ei1 shares its k1-th face with the k2-th face of polyhedron ei2 .
Furthermore, we determine how the boundary conditions are involved in the mimetic

discretization. If the k-th face of the polyhedron ei belongs to ΓD, then the corresponding
pressure unknown, pk

i , is equal to:

pk
i =

1

|Ak
i |

∫

Ak

i

gD(x) dA. (3.8)

If this face belongs to ΓN , then pk
i and f k

i satisfy to the following relations:

−f k
i + σk

i pk
i =

1

|Ak
i |

∫

Ak

i

gR(x) dA where σk
i =

1

|Ak
i |

∫

Ak

i

σ(x) dA. (3.9)

4 Scalar product in the discrete flux space

In this section we derive the inner product in the space of fluxes for a polyhedron e.
The derivation is based on a partition of e into tetrahedra. Note that this partition is
obviously not unique.

We described in Section 2, how to split the curved face into triangles. Now, connect-
ing the polyhedron center with vertices of these triangles, we get one possible decompo-
sition of e into tetrahedra. An example of such a partition is shown in Fig. 2.

Figure 2: The partition of a polyhedron into tetrahedra.

To construct an inner product over a polyhedron, we use an accurate inner product
over a tetrahedron [7]. We assume the medium in each tetrahedron is homogeneous but
material properties (diffusion tensor) may vary between tetrahedra.
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4.1 Derivation of the inner product over a tetrahedron

Consider a single tetrahedron ∆. Note, that the whole flux (a 3D vector) can be re-
covered at each vertex of ∆ from three normal components associated with three adja-
cent triangles. We denote the recovered vectors by Fk where k is the vertex number,
k = 1, . . . , 4. Suppose that the k-th vertex belongs to the faces with indices i1, i2, i3.
Then, the vector Fk can be recovered using the corresponding face-normal components
f i1, f i2 and f i3 . Let nik = (nik

x , nik
y , nik

z ) be the unit outer normal to the ik-th face. Then,

Fk =





ni1
x ni1

y ni1
z

ni2
x ni2

y ni2
z

ni3
x ni3

y ni3
z





−1



f i1

f i2

f i3



 .

With the recovered vectors, the continuous inner product can be approximated as
follows:

∫

∆

K−1F · H dV ≈
|V∆|

4

4
∑

k=1

K−1
∆ Fk · Hk, (4.1)

where |V∆| is the volume of the tetrahedron ∆ and K∆ is the value of the diffusion tensor
at the center of mass of ∆. This approximation is obviously exact for constant fluxes
and constant tensors. The right hand side of formula (4.1) can be written as follows:

|V∆|

4

4
∑

k=1

K−1
∆ Fk · Hk =< M∆

~f, ~h >, (4.2)

where ~f = (f 1, f 2, f 3, f 4)T , ~h = (h1, h2, h3, h4)T , M∆ is a 4 × 4 symmetric positive
definite matrix and < ·, · > is the standard dot product on the Euclidean space R4.

4.2 Derivation of the inner product over a polyhedron

According to the procedure described above the polyhedron e can be partitioned into
t non-overlapping tetrahedra, ∆l, l = 1 . . . t. On each triangular face of this partition,
we define a unit normal vector in such a way that on the face belonging to ∂e the nor-
mal vector is outer. Moreover, we temporary introduce additional unknowns, normal
components of the flux associated with these normal vectors. Let ~f int be the vector of
auxiliary unknowns located on the internal faces (with respect to the polyhedron bound-

ary) and ~f ext be the vector of auxiliary unknowns located on the remaining triangular

faces. The dimension of vectors ~f int and ~f ext is denoted by ni and ne. Note that the
current partitioning procedure gives ni = 3t/2 and ne = t.

Furthermore, let ~fl ∈ R4 be the vector of normal components of the flux associated
with the faces of a tetrahedron ∆l. In this section, we shall use the subscript l for the
vectors associated with the tetrahedron ∆l and the superscript i for their components.

Let
~̂
f = (~f ext, ~f int). Using the above notation, we write the inner product over the

polyhedron e as sum of the inner products over tetrahedra ∆l:

< M̂
~̂
f,

~̂
h >=

t
∑

l=1

< M∆l

~fl,~hl >, (4.3)
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where M∆l
∈ R4×4 is defined in (4.2) and M̂ is a symmetric positive definite matrix

obtained by the standard assembling of matrices M∆l
, l = 1 . . . t. This statement follows

from the fact that the matrices M∆l
are symmetric positive definite and the matrix M̂

is irreducible.
Our goal is to derive a discretization scheme using only one flux unknown per mesh

face. Thus, we have to eliminate the temporary unknowns in favor of the original
unknowns f 1, f 2, . . . , f s. The unknowns ~f ext can be eliminated by setting them equal
to the corresponding unknowns associated with the polyhedron faces. In other words,
f i

l = f k if the i-th face of ∆l is a part of to the k-th face of e. In matrix form, this
relation can be written as follows:

~f ext = Bext
~f (4.4)

where Bext is a matrix whose non-zero entries are equal to 1.
The unknowns ~f int can be eliminated by requiring that the divergence over each

tetrahedron is equal to the divergence over the polyhedron:

DIV h
l

~fl = DIV h ~f, l = 1 . . . t. (4.5)

The definition of the discrete divergence operator (3.2) results in the following system
of linear equations:

1

|V∆l
|

4
∑

i=1

αi
l|A

i
l|f

i
l =

1

|Ve|

s
∑

k=1

|Ak|fk, l = 1, . . . , t (4.6)

where |Ai
l| is area of the i-th face of ∆l, αi

l = 1 if the normal defined on this face is the
exterior normal for ∆l and αi

l = −1 otherwise.
It is easy to show that this system of equations is linearly dependent. To make it

linearly independent, we exclude one of these equations and consider a system of t − 1
equations. Using (4.4), the reduced system can be written as follows:

Bi
~f int = Be

~f, (4.7)

where Bi ∈ R(t−1)×ni and Be ∈ R(t−1)‘×s. The compatibility of this system is analyzed
in the following lemma:

Lemma 4.1 The system (4.7) has a solution ~f int for any vector ~f .

The proof follows the proof of a similar result in [10]. In particular, it may be
shown that the solution is not unique. To guarantee uniqueness, we impose one addi-
tional constraint; namely that the vector ~f int is a solution of the following minimization
problem:

min
~f int

1

2
< M̂

~̂
f,

~̂
f > subject to Bi

~f int = Be
~f. (4.8)

The matrix M̂ can be represented in block form following the partition of vector
~̂
f

into vectors ~f int and ~f ext:

M̂ =

(

M̂11 M̂12

M̂21 M̂22

)

. (4.9)
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Since M̂ is the symmetric matrix and the terms not involving ~f int do not affect the
minimizer of problem (4.8), we get the following problem:

min
~f int

[

1

2
< M̂11

~f int, ~f int > + < M̂12Bext
~f, ~f int >

]

s.t. Bi
~f int = Be

~f. (4.10)

Lemma 4.2 The minimization problem (4.10) has the unique solution ~f int for any vec-

tor ~f :
~f int = Bint

~f,

where

Bint ≡ M̂−1
11

(

−M̂12Bext + Bi

[

BiM̂
−1
11 BT

i

]−1 [

Be + BiM̂
−1
11 M̂12Bext

]

)

.

Proof. The constrained minimization problem can be written, using a Lagrange mul-
tiplier ~λ, as follows:

[

M̂11 −BT
i

Bi 0

]

[

~f int

~λ

]

=

[

−M̂12Bext
~f

Be
~f

]

. (4.11)

Solving the first set of equations for ~f int, we get

~f int = M̂−1
11 (−M̂12Bext

~f + BT
i
~λ).

This result can be substituted into the second set of equations which can be solved for
~λ to produce

~λ =
[

BiM̂
−1
11 BT

i

]−1 [

Be + BiM̂
−1
11 M̂12Bext

]

~f.

Substituting this result into the formula for ~f int, we prove the assertion of the lemma.�

Using (4.4) and Lemma 4.2, we may rewrite the inner product (4.3) as follows:

< M ~f, ~h > ≡

〈

(

M̂11 M̂12

M̂21 M̂22

)

(

Bint
~f

Bext
~f

)

,

(

Bint
~h

Bext
~h

)〉

.

It is obvious that M is a symmetric positive definite matrix. Indeed, it is the
restriction of the symmetric positive definite matrix M̂ to the subspace of vectors
(Bint

~h, Bext
~h)T . Thus, it may be used to generate the inner product on Xh. The explicit

formula for matrix M is as follows:

M = B̂T
extM̂22Bext + BT

intM̂11Bint + BT
extM̂21Bint + BT

intM̂12Bext.
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5 Solution algorithm

Let us collect the face-based flux unknowns and cell-centered pressure unknowns into
two global vectors

~fA = (~fT
1 , ~fT

2 , . . . , ~fT
N)T , and ~p0 = (p0

1, p
0
2, . . . , p

0
N)T ,

respectively. Taking into account continuity conditions (3.7), we collect unique face-
based pressure unknowns into a global vector ~pA. The size of this vector is equal to the
number of mesh faces.

Then, the system of discrete equations (3.6), flux continuity conditions (3.7), and
boundary conditions (3.8) and (3.9) can be written in the matrix form:

A





~fA

~p0

~pA



 =





~gD

~Q0

~gR



 , (5.1)

with the saddle point matrix

A =





M B C
BT −D 0
CT 0 −Σ



 ,

where

M =







M1 0
. . .

0 MN







is the block diagonal matrix with symmetric positive definite blocks on the diagonal, D
is the diagonal positive definite or semi-definite matrix and Σ is the diagonal positive
semi-definite matrix.

Lemma 5.1 Using O(N) arithmetical operations the system (5.1) can be transformed
into the following system:

S~pA = ~hA, (5.2)

where
S = CT M−1C − CT M−1CB(BT M−1B + D)−1BT M−1C + Σ

is the symmetric matrix and

~hA = CT M−1~gD − CT M−1B(BT M−1B + D)−1( ~Q0 + BT M−1~gD) − ~gR.

Proof. It is pertinent to note that the primary variables ~fi and p0
i i = 1, . . .N are only

connected within a single polyhedron. So we can easily exclude the unknowns:

~fA = M−1(~gD − C~pA − B~p0) (5.3)

and
~p0 = (BT M−1B + D)−1(~gD − C~pA − B~p0). (5.4)

11



The structure of matrices M , B and D implies that matrix BT M−1B+D is diagonal
and so it is easily invertible. This implies optimal arithmetical complexity. The other
assertions of the lemma follow by substituting (5.3) and (5.4) in the last equation of
system (5.1). �

The matrix S is positive definite except the case of the Neumann boundary condition
on ∂Ω when it is positive semi-definite. Thus, we can apply a preconditioned conjugate
gradient (PCG) method for solving system (5.2). After that, the primary unknowns ~p0

and ~fA can be recovered locally, element-by-element.
The matrix A has a very useful representation, namely

A =
N
∑

i=1

NiAiN
T
i ,

where

Ai =





Mi Bi Ci

BT
i −Di 0

CT
i 0 −Σi



 (5.5)

is the local saddle point matrix for the polyhedron ei and Ni is the corresponding
assembling matrix. To show the important properties of matrices Mi, Bi and Ci and
Di, we consider an internal polyhedron ei, i.e. ei ∩ ∂Ωh = ∅. In this case Mi is a
symmetric positive definite matrix,

Bi =
(

−|A1
i |,−|A2

i |, . . . ,−|Asi

i |
)T

, Ci = diag
{

|A1
i |, |A

2
i |, . . . , |A

si

i |
}

and Di = ci |Vei
|.

6 Numerical experiments

In this section, we present computational results which demonstrate accuracy of the
mimetic discretization, its flexibility, and efficiency of the solution method.

6.1 Implementation issues

To solve system (5.2) we apply the PCG method with the algebraic multigrid precondi-
tioner discussed in [18]. This method is applicable to arbitrary matrix stencils; however,
its theoretical justification is limited to M-matrices.

We investigate the convergence of pressure unknowns in the following norms:

εp
∞ = max

1≤i≤N

∣

∣pex
i − p0

i

∣

∣ and εp
2 =

[

N
∑

i=1

(

pex
i − p0

i

)2
|Vei

|

]1/2

,

where pex
i is the exact pressure value at the center of mass of the polyhedron ei.

For the flux unknowns, we use two similar norms:

εf
∞ = max

1≤i≤N
‖~f ex

i − ~fi‖∞ and εf
2 =

[

N
∑

i=1

< Mi (~f ex
i − ~fi), (~f ex

i − ~fi) >

]1/2

,
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where the components of vector ~f ex
i are normal components of the exact flux averaged

over the faces of polyhedron ei and ‖ · ‖∞ is the maximal norm in the Euclidean space.
Note that εp

2 and εf
2 are mesh norms equivalent to L2-norms in the corresponding con-

tinuous spaces.

6.2 Smooth meshes

In the first group of numerical tests, we investigate the accuracy of the mimetic dis-
cretization on smooth meshes. As the example of a smooth mesh, we consider the mesh
obtained by a smooth (C2-regular) mapping of a uniform cubic mesh. Let us consider
a uniform partition of the unit cube [0, 1]3 and the following mapping:





x̃
ỹ
z̃



 =





x
y
z



+ 0.1





1
1
1



 sin(2πx)sin(2πy)sin(2πz). (6.1)

Since the Jacobian of this mapping is positive, the resulting smooth mesh, Ωh, does
not contain degenerate polyhedra. Note that most of the mesh faces are curved, so the
convergence theory developed in [4] can not be applied here. However, the deviation
from flat faces is of order h2 which is typical for smooth meshes. An example of Ωh

is presented in Fig. 3 where we show the internal mesh structure. We visualize the
polyhedra whose centers are inside domain (0, 1)3 \ [0.25, 1]3.

Figure 3: An example of a smooth mesh.

Now, we consider a diffusion problem of type (2.1), with a non-homogeneous Dirichlet
boundary condition on ∂Ω. Let c(x) ≡ 0, K(x) ≡ 1 and the exact solution be

pex(x, y, z) = x2y3z + 3x sin(yz).

The convergence results are shown in Table 1 where h denotes the size of a cubic
cell in the original uniform partition of the computational domain. We use a linear
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regression algorithm to estimate convergence rates. The decrease in both errors ε2
p and

ε2
f approaches the optimal rate which is 2. This is clear when looking at the errors in

rows corresponding to 1/h = 32 and 1/h = 64.

1/h εp
∞ εp

2 εf
∞ εf

2

8 1.037e-2 2.250e-3 1.873e-1 4.053e-2
16 5.017e-3 7.483e-4 7.211e-2 1.089e-2
32 1.669e-3 2.027e-4 2.191e-2 2.707e-3
64 4.753e-4 5.177e-5 5.987e-3 6.628e-4

rate 1.49 1.82 1.66 1.98

Table 1: Discretization errors on smooth meshes for K = 1.

Now we change the setup of the previous experiment in order to analyze the influence
of a full diffusion tensor on the convergence rates. Let K be as follows:

K(x, y, z) =





y2 + z2 + 1 xy xz
xy x2 + z2 + 1 yz
xz yz x2 + y2 + 1



 . (6.2)

This tensor is symmetric and positive definite for arbitrary x. The exact solution and
the meshes are as in the previous experiment. The convergence results are presented
in Table 2. Again, the decrease in both errors εp

2 and εf
2 approaches the optimal rate.

We observed in many other experiments that the full diffusion tensor does not affect
asymptotic convergence rates.

1/h εp
∞ εp

2 εf
∞ εf

2

8 2.059e-2 4.359e-3 8.974e-1 1.011e-1
16 5.552e-3 1.129e-3 3.008e-1 2.826e-2
32 1.402e-3 2.875e-4 8.572e-2 7.278e-3
64 3.514e-4 7.229e-5 2.999e-2 1.821e-3

rate 1.96 1.97 1.65 1.93

Table 2: Discretization errors on smooth meshes for the full tensor K.

6.3 Randomly perturbed meshes

The next set of tests addresses the convergence of the mimetic discretization on randomly
perturbed meshes. Such a mesh is obtained by random distortion of positions of mesh
points in a uniform cubic mesh. The new positions are determined by the following
formulas:

x̃ = x + ξxh, ỹ = y + ξyh, z̃ = z + ξzh

where ξx, ξy, ξz are random numbers between −0.3 and 0.3 and h is the mesh step size. In
other words each mesh point is randomly moved in a cube of size 0.6h which is centered
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at the point and whose edges are aligned with the coordinate axes. It is pertinent to note
that in many publications related to convergence of discrete methods on general meshes,
the authors consider a sequence of meshes obtained by uniform refinement of a coarse
randomly perturbed mesh. In this case, the mimetic discretization results in optimal
convergence rates. Sequences of true randomly perturbed meshes are more general and
more difficult for convergence analysis.

Applying the distortion described above, we obtain polyhedra with strongly curved
faces. To the best of our knowledge, there is no locally conservative discretization
method which uses one flux unknown per mesh face, one pressure unknown per mesh
element and converges on randomly perturbed meshes (see also Table 3). Therefore,
we propose to use more than one flux unknown per strongly curved face. We use our
definition of a curved face to replace it with a set of triangular facets. As shown in
Fig. 4, a distorted cube is transformed into a polyhedron with 24 planar triangular
faces. Finally, approximating all curved faces, we obtain a mesh like one shown in
Fig. 5. The mimetic discretization described above will use one flux unknown per each
triangular face and one pressure unknown per each 24-face polyhedron. With respect to
the original hexahedral mesh, we shall refer to this discretization as the discretization
with 4 flux unknowns per mesh face.

Figure 4: Transformation of a cube to a polyhedron with 24 planar faces.

We consider the same diffusion problem as in the previous set of experiments. The
computational results are shown in Tables 3 and 4. For the case of 4 flux unknowns
per mesh face, the convergence rates are close to optimal. Note that there is no super-
convergence results for the flux variable on randomly perturbed meshes. With only one
flux unknown per curved face, we lose convergence for both pressure and flux variables
(see Table 3).

6.4 Meshes with irregular-shaped polyhedra

In this subsection, we analyze convergence rate and robustness of the mimetic dis-
cretization on meshes with irregular-shaped elements. Following the analysis in [10], we
anticipate that in most practically important cases, the irregular-shaped elements will
not present computational problems.
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Figure 5: An example of a randomly perturbed mesh.

1/h εp
∞ εp

2 εf
∞ εf

2

8 4.121e-2 1.115e-2 2.993e-0 3.132e-1
16 2.165e-2 6.861e-3 2.803e-0 2.297e-1
32 1.829e-2 5.756e-3 4.242e-0 2.112e-1
64 1.750e-2 5.504e-3 4.544e-0 2.094e-1

Table 3: Discretization errors on randomly perturbed meshes using 1 flux unknown per
curved face.

Let us modify the uniform cubic partition of Ω = (0, 1)3 with mesh step size h in such
a way that irregular-shaped polyhedra appear. We assume that a mesh point with the
logical coordinates (i, j, k) has the physical coordinates (ih, jh, kh), i, j, k = 0, . . . 1/h.
Let us introduce a distortion parameter α ∈ [0, 0.5] such that the smaller values of α
correspond to elements with less shape regularity. Then, for all odd i and k and for any
j the coordinates of point (ih, jh, kh) are changed to (ih − αh, jh, kh − (1 − α)h).
The example of such a modification is shown in Fig. 6.

As we can see in Fig. 6, the neighboring polyhedra have a common face with relatively
small area. Moreover, the left polyhedron has two faces with 2D angle between them

1/h εp
∞ εp

2 εf
∞ εf

2

8 1.160e-2 2.844e-3 7.957e-1 9.861e-2
16 3.088e-3 7.140e-4 6.000e-1 4.537e-2
32 1.068e-3 1.790e-4 3.494e-1 2.246e-2

rate 1.72 1.99 0.59 1.07

Table 4: Discretization errors on randomly perturbed meshes using 4 flux unknowns per
curved face.
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Figure 6: The mesh with irregular-shaped polyhedra (left) and two typical neighboring
elements.

equal to π.
We consider the same diffusion problem as in the previous set of experiments. But

now we investigate the dependence of convergence rates on shape regularity of mesh
elements. The computational results are presented in Table 5 where σ is the ratio of
the maximal face area to the minimal one. Thus, σ = ∞ means that a hexahedron is
transformed into a pentahedron.

1/h εp
2 εf

2

α = 0.1 α = 0.01 α = 0.0 α = 0.1 α = 0.01 α = 0.0
σ = 700 σ = 7000 σ = ∞ σ = 700 σ = 7000 σ = ∞

8 5.386e-3 5.858e-3 5.944e-3 1.280e-1 1.459e-1 1.495e-1
16 1.358e-3 1.484e-3 1.506e-3 6.101e-2 6.974e-2 7.159e-2
32 3.407e-4 3.731e-4 3.789e-4 2.982e-2 3.407e-2 3.501e-2
64 8.528e-5 9.353e-5 9.497e-5 1.474e-2 1.683e-2 1.731e-2

rate 1.99 1.99 1.99 1.04 1.04 1.04

Table 5: Discretization errors on meshes with irregular-shaped polyhedra.

The numerical results presented in Table 5 verify that decrease of shape regularity
of mesh elements does not affect convergence of the mimetic discretization.

6.5 Non-matching meshes

In the next group of numerical tests, we consider non-matching cubic meshes. Let
Ω1 = (0, 1)3, Ω2 = (1, 2) × (0, 1)2 and Ω = Ω1 ∪ Ω2. We consider the same diffusion
problem as in the previous experiment, only now in the bigger domain.
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Let Ω1,h and Ω2,h be uniform cubic meshes with mesh sizes h1 and h2, respectively.
In order to obtain the conformal partition of Ω, we introduce additional faces and edges
on the non-matching interface. One example of a conformal partition of Ω and the
modified interface between subdomains Ω1 and Ω2 are shown in Fig. 7.

Figure 7: An example of non-matching meshes with h1 = 1/5 and h2 = 1/7.

In the case of non-matching meshes, the interface elements have many more faces
then other mesh elements and their shape regularity may be very poor. For example,
one of the interface polyhedra shown in Fig. 7 has 14 face. However, it was shown in
the previous subsection that the presence of degenerate elements does not affect the
rate of convergence. The numerical results presented in Table 6 once again confirm this
statement. The superconvergence rate of 1.5 for the flux variable is observed in other
lower order discretization methods, e.g., in the mortar finite element method with the
lowest order Raviart-Thomas elements [2].

1/h1 1/h2 εp
∞ εp

2 εf
∞ εf

2

7 5 1.126e-3 1.604e-4 4.61e-2 3.5029e-3
14 10 3.206e-4 4.078e-5 3.232e-2 1.144e-3
28 20 8.627e-5 1.025e-5 2.142e-2 3.837e-4

rate 1.853 1.983 0.552 1.595

Table 6: Discretization errors on non-matching meshes

6.6 Flow through a system containing an impermeable pipe

Let us consider the unit cube Ω = (0, 1)3 and a pipe imbedded in it. We assume that
the pipe profile in any yz-plane is a circle with constant radius r. The circle centers
form a curve φ(t) : {x = x(t), y = y(t), z = z(t)} whose starting and ending points are
in the planes x = 0 and x = 1, respectively. This problem was selected to demonstrate
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capability of the mimetic discretization to produce qualitatively accurate results. Since
the problem does not have an analytical solution, it is extremely difficult to quantify
accuracy of the result.

Let us consider a uniform cubic partition of Ω. We modify this partition in such a
way that the faces of the new partition, Ωh, approximate the pipe surface. In order to
do so, we use an algorithm for building locally fitted meshes. Since the resulting mesh
may have degenerate and non-convex elements, we use the following simple algorithm:
if the pipe surface intersects a cubic element and the center of mass of this element is
inside the pipe than the element vertices located outside the pipe are moved to the pipe
surface. Otherwise, if the center of mass is outside the pipe then the element vertices
located inside the pipe are moved to the pipe surface. The points are moved only in
yz-planes. An example of a locally fitted mesh is shown in Fig. 8.

Figure 8: A cut of the original and locally fitted meshes by a yz-plane.

Now, we consider the diffusion equation (2.1) with c(x) ≡ 0 and Q(x) ≡ 0. We
impose the non-homogeneous Dirichlet boundary condition gD(x) = 1 on the plane
x = 0, the homogeneous Dirichlet boundary condition on the plane x = 1 and the
homogeneous Neumann boundary condition on the remaining part of ∂Ω.

The diffusion tensor K is uniform and isotropic everywhere in the computational
domain (K = 1) except in the pipe where it is set such that the component parallel to
the local pipe orientation (k||) is equal to 0.1 and other two components perpendicular
to the pipe orientation (k1

⊥ and k2
⊥) are equals to 0.001. Inside the pipe, K is the full

tensor depending on the space coordinate x. The vector k|| coincides with the tangent
vector t to the curve t → φ(t):

k|| = t = φ(t)′

Vectors k1
⊥ and k2

⊥ coincide with the normal vector n and the binormal vector b to the
curve t → φ(t), respectively:

k1
⊥ = n =

φ(t)′′

|φ(t)′|
and k2

⊥ = b = [t × n].
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Then, the diffusion tensor inside the pipe is calculated by the following formula:

K = T∗





0.1 0 0
0 0.001 0
0 0 0.001



T, T =





tx nx bx

ty ny by

tz nz bz



 .

Fig. 9 displays streamlines of the calculated flux function in the case where φ(t) =
{x = t, y = 0.75 − 0.4t2, z = 0.3}. The locally adapted mesh has both non-convex
and almost degenerate elements. However, none of the streamlines intersects the pipe
boundary.

Figure 9: The streamlines of the calculated flux function.

Acknowledgments

The authors thank Dr. Rao Garimella (LANL) for his assistance in generating poly-
hedral meshes and Prof. Yuri Kuznetsov (University of Houston) for many valuable
comments.

References

[1] I. Aavatsmark. An introduction to multipoint flux approximations for quadrilateral
grids. Comp. Geosciences, 6:405–432, 2002.

[2] T. Arbogast, L. Cowsar, M. Wheeler, and I. Yotov. Mixed finite element methods
on non-matching multiblock grids. SIAM J. Numer. Anal., 37:1295–1315, 2000.

20



[3] T. Austin, J. Morel, J. Moulton, and M. Shashkov. Mimetic preconditioners for
mixed discretizations of the diffusion equation. Technical Report LA-UR-01-807,
Los Alamos National Laboratory, 2004. www.ima.umn.edu/talks/workshops/5-11-
15.2004/moulton/moulton.pdf.

[4] F. Brezzi, K. Lipnikov, and M. Shashkov. Convergence of mimetic finite difference
method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal., 2005.
to appear.

[5] J. Campbell and M. Shashkov. A tensor artificial viscosity using a mimetic finite
difference algorithm. J. Comput. Phys., 172:739–765, 2001.

[6] P. Grisvard. Elliptic Problems in Nonsmooth domains. Pitman, London, 1985.

[7] J. Hyman, J. Morel, M. Shashkov, and S. Steinberg. Mimetic finite difference
methods for diffusion equations. Comp. Geosciences, 6(3-4):333–352, 2002.

[8] J. Hyman and M. Shashkov. Mimetic discretizations for Maxwell’s equations and
the equations of magnetic diffusion. Progress in Electromagnetic Research, 32:89–
121, 2001.

[9] J. Hyman, M. Shashkov, and S. Steinberg. The numerical solution of diffusion
problems in strongly heterogeneous non-isotropic materials. J. Comput. Phys.,
132:130–148, 1997.

[10] Y. Kuznetsov, K. Lipnikov, and M. Shashkov. Mimetic finite difference method on
polygonal meshes for diffusion-type problems. Comp. Geosciences, 2004. in press.

[11] Y. Kuznetsov and S. Repin. New mixed finite element method on polygonal and
polyhedral meshes. Russ. J. Numer. Anal. Math. Modelling, 18(3):261–278, 2003.

[12] Y. Kuznetsov and S. Repin. Convergence analysis and error estimates for mixed
finite element method on distrted meshes. J. Numer. Math., 13(1):33–51, 2005.

[13] K. Lipnikov, J. Morel, and M. Shashkov. Mimetic finite difference methods for
diffusion equations on non-orthogonal non-conformal meshes. J. Comput. Phys.,
199, 2004.

[14] L. Margolin, M. Shashkov, and P. Smolarkiewicz. A discrete operator calculus for
finite difference approximations. Comput. Meth. Appl. Mech. Engrg., 187:365–383,
2000.

[15] I. Mishev. Nonconforming finite volume methods. Comp. Geosciences, 6:253–268,
2002.

[16] J. Morel, R. Roberts, and M. Shashkov. A local support-operators diffusion dis-
cretization scheme for quadrilateral r − z meshes. J. Comput. Phys., 144:17–51,
1998.

21



[17] P. Raviart and J.-M. Thomas. A mixed finite element method for second order
elliptic problems. In I. Galligani and E. Magenes, editors, Mathematical Aspects
of the Finite Element Method, pages 292–315, Berlin-Heilderberg-New York, 1977.
Springer-Verlag.
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