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Abstract

The stability and convergence properties of the mimetic finite difference method for
diffusion-type problems on polyhedral meshes are analyzed. The optimal convergence rates
for the scalar and vector variables in the mixed formulation of the problem are proved.

1 Introduction
The main goal of this paper is to establish the convergence of mimetic discretizations of the first-
order system that describes linear stationary diffusion on general polyhedral meshes. The main
idea of the mimetic finite difference (MFD) method is to mimic the underlying properties of the
original continuum differential operators, e.g. conservation laws, solution symmetries, and the
fundamental identities and theorems of vector and tensor calculus. For the linear diffusion prob-
lem, this means that the mimetic discretizations mimic the Gauss divergence theorem needed
for the local mass conservation, the symmetry between the continuous gradient and divergence
operators needed for proving symmetry and positivity of the resulting discrete operator, and the
null spaces of the involved operators needed for stability of the discretizations.

The MFD method has been successfully employed for solving problems of continuum me-
chanics [18], electromagnetics [13], gas dynamics [7], and linear diffusion on simplicial and
quadrilateral meshes in both the Cartesian and polar coordinates [14, 12, 19, 16]. Recent ad-
vances in extending the mimetic discretizations to general polygonal meshes [15] have inspired
us for developing the rigorous convergence theory for general polygonal and polyhedral meshes.

The polyhedral element appear naturally in reservoir models simulating thinning or tapering
out (”pinching out”) of geological layers. The pinch-outs are modelled with mixed types of mesh
elements, pentahedrons, prisms and tetrahedrons which are frequently obtained by collapsing
some of the elements in a structured hexahedral or prismatic mesh.

Other sources of polyhedral meshes are the adaptive mesh refinement methods. A necessity
to have a conformal mesh results in an abundant mesh refinement, e.g. in the methods using�
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the red-green refinement strategy. However, the locally refined mesh may be considered as the
conformal polyhedral mesh with degenerate elements (for instance, when the angle between two
faces is zero). If we know how to discretize a problem on a general polyhedral mesh, the su-
perfluous mesh refinements can be avoided. A similar argument can be applied to non-matching
meshes which frequently may be treated as conformal polyhedral meshes with degenerate ele-
ments. This is the way followed for instance in [15] for 2D meshes.

Allowing arbitrary shape for a mesh element provides greater flexibility in the mesh gener-
ation process, especially in the regions where the geometry is extremely complex. Even in the
case of an unstructured hexahedral mesh, it may be beneficial to split the curvilinear faces into
triangles in order to use more accurate discretization methods and to get a smaller number of
unknowns relative to a tetrahedral partition. It is obvious that by splitting each face of a hexagon
into 4 triangles we get a 24-face polyhedron which is frequently non-convex.

Some of the simulations in the fluid dynamics indicate that the polyhedral meshes may lead
to superior convergence rates and accuracy relative to tetrahedral meshes. We refer readers to the
CD adapco Group webcite [www.cd-adapco.com/news/18/newsdev.htm] for more detail. The
polyhedral meshes are also used in a number of radiation-hydrodynamics applications [20, 21,
6]. For instance, one of the approaches to increase robustness of arbitrary Lagrangian-Eulerian
simulations is to allow a change of the mesh connectivity which obviously leads to general
polyhedral meshes.

The diffusion-type (elliptic) problems appear in many applications, for instance the tempera-
ture equation in heat diffusion or the pressure equation in flow problems. The necessity to solve
such problems arises in numerical methods for radiation transport coupled with hydrodynamics,
mesh smoothing algorithms, etc. In this paper we consider a diffusion problem formulated as a
system of two first order equations, which is suitable for deriving locally conservative discretiza-
tions.

The mimetic discretizations have demonstrated excellent robustness and accuracy in simu-
lations; however, a rigorous convergence proof has been always lacking. The original approach
to prove the convergence of these discretizations has been based on establishing the relation-
ship between the MFD and mixed finite element methods [2, 3] which is certainly not enough
for many interesting applications. In this paper, we developed a novel technique for proving
convergence estimates which may be applied to the case of meshes consisting of arbitrary types
of elements e.g., tetrahedrons, pyramids, hexahedrons, degenerate polyhedrons, etc. The re-
strictions imposed in Section 2 on the polyhedron shape allow still extremely complex elements
which cover certainly the majority of meshes used in applications.

The paper contents is as follows. In Section 2, we describe the problem under consideration
and the class of polyhedral meshes used in the convergence analysis. In Section 3, we formulate
the mimetic finite difference method. In Section 4, we prove the stability result. In Section
5, we prove the convergence of mimetic discretizations. One of the key elements used in our
technique, the lift property, is discussed in detail in Appendix A.
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2 The assumptions on the problem and on the mesh
Let us consider a model elliptic boundary value problem:	�

�������

(2.1)��������������	! #"
(2.2)

Here
 

denotes a scalar function that we refer to as the pressure,
�

denotes a vector function that
we refer to as the velocity,

�
denotes a full symmetric tensor, and

�
denotes a source function.

The problem is posed in a bounded polyhedral domain $&%�' (�) , and is subject to appropriate
boundary conditions on *+$ . For simplicity, we assume that the homogeneous Dirichlet boundary
conditions are imposed on *+$ . We assume also that

�
satisfies the following regularity and

ellipticity property.

P1 (Regularity and ellipticity of
�

). Every component of
�

is in ,.-/10 $!2 and
�

is strongly
elliptic, implying that there exist two constants 3+4 and 3 4 such that35476�896;:!<=8?> � 0A@ 2B8C<D3 4 6�896 EF8CGH' ( ) E @ GI$ " (2.3)

Let J5K be a non-overlapping conformal partition of $ into polyhedral elements L . For every
element L we denote by MNLOM its volume and by P5Q its diameter. Similarly, for each face R we
denote by MSRTM its area and for every edge U we denote by M UVM its length. We shall use *WL either for
the boundary of L or the union of element faces, according with convenience of the presentation.
We also set as usual P �YX[Z�\Q P�Q "

The elements L are assumed to be closed simply-connected polyhedrons, rather general in
shape (see for instance Figure 2). We need however some basic assumptions of shape regularity.
As we shall see, the assumptions are sometimes formally complicated, but they will hold for
practically all partitions which is not totally unreasonable.

M1 (Assumptions on the domain $ ). We assume that $ is a polyhedron with a Lipschitz
continuous boundary.

M2 (Number of faces and edges). We assume that we have two positive integers ]_^ and ]�`
such that every element L has at most ]a^ faces, and each face R has at most ]b` edges.

M3 (Volumes, areas, and lengths). We assume that there exist three positive constants cd4 , eT4
and fA4 (for volume, area and length, respectively) such that for every element L we havec�4+P )Q <gMNLhMji eT4kPd:Q <gMSRTMji fA4+P�Ql<gM UVM (2.4)

for all faces R and edges U of L .

M4 (Star-shaped faces). We assume that the mesh faces are flat and that there exists a positive
number m�4 such that: For each element L and for each face RnG�*WL there exists a pointo ^pGIR such that R is star-shaped with respect to every point in the disk of center

o ^ and
radius m�4�P�Q .

3



We recall that R is star-shaped with respect to a point q=GrR if every straight ray exiting
from q (in the plane of R ) intersects *kR only once. In what follows we shall often use the
notation s 4 � mT4tP�Q (2.5)

which is illustrated in Fig. 1.

.uwv

Figure 1: A star-shaped face, with the circle of radius
s 4 centered at

o ^ .
M5 (The pyramid property). With the notation of assumption M4, we further assume that for

every L&GlJxK , and for every R_Gy*+L , there exists a pyramid q ^Q contained in L such that
its base equals to R , its height equals to md4+P�Q and the projection of its vertex onto R is

o ^ .
M6 (Star-shaped elements). We assume that there exists a positive number z�4 such that: For

each element L there exists a point
o Q{G{L such that L is star-shaped with respect to

every point in the sphere of center
o Q and radius z|4+P�Q .

As before, we say that L is star-shaped with respect to a point q}GIL if every straight ray
exiting from q intersects *+L only once.

3 Mimetic finite difference method
Let us introduce an operator ~ , ~  l�����n������	� 

, which we refer to as the flux operator. Fur-
thermore, we introduce the following scalar products:0 � i+��2�� �{�T�������H� - � 	x� (3.1)

and 0  i5��2�� � � �� � 	x� (3.2)
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in the space � of velocities and in the space � of pressures, respectively. Using the above
notation, we may rewrite the Green formula������� 0 �H� - ~  2 	x�����T�� �	d

�d�n	x� (3.3)

in the equivalent form: 0 � ik~  2�� � 0  i 	d

�p� 2�� "
The last expression clearly states that the flux and divergence operators are adjoint to each other:~ �Y	d

� 4 "
The mimetic finite difference (MFD) method produces discretizations of these operators which
are adjoint to each other with respect to scalar products in the discrete velocity and pressure
spaces.

The first step of the MFD method is to specify the degrees of freedom for physical variables 
and

�
and their location.

We consider the space ��� of discrete pressures that are constant on each polyhedron L . For� G{�w� we shall denote by ��Q (or by 0 � 2�Q ) its (constant) value on L . The dimension ]�� of�w� will obviously equal the number of polyhedrons in J+K . In what follows, we shall denote by� � either the vector space ' (!�+� or the space of piecewise constant functions, according with
convenience. The identification is obvious and no confusion should arise.

The definition of the space of discrete velocities will require some additional considerations.
To every element L in JxK and to every face R of L we associate a number � ^Q and the vector field� ^Q�� ^Q where � ^Q is the unit normal to R that points outside of L . We clearly make the continuity
assumption that for each face R shared by two polyhedra L - and L : , we have� ^Qd  ��� � ^QT¡ " (3.4)

We denote the vector space of face-based velocity unknowns by �¢� . The number ]b� of our
discrete velocity unknowns will then, in our theory, be equal to the number of boundary faces
plus twice the number of internal faces. In our theoretical discussion, we shall consider �y� as
the subspace of ' ( �+£ which verifies (3.4).

For a discrete velocity field � we will denote by �nQ its restriction to the boundary of L ,
and by ¤ ^Q (or by 0 �hQ¥2 ^ ) the restriction of �hQ � � Q to a face R belonging to the boundary of L .
It will sometimes be convenient to use the notation� �Qy¦ �¨§ restrictions of �H� to the element Lª© " (3.5)

It is clear that, in practice, condition (3.4) will make the number of true independent un-
knowns equal the total number of mesh faces. This means that, in a computer program, we shall
prescribe one direction for the normal to each internal face R , and assign a single unknown ¤ ^ to
each face, assuming that each of the two ¤ ^Q coincides either with ¤ ^ (when the outward normal� Q on R coincides with the prescribed direction) or with

� ¤ ^ (otherwise).
To summarize, one pressure unknown is defined on each polyhedron and the discrete veloc-

ities are defined as face-based normal components. Once we got the degrees of freedom in ���
and in �«� , we can define interpolation operators from the spaces of smooth enough scalar and
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Figure 2: Two possible elements and the normal to their faces.

vector-valued functions to the discrete spaces � � and � � , respectively. To every function q in¬ - 0 $p2 we associate the element �?­ GI�w� defined by0 � ­ 2�Q ¦ � ®MNLhM � Q � 	x� E?L¯G«J5K " (3.6)

Similarly, for every vector-valued function �°G 0 ¬²± 0 $!2[2�) , ³µ´�¶ , with
	d

� �·G ¬ : 0 $!2 , we

define � ­ G¸�¸� by 0 � ­Q 2 ^ ¦ � ®MSRTM � ^ � � � Q 	x¹ EbL¯G«JxK EbR�GH*WL " (3.7)

In the next section, we shall prove that this interpolation operator is well defined and uni-
formly bounded. In what follows, we shall use bold capital letters either for vectors from � � or
for continuous vector functions, according with convenience of the presentation and leaving no
room for confusion.

The second step of the MFD method is to equip the spaces of discrete pressures and velocities
with scalar products. The scalar product on the vector space � � is given byº » i �+¼ �x½ �·¾QW¿ÁÀ;Â  Q��ÁQ²MNLhM E » i � GI� � " (3.8)

In order to define the scalar product in �I� , we first define a scalar product
º � iW� ¼ Q for every

element LÃG«JxK in the following way. Let R - i5R : i "Ä"
" i[RÆÅ�Ç be a numbering of the faces of L (whereÈ Q is clearly the total number of faces). We assume that we are given (for each L ) a symmetric
positive definite

È QyÉ È Q matrix
o QHÊ § o Q+Ë ÌÍË ÎÆ© , and we setº � iW� ¼ Q � Å Ç¾ÌÍË ÎÐÏ - o Q+Ë ÌÍË Î 0 � Q#2 ^ÒÑ 0 �hQ#2 ^ÔÓ E � iW�ÕG«� � E?L¯G«JxK " (3.9)

Some minimal approximation properties for the scalar product (3.9) are required. We shall
see in a while how a suitable matrix

o Q can be constructed. For the time being, we just assume
that the scalar product (3.9) has the following property.

S1 (Stability of
º � i � ¼ Q ). We assume that there exist two constants ³74 and

¹ 4 independent of P
such that, for every �ÕG«� � and for every L¯G«JxK , one has³�4 ¾^�¿|ÖtQ 0 ¤ ^Q 2 : MNLOM�< º �HiW� ¼ Q¯< ¹ 4 ¾^�¿|ÖtQ 0 ¤ ^Q 2 : MNLhM " (3.10)
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From (3.9) we can then easily construct the scalar product in �¢� by settingº � iW� ¼ � ½ �°¾QW¿ÁÀ;Â º � i+� ¼ Q E � i+�×G¸� � " (3.11)

The third step of the MFD method is to derive an approximation to the divergence operator.
The discrete divergence operator, ØbÙÛÚ � ¦ �«�!Ü �w� , naturally arises from the Gauss divergence
theorem as 0 ØbÙÛÚ � � 2�Q � ^ÞÝ� ®MNLOM ¾^�¿�ÖtQ � ^Q MSRTM " (3.12)

We point out that our interpolation operators, in some sense, commute with the divergence op-
erator. Indeed, for every vector field � smooth enough, we can use (3.12), (3.7), the Gauss
divergence theorem, and (3.6) to obtain0 ØbÙ²Ú � � ­ 2�Q � ®MNLOM ¾^�¿|ÖtQ 0 � ­Q 2 ^ MSRTM � ®MNLOM �Ö;Q � � � Q 	x¹�� ®MNLhM �Q 	d

� � 	x�ß� 0 	�

� ��2 ­Q

(3.13)
for every element L in JxK .

The fourth step of the MFD method is to define the discrete flux operator, ~à� ¦ �w�pÜß�«� , as
the adjoint to the discrete divergence operator, ØbÙ²Ú � , with respect to scalar products (3.8) and
(3.11), i.e. º � ix~ � » ¼ � ½ � º » iTØbÙ²Ú � � ¼ � ½ E » GI� � E � G«� � " (3.14)

Using the discrete flux and divergence operators, the continuous problem (2.1), (2.2) is dis-
cretized as follows: ØbÙÛÚ � � � �Yá (3.15)� � � ~ � » � " (3.16)

where
á Ê á ­ is the vector of mean values of the source function

�
.

4 Stability analysis
In this section we analyze the stability of mimetic finite difference discretization (3.15)-(3.16)
using the well-established methodology [5]. More precisely, we prove the coercivity condition
(4.4) and the inf-sup condition (4.5).

Using the discrete Green formula (3.14), we rewrite equations (3.15), (3.16) in a form more
suitable for the analysis:º � � i+� ¼ � ½ � º » � iTØbÙ²Ú � � ¼ � ½ �ãâ Ea�×G¸� � (4.1)º ØbÙ²Ú � � � i �+¼ � ½ � º á i �+¼ � ½ E � GI� � " (4.2)

Let us introduce the following mesh norms on discrete spaces �¢� and �w� :MÄMÄM » MÄMÄMS:� ½ ¦ � º » i » ¼ � ½ i MÄMÄM � MÄMÄMS:� ½ ¦ � º � i � ¼ � ½
7



and MÄMÄM � MÄMÄM :� Ìåä�¦ � MÄMÄM � MÄMÄM :� ½�æ ¾QW¿ÁÀ;Â P :Q 6�ØbÙ²Ú � � 6 :ç ¡ÐèåQxé " (4.3)

Let
� � be the space of divergence-free discrete fluxes:� � �¨§ê� G¸� � ¦ ØbÙÛÚ � ����â © "
We begin the stability analysis by noticing that the scalar product (3.11) is continuous. It is

also obvious that the scalar product satisfies the
� � -ellipticity condition:º � i � ¼ � ½�ë MÄMÄM � MÄMÄMS:� Ììä E � G � � " (4.4)

The analysis of the inf-sup condition is more involved. Following [5], for every � G¢� � , we
have to find a vector �×G�� � such thatº ØbÙ²Ú � �Hi �+¼ �x½!ë�í 4�MÄMÄMî�yMÄMÄM � ÌåäbMÄMÄM � MÄMÄM �x½ (4.5)

where í 4 is a constant independent of � , � , and JkK . Let us denote by � K G ¬ : 0 $p2 the piecewise
constant function on JkK with values given by the entries of the vector � (so that 0 � K 2 ­ Ê � ). It is
obvious that 6;� K 6 ç ¡Ðè � é � MÄMÄM � MÄMÄM � ½ . Let us consider the homogeneous Dirichlet boundary value
problem ï�ð � � K in $ "
Since $ has a Lipschitz-continuous boundary, there exist an ³ñ´�¶ and a constant ò 4� such that6 ð 6;ó  ô è � é <õò 4� 6;� K 6 ç ¡Ðè � é " (4.6)

Let ö �{÷ ð
, so that we have immediately	d

� ö � � K i (4.7)

and from (4.6)

6;öø6 è ç ô è � éÄé
ù æÕú ¾QW¿�ÀtÂ P :Q 6 	d

� öø6 :ç ¡�èåQxéÔû -Þü : < 0 ò 4� æ Px2|6;� K 6 ç ¡�è � é " (4.8)

We set now � ¦ � ö ­ Ê 0 ÷ ð 2 ­ (4.9)

where the interpolation operator is still the one defined in (3.7). Thanks to the commutative
property (3.13) and to (4.7), we haveØbÙ²Ú � � � 0 � K 2 ­ Ê � " (4.10)

Thus, inequality (4.5) is reduced to MÄMÄM � MÄMÄM �x½ ë�í 4êMÄMÄMî�lMÄMÄM � Ìåä " (4.11)

At this point we need the technical lemma announced in the previous section.
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Lemma 4.1 Under the assumptions M1–M6 and S1, for every ³¢´ý¶ there exists a constantí 4± ´ â such that

MÄMÄMî� ­ MÄMÄM � Ìåäb< í 4±�þ 6|�C6 è ç ô è � éÄé
ù æ.ÿ ¾QW¿ÁÀ;Â Pd:Q 6 	d

� �C6;:ç ¡�èåQxé�� -Òü :�� (4.12)

for every �×G 0 ¬à± 0 $p2[2 ) with
	�

� �×G ¬ : 0 $!2 , and where � ­ is defined in (3.7).

Proof. From (3.13) we immediately haveMÄMÄM ØbÙ²Ú � � ­ MÄMÄM �x½ � MÄMÄM 0 	�

� ��2 ­ MÄMÄM �x½ � 6 	�

� �C6 ç ¡Ðè � é " (4.13)

Therefore, in view of (4.3), it is sufficient to prove that there exists a constant � í 4± such that

MÄMÄMî� ­ MÄMÄM � ½ < � í 4±�þ 6|�C6 è ç ô è � éÄé ù æ�ÿ ¾QW¿ÁÀ;Â Pd:Q 6 	�

� �C6;:ç ¡ÐèåQxé�� -Òü :�� " (4.14)

The desired result (4.12) follows from (4.14) with í 4± � � í 4± æ ® . In the following discussion we
shall make a wide use of the conjugate exponent � , depending on ³ through the usual formula®³ æ ®� � ® " (4.15)

Assumption (3.10) implies clearly thatº � ­ iW� ­ ¼ � ½ < ¹ 4 ¾QW¿ÁÀ Â MNLhM ¾^�¿�ÖtQ 0 ¤ ^Q 2�:Æi (4.16)

so that we have to estimate the 0 ¤ ^Q 2 ’s in terms of � , or, rather, in terms of the norm of �
appearing in (4.12). Our basic instrument for that is called the lift property. The main difficulty,
in the various cases, will be to prove that the lift property holds true.

LP (Lift Property). For every ���&¶ there exists a constant � 4 � � 4 0 �[2 such that: For everyLÃG«JxK and for every R�GI*+L there exists a function 	 ^Q from L to ' ( that verifies	 ^Q � ® on R i 	 ^Q �õâ
on *WL�
9R i (4.17)

and 6�	 ^Q 6 ç ¡�èåQxé�<
� 4 P ) ü :Q i 6 ÷ 	 ^Q 6 è ç�� èåQxéÄé ù <
� 4 P ) ü�� � -Q "
(4.18)

The lift property LP is proved in Appendix A.
Up to an approximation of � by smooth functions, and passage to the limit, we have, using

(3.7), (4.17), and the Green formula:¤ ^Q � ®MSRTM � ^ � � � Q 	x¹ � ®MSRTM � ÖtQ 	 ^Q � � � Q 	x¹� ®MSRTM � Q � �ê÷ 	 ^Q 	x� æ ®MSRTM � Q 	 ^Q 	d

� � 	5�Û" (4.19)
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Using the Hölder inequality and (4.18) in (4.19), we have thenMSRTM�¤ ^Q < 6|�C6 ç ô èåQxé 6 ÷ 	 ^Q 6 ç�� èåQxé æ 6 	d

� �C6 ç ¡ èåQxé 6�	 ^Q 6 ç ¡ èåQxé< � 4�� 0 P�Q¥2 ) ü�� � -|MÄMî�lMÄM ç ô èåQxé æ 0 P�Q¥2 ) ü : MÄM 	d

� �yMÄM ç ¡ èåQxé�� "
Taking the squares and remembering that 0 e æ � 2 : <ã¶ 0 e : æ � : 2 , we haveMSRTM : 0 ¤ ^Q 2 : <D¶ 0 � 4 2 : § 0 P�Q#2�� ü�� � : MÄMî�lMÄM :ç ô èåQxé æ 0 PdQ#2 ) MÄM 	d

� �yMÄM :ç ¡ èåQxé © " (4.20)

On the other hand, using conditions (2.4), we easily obtainMNLOM�<õP )Q � P � -Q 0 P :Q 2 : <DP � -Q 0 e 4 2 � : MSRTM : " (4.21)

We can now join (4.21) with (4.20) and deduce thatMNLOM 0 ¤ ^Q 2 : < P � -Q 0 e 4 2 � : MSRTM : 0 ¤ ^Q 2 :< � 4�� 0 P�Q#2 � ü�� � )7MÄMî�lMÄM :ç ô èåQxé æ 0 P�Q¥2 : MÄM 	�

� �lMÄM :ç ¡ èåQxé�� (4.22)

where � 4 � ¶ 0 � 4 2 : 0 e 4 2 � : . Now we can sum (4.22) over all faces R of L and then over all
elements L of JxK . We use (4.16) and Assumption M2 on the number of faces per element to getMÄMÄMî� ­ MÄMÄM :� ½ < ]F` ¹ 4 � 4 þ ¾QW¿ÁÀ;Â 0 PdQ¥2�� ü�� � ) MÄMî�yMÄM :ç ô èåQxé æ ¾QW¿�ÀtÂ P :Q MÄM 	d

� �yMÄM :ç ¡ÐèåQxé �< ]F` ¹ 4 � 4 þ ÿ ¾QW¿�ÀtÂ § 0 P�Q¥2�� ü�� � ) © � � -Þü � ÿ ¾QW¿ÁÀ;Â MÄMî�yMÄM ±ç ô èåQxé � : ü ±æ ¾QW¿ÁÀ Â P5:Q MÄM 	�

� �yMÄMS:ç ¡ èåQxé �

(4.23)

where in the last step we applied the Hölder inequality with ! , the conjugate exponent of ³�"�¶ ,®! æ ¶ ³ � ® " (4.24)

A simple algebraic manipulation using (4.15) and (4.24) gives then¾QW¿�ÀtÂ § 0 P�Q¥2 � ü�� � ) © � � ¾QW¿�ÀtÂ P )Q <�c � -4 MN$�M (4.25)

where we have also used (2.4) in the last step. Inserting (4.25) into (4.23), we finally get6|� ­ 6 � ½ <#� í 4±�þ 6|�C6 è ç ô è � éÄé ù æ ÿ ¾QW¿ÁÀ;Â Pd:Q 6 	�

� �C6;:ç ¡�èåQxé�� -Òü :�� i (4.26)

where � í 4± depends only on � 4 0 �[2 , c 4 , eB4 and ]�` . This proves the assertion of the lemma. $
Collecting (4.9) and (4.12), we getMÄMÄMî�lMÄMÄM � Ìåä � MÄMÄMSö ­ MÄMÄM � Ìåäb< í 4±�þ 6;öø6 è ç ô è � éÄé ù æ�ÿ ¾QW¿�À;Â Pd:Q 6 	d

� öø6;:ç ¡ÐèåQxé�� -Þü :%� "

This, together with (4.8), implies (4.11) with í 4 � 0 í 4± 0 ò 4� æ Px2Ð2 � - .
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5 Convergence analysis

5.1 Consistency assumption
In order to prove error estimates, we need some assumptions on the scalar product (3.11), and
more precisely on the relationships between the continuous scalar product (3.1) and its discrete
counterpart (3.11). Our basic assumption will be the following one.

S2 (Consistency of
º i ¼ Q ). For every element L , every linear function � - on L and every�ÕG¸�«� , we haveº 0'&�¨÷ � - 2 ­ i+� ¼ Q �{� ÖtQ � - �hQ � � Q 	5¹¢�ª� Q � -?0 ØbÙ²Ú � ��2�Q 	x� (5.1)

where 0 � 2 ­ is the interpolation operator (3.7) and &� is a constant tensor on L such thatX�ZT\( ¿|Q X[Z�\ÌÍË Î M §ê� 0A@ 2�©|ÌÍË Î ��§ &� ©|ÌÍË Î�MB<�ò 4) P�Q (5.2)

where ò 4) is a constant independent of L .

Note that &� may be any reasonable piecewise constant approximation of
�

. In practice, we
use either the value of

�
at the polyhedron mass center or its mean value.

Condition (5.1) is rather new and requires some comments. First, we point out that we shall
need it to hold only for vectors �×G � � . For divergence-free vectors (5.1) readsº 0 &��÷ � - 2 ­ iW� ¼ Q � � ÖtQ � - �OQ � � Q 	x¹ i (5.3)

showing the remarkable property of using only boundary integrals. However, as ØbÙ²Ú � � is
constant in each L and � - is supposed to be linear, the volume integral appearing in (5.1) is
not difficult to compute. Taking � � 0 &��÷ &� - 2 ­ (with &� - another polynomial of degree < ® ) in
(5.3), we conclude that assumption S2 implies that the scalar product (3.11) is exact for constant
velocities and constant tensors.

In the context of the local mimetic finite difference method [12], condition (5.1) means that
the discrete gradient operator is exact for linear functions. This property has been used in [17] to
build a one-parameter family of symmetric positive definite matrices

o Q for a triangle. As a par-
ticular case, the family includes the mass matrix appearing in the finite element discretizations
with the Raviart-Thomas finite elements.

What is still remarkable in (5.1) is that it does not require the construction of a lifting oper-
ator from the values ¤ ^Q on *+L to the interior of L . It is not difficult to show, however, that if
we have any reasonable lifting operator *wQ , then the choiceº � iW� ¼ Q ¦ � � Q &� � - *�Q 0 � Q#2 � *�Q 0 �OQ¥2 	x�
will automatically satisfy (5.1) as well as (3.10). We have indeed the following proposition.
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Theorem 5.1 Assume that for every element L×GrJ+K we have a lifting operator *FQ acting on� �Q (the restriction of � � to L ) and with values in 0 ¬ : 0 La2[2 ) such that*�Q 0 �hQ#2 � � Q Ê �OQ � � Q on *+L	d

� *�Q 0 �hQ¥2 Ê 0 ØbÙ²Ú � ��2�Q in L (5.4)

for all �ÕG¸�«� , and *�Q 0 � ­Q 2 � � (5.5)

for all � constant on L . Then the choices§ &� ©|ÌÍË Î ¦ � ®MNLOM � Q §ê� ©|ÌÄË Î 	x� (5.6)

and º � iW� ¼ Q ¦ � � Q &� � - *�Q 0 � Q#2 � *�Q 0 �OQ¥2 	x� (5.7)

will automatically satisfy (5.2) and (5.1). If moreover there exist two constants + 4, and ò 4, ,
independent of L , such that

+ 4, ú MNLOM ¾^�¿|ÖtQ 0 ¤ ^Q 2�: û -Þü : < 6�*�Q 0 ��2Æ6 è ç ¡ èåQxéÄé ù <Dò 4, ú MNLhM ¾^�¿�ÖtQ 0 ¤ ^Q 2�: û -Þü : (5.8)

for all � Gy�«� , then (3.10) will also hold with constants ³74 and
¹ 4 depending only on + 4, , ò 4,

and on the constants 3k4 , 3 4 from (2.3).

Proof. The validity of (5.2) is immediate. The validity of (5.1) is also easily checked:º 0 &�¨÷ � - 2 ­ i+� ¼ Q � � Q &�H� - *�Q 0[0 &�¨÷ � - 2 ­Q 2 � *�Q 0 �hQ#2 	5� 0 use (5.5) and
÷ � - =const 2� � Q &� � --&�¨÷ � - � *�Q 0 �hQ#2 	5� 0 use &� � - &�Õ�/.10 2�{� Q ÷ � - � *�Q 0 �hQ#2 	x� 0 integrate by parts 2�{� ÖtQ � - *�Q 0 �hQ#2 � � Q 	x¹I�ª� Q � - 	d

� *�Q 0 �hQ#2 	5� 0 use (5.4) 2� � ÖtQ � - �hQ � � Q 	x¹¢� � Q � - 0 ØbÙ²Ú � ��2�Q 	5�Û"

Finally, (3.10) follows immediately from (5.7), (2.3) and (5.8) after noting that (2.3) is equivalent
to 0 3 4 2 � - 6�896 : <�8 > � � - 0�@ 2�8C< 0 3x4�2 � - 6�8p6 E�8CGH' ( ) E @ GI$ " (5.9)

This ends the proof of the theorem. $
A possible way of getting (5.1) is therefore to construct a lifting operator *bQ satisfying (5.4),

(5.5), and (5.8), and then define
o Q following (5.7). For instance, the way followed in [15] for

polygonal domains can be interpreted as the construction of a lifting operator satisfying (5.4)
and (5.5).
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In general, we may consider assumption (5.1) as a system of linear equations where the
unknowns are the coefficients of

o Q , and use it, in each element L , to construct the matrix
o Q .

Since the matrix
o Q should be symmetric and positive definite, this is a problem with nonlinear

constraints. An analytical solution has been found only for triangular elements [17].
Let us see this in more detail. We consider an element L having

È Q faces. Equation (5.1)
should then hold for

È Q different possible choices of �nQ and three possible choices of � - corre-
sponding to � - �32

, � - �54
and � - �/6

. Note that for � - � ® the equation (5.1) is automatically
satisfied as it reduces to our definition of the operator ØbÙ²Ú � . We have therefore 7 È Q equa-
tions. Since &� , and hence

o Q , are symmetric, the number of unknown coefficients of
o Q is0 È Q æ ® 2 0 È Q æ ¶ 2�"�¶ , that is bigger than 7 È Q as soon as

È Q ë 7 . The system will always be com-
patible, since we could always define a lifting *wQ first by solving, for each �nQ , the Neumann
problem, ï98 � ØbÙ²Ú � �hQ in L* 8 "ê* � Q � �hQ � � Q on *WL i
then by taking *FQ 0 �OQ¥2 ¦ �Ã÷ 8

, and finally by defining
o Q through (5.7). This will be totally

impractical, but shows that at least a solution
o Q of (5.1), symmetric and positive definite, exists

(although, in general, the solution will not be unique.)
Particular structures could be imposed to

o Q in order to reduce the number of unknowns.
For instance, we can require that each face interacts only with two neighboring faces, reducing
the number of unknowns to 7 È Q , that equals the number of equations and makes the linear
system much easier to solve on the computer.

An advantage of this approach is that it can rather easily be extended to faces that are not
flat. This is a case in which the construction of an explicit lifting operator might prove to be very
difficult. We shall address this problem in the future publications.

5.2 Error estimate for the vector variable
Using Assumption S2, we are going to prove error estimates for our discretization. Let 0  i � 2 be
the exact solution of (2.1) and (2.2), let 0 » � i � � 2 be the discrete solution (see (3.15) and (3.16)),
and let

» ­ and
� ­ be the interpolants of the exact solution. Finally, for every element L , we

denote by
 -Q a suitable polynomial of degree < ® that approximates

 
, and that will be decided

later on. We notice first that from (2.1), (3.13) and (3.15), we easily have:ØbÙÛÚ � 0 � ­ �ø� � 2 �YáH�Cál�ãâd" (5.10)

Using (2.2) and (3.16), then (3.14), and finally (5.10), we getº � ­ �ø� � i � ­ � � � ¼ ��½ � º 0 ����÷w 2 ­ i � ­ � � � ¼ ��½ � º ~ � » � i � ­ �ø� � ¼ ��½� º 0 ����÷w 2 ­ i � ­ � � � ¼ ��½ � º » � i�ØbÙÛÚ � 0 � ­ �ø� � 2 ¼ �5½� º 0 ����÷w 2 ­ i � ­ � � � ¼ ��½ " (5.11)
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Then, adding and subtracting terms we haveMÄMÄM � ­ �ø� � MÄMÄM :��½ � º 0 ���¨÷F 2 ­ æ 0 �¨÷F - 2 ­ i � ­ � � � ¼ � ½ æ º 0 ���¸÷w - 2 ­ i � ­ � � � ¼ � ½��: - æ º 0 ���¸÷F - æ &�¸÷w - 2 ­ i � ­ � � � ¼ � ½ æ º 0 � &�¸÷w - 2 ­ i � ­ � � � ¼ � ½��: - æ : : æ º 0 � &�«÷F - 2 ­ i � ­ � � � ¼ � ½��: - æ : : æ : ) " (5.12)

Using (5.1) and (5.10), the third term reads:: ) �·¾QW¿�À;Â<; � ÖtQ  -Q 0 � ­ �ø� � 2�Q � � Q 	x¹¢� � Q  -Q 0 ØbÙÛÚ � 0 � ­ �ø� � 2Ð2�Q 	x�>=
�·¾QW¿�À;Â � ÖtQ  -Q 0 � ­ �ø� � 2�Q � � Q 	x¹ (5.13)

We are therefore left with the problem of estimating
: - , : : , and

: ) . A first estimate of
: : is

trivial. From (5.2) we immediately have: : Ê º 0 ���¸÷F - æ &�«÷F - 2 ­ i � ­ � � � ¼ � ½ <õò 4) PaMÄMÄM 0 ÷F - 2 ­ MÄMÄM � ½ MÄMÄM � ­ � � � MÄMÄM � ½ (5.14)

where
 - still has to be defined.

Let us recall some known properties on the approximation errors. For the sake of simplicity,
we assume that our solution

 
is in ? : 0 $!2 . Note that with a little additional effort we could use

a weaker regularity, and get a lower order of convergence.
We first recall that, under Assumption M6 (Star-shaped elements), it is possible to find a

constant ò 4@�A�A , depending only on zÆ4 , such that for every element L and for every
 G�? : 0 La2

there exist a constant
 'B Q and a polynomial

 -Q of degree < ® such that6  µ�� B Q 6 ç ¡ÐèåQxé <õò 4@�A�A P�Qn6  6DC   èåQxé i (5.15)6  µ�¸ -Q 6 ç ¡�èåQxé <×ò 4@�A�A Pd:Q 6  6 C ¡ èåQxé i 6  µ�¸ -Q 6 C   èåQxé <Dò 4@�A�A PdQh6  6 C ¡ èåQxé (5.16)

(see [4, Lemma 4.3.8]). Concerning the error on faces, we can use a result due to Agmon
and made popular in the numerical analysis community by D.N. Arnold [1]. Applied to our
case, it says that there exists a constant ò 4@FE�G , depending only on the constant m54 of Assumption
M4, such that for every pyramid q ^Q (as described in Assumption M5), and for every function8 GH?H- 0 q ^Q 2 , we have6 8 6;:ç ¡�èå^Þé <õò 4@FE�G ÿ P � -Q 6 8 6;:ç ¡�èJI vÇ é æ P�Qn6 8 6;:C   èJI vÇ é � " (5.17)

It is then immediate to derive from (5.17) that6 ÷ 8 6;:ç ¡�èå^Þé <õò 4@FE�G ÿ P � -Q 6 8 6;:C   èJI vÇ é æ P�Qn6 8 6;:C ¡ èJI vÇ é � (5.18)

for every
8 GH? : 0 L�2 . Applying this to the difference

 �� -Q , and using (5.16), we get:6  µ�� -Q 6;:ç ¡�èå^Þé æ Pd:Q 6 ÷ 0  µ�� -Q 2Æ6;:ç ¡�èå^Þé <Dò 4Ý @LK ^ P )Q 6  6;:C ¡ èåQxé (5.19)
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where ò 4Ý @LK ^ depends only on zÆ4 and m�4 .
Now, we can finish the estimate of

: : . Note that
÷F - is a constant vector. Then, (5.16) and

the triangle inequality give:MÄMÄM 0 ÷w -Q 2 ­ MÄMÄM � ½ � 6 ÷F -Q 6 ç ¡ÐèåQxé <.6 ÷F 6 ç ¡�èåQxé æ 6 ÷ 0  µ�¸ -Q 2Æ6 ç ¡ÐèåQxé < 0 ® æ PdQñò 4@�A�A 2Æ6  6 C ¡ èåQxé "
Thus, we obtain immediately from (5.14) that: : <õò 4­ ¡ P�6  6 C ¡ è � é MÄMÄM � ­ � � � MÄMÄM � ½ (5.20)

where ò 4­ ¡ equals to 0 ® æ P�Qaò 4@�A�A 2Ðò 4) with ò 4) given in (5.2).
The estimate of

: - is obtained in the following lemma.

Lemma 5.1 Let
 GM? : 0 $!2 and let, in each L=G�JkK ,  - be such that (5.16) holds. Let 0 � 2 ­ be

the interpolation operator defined in (3.7), and let finally �õG�� � . Thenº 0 ���¨÷F 2 ­ æ 0 �¨÷F - 2 ­ iW� ¼ � ½ <ãò 4­   P�6  6 C ¡ è � é MÄMÄMî�lMÄMÄM � ½ (5.21)

where the constant ò 4­   is independent of
 

, � and P .

Proof. The proof follows immediately from (3.10), the definition of the interpolation operator
(3.7), the Cauchy-Schwartz inequality, and the approximation results quoted above. Indeed, we
have MÄMÄM 0 ���¨÷w 2 ­ æ 0 �¨÷w - 2 ­ MÄMÄM :��½ < ¹ 4 ¾QW¿�À Â ¾^�¿�ÖtQON 0Ð0 ���¨÷F 2 ­ æ 0 �¨÷w - 2 ­ 2 ^QQP : MNLOM< ¹ 4 ¾QW¿�À Â ¾^�¿�ÖtQHR ®MSRTM � ^ �¨÷ 0  �� -Q 2 � � Q 	x¹TS : MNLhM< ¹ 4 ¾QW¿�ÀtÂ ¾^�¿�ÖtQ ®MSRTM 6 �¨÷ 0  µ�¸ -Q 2Æ6;:ç ¡Ðèå^Þé MNLhM<ãò 4­   Pd:�6  6;:C ¡ è � é
where ò 4­   depends only on eT4 given in (2.4),

¹ 4 given in (3.10), 3 4 given in (2.3), and ò 4Ý @LK ^
obtained in (5.19). $

The following Lemma gives an estimate for
: ) .

Lemma 5.2 Let
 GH? : 0 $p2 and let, in each L¯G«JxK ,  - be such that (5.16) holds. Moreover let�×G¸� � . Then ¾QW¿ÁÀ;Â � Ö;Q  - �OQ � � Q 	x¹ <ãò 4­ ù P�6  6 C ¡ è � é MÄMÄMî�lMÄMÄM � ½ (5.22)

where the constant ò 4­ ù is independent of
 

, � and P .
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Proof. The first (crucial) step of the proof uses the continuity of
 

and the fact that �¸Q � � Q
takes opposite values for the two elements sharing each internal face; then the result follows with
usual instruments, like the Cauchy-Schwartz inequality and the approximation results (5.16):¾QW¿ÁÀ;Â � ÖtQ  -Q �hQ � � Q 	x¹ø� ¾QW¿�À;Â � ÖtQ 0  -Q �¸ 25�hQ � � Q 	x¹< ¾QW¿�À;Â ¾^�¿�ÖtQ 6  µ�¸ -Q 6 ç ¡�èå^Þék6Á¤ ^Q 6 ç ¡�èå^Þé�·¾QW¿�À;Â ¾^�¿�ÖtQ 6  µ�¸ -Q 6 ç ¡�èå^Þé MN¤ ^Q M|MSRTM -Òü :<�c � -Þü :4 0 ò 4Ý @LK ^ 2 -Þü : ¾QW¿�ÀtÂ PdQ 6  6 C ¡�èåQxé ¾^�¿�Ö;Q MN¤ ^Q M|MNLhM -Òü :<ãò 4­ ù P¥6  6 C ¡ è � é MÄMÄMî�yMÄMÄM � ½ "
where ò 4­ ù � 0 c � -4 ³ � -4 ò 4Ý @LK ^ 2�-Òü : ]�` . This proves the assertion of the lemma. $

Combining (5.12) with (5.20), (5.21) and (5.22), we finally get the main convergence result.

Theorem 5.2 Under assumptions P1, M1–M6 and S1–S2, let 0  i � 2 be the solution of (2.1)-
(2.2), and let 0  � i � � 2 be the discrete solution, given by (3.15)-(3.16). Let moreover

� ­ be the
interpolant of

�
, introduced in (3.7). Then we haveMÄMÄM � ­ �ø� � MÄMÄM ��½ <õò 4 P�6  6 C ¡ è � é i (5.23)

where ò 4 depends only upon the various constants appearing in Assumptions P1, M1–M6 and
S1–S2.

5.3 Error estimates for the scalar variable
For the estimate on the scalar variable

» � , we shall go back to the inf-sup condition (4.5). For
the sake of simplicity, we assume that $ is convex. Let

ð
be the solution of��	d

� 0 �¸÷ ð 2 � » ­ � » � in $ð � â

on *W$
where, for simplicity, we identified

» � � » ­ with the corresponding piecewise constant function.
The convexity of $ implies that there exists a constant ò 4� , depending only on $ , such that6 ð 6 C ¡ è � é <ãò 4� MÄMÄM » � � » ­ MÄMÄM � ½ " (5.24)

We set now ö �ã�¸÷ ð
(5.25)

and define �×G¸�«� as � � ö ­ , so thatØbÙ²Ú � � � » � � » ­ " (5.26)
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Finally, we denote by
ð - a piecewise linear approximation of

ð
that satisfy (5.16) for eachL°G�J5K . Using (5.26), then (4.1), then (3.6) and (3.13), then integrating by parts, and finally

integrating once more by parts and using (2.1) and (2.2) we getMÄMÄM » � � » ­ MÄMÄM :� ½ � º ØbÙ²Ú � �Ii » � � » ­ ¼ � ½� º � � i+� ¼ � ½ � º ØbÙ²Ú � �Ii » ­ ¼ � ½ � º � � i+� ¼ � ½ � � �� �	d

� 0 �¸÷ ð 2 	x�� º � � i+� ¼ � ½ æ � �!�¸÷¢ �ê÷ ð 	x�� º � � i+� ¼ ��½ æ � ��� ð 	x�Û"
Now, using the definition of � and adding and subtracting terms, we haveMÄMÄM » � � » ­ MÄMÄMS:� ½ � º � � i 0 �¸÷ ð 2 ­ � 0 �¸÷ ð - 2 ­ ¼ � ½ æ º � � i 0 �¸÷ ð - 2 ­ ¼ � ½ æ � �F� ð 	x��VU - æ º � � i 0Ð0 � � &� 2 ÷ ð - 2 ­ ¼ ��½ æ º � � i 0 &�«÷ ð - 2 ­ ¼ ��½ æ � �F� ð 	5��VU - æ U : æ º � � i 0 &�«÷ ð - 2 ­ ¼ � ½ æ � ��� ð 	x� (5.27)

Using (5.21), the term
U - can be easily bounded byU - Ê º � � i 0 �¸÷ ð 2 ­ � 0 �¸÷ ð - 2 ­ ¼ ��½ <õò 4­   PaMÄMÄM � � MÄMÄM ��½ 6 ð 6 C ¡ è � é " (5.28)

The term
U : is bounded as in (5.14), (5.20) byU : Ê º � � i 0Ð0 � � &� 2 ÷ ð - 2 ­ ¼ ��½ <õò 4­ ¡ PaMÄMÄM � � MÄMÄM ��½ 6 ð 6 C ¡ è � é " (5.29)

For the third term in the last line of (5.27) we can use (5.1) to obtainº � � i 0 �¸÷ ð - 2 ­ ¼ � ½ �·¾QW¿�À Â � Ö;Q ð - 0 � � 2�Q � � Q 	x¹¢� � �!á ð - 	x�Û" (5.30)

With the help of (5.22), we get thenWWWW º � � i 0X&�¸÷ ð - 2 ­ ¼ � ½ æ ����� ð 	x� WWWW <õò 4­ ù PaMÄMÄM � � MÄMÄM � ½ 6 ð 6DC ¡ è � é æ WWWW ��� 0 � ð �Cá ð - 2 	x� WWWW (5.31)

where the last term is easily bounded by ¶àò 4@�A�A P�6 � 6 C   è � é 6 ð 6 C   è � é . Collecting the above in-
equalities (5.27) - (5.31), we easily obtainMÄMÄM » � � » ­ MÄMÄM :� ½ <õò 4 P � MÄMÄM � � MÄMÄM � ½ æ 6 � 6 C   è � é � 6 ð 6 C ¡ è � é (5.32)

that combined with the estimates (5.24), Theorem 5.2 and Lemma 4.1 gives the proof of the
second convergence result.
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Theorem 5.3 Under assumptions of Theorem 5.2, plus the convexity of $ , we haveMÄMÄM » � � » ­ MÄMÄM � ½ <õò 4 P N 6  6 C ¡ è � é æ 6 � 6 C   è � é P (5.33)

where the constant ò 4 depends only on the constants appearing in Assumptions P1, M1–M6
and S1–S2, on ò 4� appearing in (5.24) and on í 4± appearing in (4.12).

It is interesting to note that, assuming that in each element L we had a suitable lifting *�Q , a
better estimate for the scalar variable could be obtained. We have indeed the following theorem

Theorem 5.4 Together with the assumptions of Theorem 5.3, assume moreover that for each
element L we have a lifting operator *wQ with the properties (5.4), (5.5) and (5.8) such that6Y*�Q 0 � ­ 2 � �y6 ç ¡ èåQxé <õò 4, @ P�Qn6|�y6 è C   èåQxéÄé
ù Eñ�õG 0 ? -�0 L�2Ð2 ) E�L¯G«J5K (5.34)

where ò 4, @ is a constant independent of � and P5Q . Then, we haveMÄMÄM » � � » ­ MÄMÄM �5½ <õò 4 Pd: N 6  6 C ¡ è � é æ 6 � 6 C   è � é P (5.35)

where the constant ò 4 depends only on the constants appearing in Assumptions P1, M1–M6
and S1–S2, on ò 4� appearing in (5.24), on í 4± appearing in (4.12), and on ò 4, @ appearing in
(5.34).

Proof. Let * 0 � 2 be such that * 0 ��2�MNQ � *�Q 0 �OQ¥2 . Following essentially [10] and using (5.26),
then (4.1), (3.6) and (3.13) (as in the previous proof) with (5.4), then integrating by parts and
finally using (2.2) and (5.7), we getMÄMÄM » � � » ­ MÄMÄMS:� ½ � º ØbÙ²Ú � �Ii » � � » ­ ¼ �5½� º � � i+� ¼ ��½ � � �� �	d

� * 0 � 2 	5�� º � � i+� ¼ � ½ æ ����÷I � * 0 � 2 	5�}� º � � i+� ¼ � ½ æ �T���H� - �¸÷I � * 0 ��2 	x�� � ��� � - 0 * 0 � � 2 �ø� 2Z* 0 � 2 	x�Û"

Adding and subtracting ö defined in (5.25), we getMÄMÄM » � � » ­ MÄMÄMS:�x½ �{���!�H� -�0 * 0 � � 2 �ø� 2 0 * 0 ��2 � ö«2 	x� æ �����H� -Á0 * 0 � � 2 � � 2Tö 	x��VU ) æ � � 0 * 0 � � 2 �ø� 2 ÷ ð 	x�}�VU ) � � � ð 	d

� 0 * 0 � � 2 � � 2 	x��VU ) ����� 0 á ­ �ø� 2 ð 	5��VU ) ����� 0 á ­ �ø� 2 0 ð �\[ ­ 2 	x���]U ) æ U%^�"
(5.36)
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In their turn,
U ) and

U%^
can be easily bounded using the previous estimates and usual argu-

ments. Indeed, the triangle inequality, then (3.10) and (5.8), and finally (5.23) and (5.34) imply
that 6�* 0 � � 2 � � 6 è ç ¡�è � éÄé
ù <.6�* 0 � � �ø� ­ 2|6 è ç ¡�è � éÄé
ù æ 6�* 0 � ­ 2 � � 6 è ç ¡Ðè � éÄé
ù<�ò 4, ³ � -Þü :4 MÄMÄM � � �ø� ­ MÄMÄM � ½ æ 6�* 0 � ­ 2 �ø� 6 è ç ¡�è � éÄé ù<�òCP�6  6DC ¡ è � é " (5.37)

Using the theorem assumption (5.34) and (5.24), we get6�* 0 ��2 � öø6 è ç ¡�è � éÄé ù � 6�* 0 ö ­ 2 � öø6 è ç ¡�è � éÄé ù <ãò 4, @ P 6;öø6 è C   è � éÄé ù <�òñP#MÄMÄM » � � » ­ MÄMÄM � ½ " (5.38)

The approximation property (5.15) gives the following estimates:MÍ6 á ­ �ø� 6 ç ¡ è � é <õò 4@�A�A P¥6 � 6 C   è � é (5.39)

and 6 ð �_[ ­ 6 ç ¡�è � é <Dò 4@�A�A P 6 ð 6 C   è � é <õò 4@�A�A ò 4� PaMÄMÄM » � � » ­ MÄMÄM � ½ " (5.40)

Inserting estimates (5.37)-(5.40) into (5.36), we get immediately the result. $
Remark 5.1 It is very likely that our additional assumption (5.34) is not needed, as it should
be possible to deduce it from (5.4), (5.5), possibly with minor additional assumptions on the
geometry. However, in essentially all cases in which *wQ can be explicitly built, it is easy to
prove directly that (5.34) holds true. We decided therefore that it would have been more simple
to just assume it.

6 Conclusion
In this paper, we have considered the mimetic finite difference method for the mixed formulation
of the diffusion problem on polyhedral meshes. We have proved the stability of the mimetic
discretizations and the optimal convergence rates for the scalar and vector variables. The key
elements of our methodology are the consistency assumption S2 and the lift property LP.

In the future work, we plan to extend the convergence results to polyhedral meshes with
curvilinear faces.
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Appendix A
The purpose of this appendix is to prove the lift property (4.17)-(4.18), that we recall for conve-
nience of the reader.

LP (Lift Property). For every ���&¶ there exists a constant � 4 � � 4 0 �[2 such that: For everyLÃG«JxK and for every R�GI*+L there exists a function 	 ^Q from L to ' ( that verifies	 ^Q � ® on R i 	 ^Q �õâ
on *WL�
9R i (A.1)

and 6�	 ^Q 6 ç ¡�èåQxé�<
� 4 P ) ü :Q i 6 ÷ 	 ^Q 6 è ç � èåQxéÄé
ù <
� 4 P ) ü�� � -Q "
(A.2)

A traditional way would be to assume that there exist a finite number of reference elements`L - , ...,
`L - and a positive constant

¬ 4 such that: For each L¯G«JxK there is an
`L!Å and a bi-Lipschitz

map a Q Å from
`LpÅ to L such thatMba Q Å M ó  c èedQgfÐé < ¬ 4 i MÄMba Q Å MÄM ç c èedQgfÐé < ¬ 4 P�Q (A.3)

and M 0 a Q Å 2 � - MSó  c èåQxé < ¬ 4 i MÄM 0 a Q Å 2 � - MÄM ç c èåQxé < ¬ 4 P � -Q " (A.4)

Then, for each reference element
`L!Å and for each face

`R of
`LpÅ we could construct the harmonic

function
`	 d^ dQhf with boundary value ® on

`R and zero on the other faces, and verify that it belongs

to ,�-� 0 `L!Å|2 for every �i��¶ . Finally each function 	 ^Q could be constructed by combining one of
the reference functions

`	 d^ dQgf with the corresponding a Q Å . This is surely feasible, but will become
rather cumbersome if we want to consider a big variety of possible shapes for our elements.

We decided here to follow a different path, that requires only the fact that the faces are star-
shaped (M4) and the Pyramid property (M5) which are possibly more difficult to explain, but
much easier to check and to enforce. The general idea is first to build a function

`	 - on the unit
cone j - , then, for every P , to build a function 	�K on a cone jxK obtained by scaling the unit cone,
and finally, for each element L and for each face R , to map the cone j'kDlÞK Ç (where m�4 is given in
Assumption M4) into the pyramid q ^Q described in Assumption M5 with a Lipschitz continuous
mapping. This will give us a function 	 � 	 ^Q on the pyramid, having the right norms. This
function will finally be extended by zero to the whole element L , and it still will have the right
norms. But let us see the procedure in more detail.

For each element L and for each face R of L we want to build a function 	 � 	 ^Q with the
following properties:m The support of 	 is contained in the pyramid q � q ^Q satisfying Assumption M5.m 	lÊ ® on R and 	lÊ â on the other faces of q ^Q .m 	 satisfies the following estimates:MÄMn	pMÄM ç ¡ÐèJIxé¥<o� 4 P ) ü :Q and MÄM ÷ 	pMÄM è ç�� èJI5éÄé ù <
� 4 P ) ü�� � -Q (A.5)

where constant � 4 is independent of L and R .
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As we said before, we start our work on cones: for
s - ´ â we shall refer to the solid� 0 2 i 4 i 6 2 ¦ â < 6 < s - and

2 : æ 4 :!< 0 s - �p6 2�: �
as the circular cone of radius

s - .
Lemma A.1 Let j - be the circular cone of radius ® , and let

`	 - be the harmonic function that
takes value ® on the basis and

â
on the lateral boundary. Then

`	 - belongs to
¬ / 0 j - 2 and

÷V`	 -
belongs to 0 ¬ � 0 j - 2[2�) for all �q�Y¶ .
Proof. The first part of the statement follows from the maximum principle, that gives

â < `	 - <® . The second part of the statement follows immediately from the known results concerning
domains with corners (see e.g. [11], or [9]). $

In view of the previous lemma, we set`ò � ¦ � 6 ÷ 	 - 6 è ç�� èsr; ÞéÄé ù " (A.6)

It is clear that
`ò � depends on � and hence on ³ through (4.15).

Lemma A.2 For every positive real number P , let j+K be a circular cone of radius P . Then, there
exists a function 	�K taking value ® on the basis, value zero on the lateral surface, and satisfyingMÄMn	 KTMÄM ç ¡�èsrtÂ�é <ÃM j5KTM -Òü : and MÄM ÷ 	 KTMÄM è ç�� èsr Â éÄé ù < P ) ü�� � - `ò � (A.7)

where M j5KTM is the volume of jxK .
The proof follows with the usual scaling arguments (see e.g. [8, Theorem 3.1.2]). $

Consider now a face R of L . For convenience, we assume that (a) the face R lies in the plane6ø�Dâ
, (b)

o ^ , defined in Assumption M4 (Star-shaped faces), is the origin of the axes and
(c) the polyhedron L is locally in the half-space

6 ´ â
. By Assumption M4 there exists a mk4

such that: The circular cone jkK having the basis on the face R (with center in
o ^ ), and radiusP � s 4 � mT4+P�Q , is strictly contained in the pyramid q ^Q having the same vertex and basis equal

to R . Hence, by Assumption M5 (The pyramid property), j+K is contained in L .
Let us see first that Assumption M4 implies the existence of a radial mapping in the plane6n�¯â

which maps the disk t9u�l with center in
o ^ and radius

s 4 into the face R , is one-to-one,
Lipschitz-continuous together with its inverse, and with , -/ norms bounded in terms of md4 and
the number of edges of R .
Lemma A.3 Under assumption M4 there exists a map a : , mapping the disk t9u�l into the faceR , that is Lipschitz continuous together with the inverse map a � -: . Moreover,6va : 6;ó  c èJwyx l é <ãò 4^ and 6va � -: 6;ó  c èå^Þé <ãò 4^ (A.8)

where ò 4^ depends only on the constant m54 of Assumption M4.
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Os 4
Figure 3: The splitting of R in sectors.

Proof. To show this, we note that the plane
6h�Ãâ

can be split in a finite number of sectors by
the vertices of R . Each sector corresponds to the straight rays coming out of the origin

o ^ and
intersecting the edge U|Å (see Fig. 3). For each point z¯G{t9u�l , we first consider the ray emanating
from the origin and passing through P. This ray intersects *+R at point | 0 za2 . Our mapping is
defined as follows: &z�ÊVa : 0 za2 ¦ � M | 0 zñ2|Ms 4 z " (A.9)

It is clear that a : maps every point P into a point &z on the same ray, so that| 0 za2 � | 0 &za2 E}zÃGHt~u l " (A.10)

It is immediate to check that, on each ray, the map is continuous and monotone, and that it maps
the points of the circumference of radius

s 4 into the corresponding points of *+R on the same ray.
Hence it maps t�u�l into R in a one-to-one way. It is also clear that the map is globally continuous,
invertible, and the inverse mapz�ÊVa � -: 01&za2 ¦ � s 4M | 0 za2�M &z�Ê s 4M | 0 &za2|M &z (A.11)

is also continuous and maps R into t9u l . Note that we used (A.10) in the last step.
In order to show the Lipschitz continuity, we have to bound the distance between the imagesM &z � &� M by a constant times the distance M�z � � M . For this, we remark first that Assumption M4

implies that ® < M | Ms 4 < P�Qm�4kP�Q � ®m�4 for every |DGH*+R " (A.12)

As shown in Figure 4, it also implies that for every point | on an edge U of *kR , the angle �<�
between U and the ray passing through | verifiesM X[
�� ��� M � MSöO`|MM | M ë s 4M |øM ë mT4 (A.13)

where öO` is the orthogonal projection of the origin
o ^ on the line containing U , and we used

(A.12) in the last step.
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O

| ���
öO`s 4

Figure 4: Lower bound on M X[
�� ��� M .
The Lipschitz continuity is obvious when z and

�
are on the same ray:M &z � &� M � M | 0 za2|Ms 4 M�z � � MT< ®mT4 M�z � � M " (A.14)

O

| 0 za2
| 0 � 2

z
� �

� �

Figure 5: Lipschitz continuity within a sector.

If z and
�

are on two different rays in the same sector, we first denote by
� � and

�
(respectively) the orthogonal projections of | 0 za2 (respectively, of z ) on the ray containing

�
(see Figure 5). Applying Thaletes theorem, we getM | 0 zñ2 � � �²MM | 0 za2�M � M�z � � MM�zOM < M�z � � MM�zOM "

(A.15)

Collecting (A.15), (A.13) and (A.12), we haveM | 0 za2 � | 0 � 2|M � M | 0 za2 �ø� �ÛMM X[
�� 0 � �?èj�xé 2|M < M�z � � Mm�4�M�zOM M | 0 za2�MT< M�z � � M0 mT4�2 : M�zOM s 4 (A.16)

23



where obviously the role of z and
�

can be interchanged. Finally, the triangle inequality to-
gether with (A.9) and (A.16) giveM &z � &� M � WWWW M | 0 za2�MFz � M | 0 � 2|M �s 4 WWWW < M | 0 za2 � | 0 � 2|Ms 4 M�zOM æ M | 0 � 2|Ms 4 M�z � � M< M�z � � M0 m�4�2 : æ ®m�4 M�z � � M �Õ® æ mT40 m�4�2 : M�z � � M " (A.17)

The case of z and
�

belonging to different sectors can be easily deduced inserting suitable
intermediate points at the boundaries of the sectors and then using the triangle inequality.

In a similar way, we can show that the inverse mapping is also Lipschitz continuous. For
instance, using (A.11) we getM�z � � M � WWWW s 4M | 0 &z�2�M &z � s 4M | 0 &� 2|M &� WWWW � s 4M | 0 &za2|M|M | 0 &� 2|M WWW M | 0 &� 2|M &z � M | 0 &zñ2|M &� WWW " (A.18)

Then, we have, adding and subtracting M | 0 za2|M�z and using the triangle inequality,MÄM | 0 &� 2�M &z � M | 0 &za2|M &� MT<ßM | 0 &z�2 � | 0 &� 2|M|M &zOM æ M | 0 &za2|M|M &z � &� M " (A.19)

On the other hand, we can apply the argument of (A.16) to obtainM | 0�&z�2 � | 0X&� 2|MT< M &z � &� M0 mT4�2 : M &zhM s 4 " (A.20)

Collecting (A.18), (A.19) and (A.20), and using (A.12) (this time in the sense
s 4D"5M | M�< ® ), we

finally obtain M�z � � MT< ®0 mT4t2 : M &z � &� M æ M &z � &� M �Õ® æ 0 mT4t2 :0 m�4�2 : M &z � &� M " (A.21)

This proves the assertion of the lemma. $
Now, we can construct a mapping a ) from the cone jxK (having t�u�l as basis and with height

equal to
s 4 ) into to the pyramid q ^Q (having R as basis and with the same vertex as jkK ), also

Lipschitz-continuous with its inverse, by taking0 &2 i &4 2 � a : 0 2 i 4 2;i &6��/65"
(A.22)

Again, the Lipschitz norm of the map a ) and of its inverse depend only on m54 . This proves the
following lemma.

Lemma A.4 Under assumption M4 there exists a map a ) , mapping the cone jkK into the pyra-
mid q ^Q , that is Lipschitz continuous together with the inverse map a � -) . Moreover,6va ) 6;ó  c èsrtÂ�é <ãò 4A�� � and 6va � -) 6;ó  c èJI vÇ é <ãò 4A�� � (A.23)

where ò 4A�� � depends only on the constant md4 of Assumption M4.
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The last step is to construct, for each element L and for each face R_Gy*WL , the function 	 ^Q
satisfying (A.5) (with the right boundary conditions). Let	 ^Q 0 2 i 4 i 6 2 � 	 K 0 a � -) 0 2 i 4 i 6 2Ð2
where 	 K is the function from Lemma A.2 defined for the circular cone of radius P � s 4 �m�4kP�Q . It is clear that 	 ^Q will be in

¬ : 0 q ^Q 2 , that
÷ 	 ^Q will be in 0 ¬ � 0 q ^Q 2[2 ) , and that their norms

will be bounded by6�	 ^Q 6 ç ¡ èJI vÇ é <õò 4A�� � P ) ü :Q and 6 ÷ 	 ^Q 6 è ç�� èJI vÇ éÄé ù < `ò � ò 4A�� � P ) ü�� � -Q (A.24)

where
`ò � is given in (A.6) and ò 4A�� � depends only on md4 . Hence 	 ^Q satisfies (A.5) as required.

Finally, we take the prolongation of 	 ^Q (that we call again 	 ^Q ) by zero in L3
pq ^Q .
This ends the proof of the lift property (A.1)–(A.2).
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