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bound-preserving algorithms for remap of a scalar conserved quantity (mass)
between close meshes having the same connectivity. We formulate remap
as an inequality-constrained optimization problem in which the objective is
to minimize the distance between given high-order target mass fluxes and
the mass exchanges between neighboring cells, subject to constraints de-
rived from physically motivated bounds on the associated primitive variable
(density). In doing so, we separate accuracy considerations, handled by the
objective functional, from the enforcement of physical bounds, handled by
the constraints.

A typical high-order remap algorithm enforces bounds by a direct manip-
ulation of the reconstruction process using slope limiters, which is standard
practice in numerical algorithms for the solution of advection problems. In
contrast, the new optimization-based remap (OBR) finds the most accurate,
with respect to the selected distance measure, remapped quantity from a
feasible set defined by physical bounds. As a result, the OBR formulation
can be easily applied to unstructured grids and grids comprising of arbitrary
cell shapes. Moreover, under some additional assumptions on the grid mo-
tion, but not on the cell types, we prove that the OBR algorithm is linearity
preserving in one, two and three dimensions.

The report also examines connections between OBR and the recently
proposed flux-corrected remap (FCR) [1]. We show that FCR can be inter-
preted as a solution procedure for a modified version of the OBR problem
(M-OBR) in which the same objective is minimized over a subset of the OBR
feasible set. The modified feasible set is derived by considering a “worst-
case” scenario that replaces the original constraints by a simplified set of box
constraints. The simplified constraint set decouples M-OBR into a series
of one-dimensional minimization problems that can be solved independently
from each other. The resulting M-OBR solution coincides with the FCR
solution. It thus follows that OBR is always at least as accurate as FCR.

The report concludes with a numerical study of the OBR and FCR formu-
lations in one dimension. We compare qualitative properties, such as shape
preservation, and estimate the rates of convergence using remap on a series
of smooth and “hourglass” grid cycles. The study confirms that the larger
feasible set of OBR delivers increased accuracy compared to FCR.

Keywords: constrained interpolation, remap, bound-preserving, FCT,
conservative, optimization, inequality constraints, quadratic programming
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1. Introduction

Transfer of data between different grids, subject to constraints, arises in
many numerical algorithms. Mesh tying [2, 3], multiphysics problems [4] and
prolongation and restriction operations in multilevel methods are just a few
of the examples that require this capability.

Another important example, and the primary motivation for this work,
are arbitrary Lagrangian-Eulerian (ALE) methods [5]. Typically, ALE meth-
ods are split into three separate phases comprising of (i) the Lagrangian up-
date of the solution and the computational grid; (ii) rezoning of the compu-
tational grid in order to reduce grid distortion accrued during the Lagrangian
motion; and (iii) conservative interpolation (remap) of the Lagrangian solu-
tion onto the rezoned grid. Formally, it is possible to run ALE algorithms
primarily in the Lagrangian mode with the occasional rezone/remap taking
place only when the grid becomes too distorted. However, an alternative
computational strategy that combines the best properties of Eulerian and
Lagrangian methods is to perform rezoning and remapping at every time
step.

An important property of this so-called continuous rezone strategy is that
individual grid movements can be limited to small perturbations of the La-
grangian (old) mesh, which means that conserved quantities are exchanged
only between neighboring cells. This localizes the remap operation to neigh-
borhoods of old mesh cells and eliminates expensive global search operations
required to locate new cells in the old mesh. However, because remap is
performed at every time step, the accuracy of the continuous-rezone ALE2

strongly depends on the quality of the remap phase.
In this paper we focus on the remap of a single scalar conserved quantity

defined at cell centers, which can be thought of as the mean value of a given
scalar function over the cell. For clarity, the main ideas are introduced in the
context of mass remap, in which case the scalar function is the density and
the remapped quantity is the product of the mean cell density and the cell
volume. In this setting the conserved variable (mass) is remapped to every
new (rezoned) cell and the primitive variable (density) is approximated by
the remapped mass divided by the volume of the rezoned cell.

In light of the importance of the remap phase for the continuous rezone

2In this paper we consider only standard ALE methods in which mesh connectivity
does not change.
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strategy, remap algorithms should posses the following three properties:

P1. Conservation of total mass;

P2. Preservation of linearity;

P3. Preservation of bounds for the primitive variable (density).

Because the conserved values are defined at the cell centers and we assume a
continuous rezone strategy, the exchange of mass between neighboring cells
can be expressed in flux form; see [6]. This is sufficient to satisfy the first
property because the flux form of remap guarantees both global and local
conservation. The second property is a statement of accuracy of the remap-
ping. It requires the remap algorithm to recover exact masses in the rezoned
cells whenever the old masses correspond to a linear density function. The
third property accounts for the fact that physically motivated bounds are
imposed on the primitive variable rather than on the conserved quantity. In
the case of continuous rezone, local bounds for the density can be derived
by noting that every rezoned cell is contained in the union of its Lagrangian
prototype and its neighbors. Therefore, it is natural to require that the mean
density in a rezoned cell be bounded by the minimum and maximum mean
density values on these Lagrangian cells.

Explicit advection algorithms use information only from neighboring cells
and can be modified to obtain local remap operators that satisfy the above
three properties. The advection approach is not without a fault though,
because it enforces (P3) using a slope-limited upwind reconstruction, which
ties together accuracy and preservation of bounds. This tends to obscure the
sources of discretization errors and complicates the analysis of the accuracy
of the remap. Another drawback is that the extension of limiters to unstruc-
tured grids, typically used in ALE methods, and to arbitrary cell shapes can
be quite tricky in practice.

An alternative approach, pursued in this paper, is to rephrase conser-
vative remap as a global inequality-constrained optimization problem. The
appropriateness of this idea becomes evident upon a closer examination of
the last two3 properties in (P1–P3), which can be mapped to an optimization
objective and a set of constraints defining the feasible set, respectively.

3The first property, i.e., conservation, is “topological” feature that can be achieved by
proper selection of the variables, e.g., using the flux form of remap as mentioned earlier.
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More concretely, preservation of linearity can be enforced by minimizing
the distance, measured in some suitable norm, between fluxes approximating
the mass exchanges across adjacent cells and target mass fluxes computed
using a piecewise linear reconstruction of the density. If the exact density
is a linear function, then the global unconstrained minimizer of the distance
functional corresponds to the fluxes of the exact density, thereby recovering
the exact masses in each rezoned cell.

If, however, the density is not linear, then the global unconstrained min-
imizer will likely produce remapped masses and densities that violate local
bounds, especially when the density is not smooth. To counter the tendency
of the linear reconstruction to create artificial extrema, the local bounds for
the primitive variable can be enforced during the minimization of the flux
distance, i.e. the search for approximate mass fluxes can be confined to a
feasible set defined by the local bounds. Effectively, this transforms remap
into an inequality-constrained optimization problem for the fluxes.

We expect this strategy to be more accurate than the standard practice
of limiting the slope during the reconstruction process because the latter
is usually based on “worst-case” assumptions that may unduly restrict the
accuracy of the remap. In contrast, optimization-based remap (OBR) finds
an optimal solution from a feasible set defined by the local bounds, i.e. OBR
always computes the best possible remapped quantity that also satisfies these
bounds.

The choice of an optimization-based strategy for remap enables impor-
tant theoretical and practical gains. For instance, as accuracy and physical
bounds are enforced separately in OBR, the approach can be applied with-
out difficulty to arbitrary cell shapes, as long as the density reconstruction
remains exact for linear functions. In contrast, the traditional approach of
enforcing bounds through slope limiters becomes increasingly complex on
unstructured grids, and is difficult to formulate, analyze and implement on
arbitrary cell shapes.

The idea to cast remap into an inequality-constrained optimization prob-
lem was first suggested in [1]. However, in [1] optimization was not used to
develop an actual remap algorithm but only to motivate the formulation of
the flux-corrected remap (FCR), which is based on ideas from flux-corrected
transport (FCT) [7]. Specifically, in [1] FCR was interpreted as “a pro-
cess of replacing a global constrained optimization problem by series of local
constrained optimization problems by considering the worst case scenario”.
However, the precise connection between the global OBR problem and FCR
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was not fully explored, nor was the question of linearity preservation settled
for either one of the algorithms.

This paper continues the investigation of optimization strategies for remap,
started in [1], by focusing attention on the global OBR problem, its con-
nection with the FCR algorithm, and examination of the key distinctions
between the two approaches. A rigorous proof of linearity preservation for
OBR is one of the key results in this paper. Our analysis shows that un-
der some additional assumptions on the mesh movement, OBR satisfies (P2)
on arbitrary unstructured grids in one, two and three dimensions, including
grids with polygonal or polyhedral cells.

Another key result is the precise quantification of the intuitive interpre-
tation of FCR. Using a suitable change of variables we show that the FCR
solution coincides with the solution of a modified version of the global OBR
problem, M-OBR for short, in which the original set of constraints is re-
placed by a set of simpler box constraints. The latter define a feasible set
that is a subset of the original OBR feasible set. It follows that FCR can be
interpreted as an approximate solution procedure for OBR, which searches
for minimizers in a reduced feasible set. One important conclusion from this
observation is that the global OBR solution is at least as accurate as the
FCR solution, and that the latter is not necessarily linearity preserving.

Our results also clarify the origins of the explicit constraint imposed on
FCR fluxes, which requires them to be convex combinations of low and high-
order fluxes. Because the global OBR problem does not include such a con-
straint, its appearance in FCR cannot be inferred directly from the former.
Furthermore, one can easily construct examples for which the solution of
the global OBR problem is not a convex combination of low and high-order
fluxes. Consequently, the explicit inclusion of a convexity requirement in
FCR is justified in [1] by intuitive arguments based on the parallels between
FCR and FCT. Our analysis reveals that the convexity requirement is intro-
duced implicitly when the original OBR inequality constraints are replaced by
simpler box constraints. This restricts the optimal solution of the global M-
OBR problem to convex combinations of low and high-order fluxes. Because
FCR is a solution algorithm for the M-OBR problem, the convexity require-
ment becomes part of the “formula” for the optimal solution. Therefore, its
inclusion in FCR becomes natural without any reference to flux-corrected
transport.

The paper is organized as follows. Notation is introduced in Section
2.1, a formal statement of the remap problem is presented in Section 2, and
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the new optimization-based formulation of remap is developed in Section 2.3.
There we also establishes sufficient conditions for the preservation of linearity
in OBR. Connections between OBR and FCR are examined in Section 3,
while Section 4 compares and contrasts computational properties of the two
formulations.

2. Optimization-based formulation of the remap problem

2.1. Notation

In what follows Ω ⊂ IRd, d = 1, 2, 3, denotes an open bounded domain
with a Lipschitz continuous boundary ∂Ω. The symbol Kh(Ω) stands for a
conforming partition of Ω into K cells κi, i = 1, . . . , K, with volumes and
barycenters given by

V (κi) =

∫
κi

dV and bi =

∫
κi

x dV

V (κi)
, (2.1)

respectively. We recall that conforming partitions of Ω consist of cells that
cover the domain without gaps or overlaps. The partition Kh(Ω) can be
uniform or nonuniform, and the cells are not required to have the same
shape or to be convex. For instance, in two dimensions Kh(Ω) can contain
triangles, quadrilaterals and convex and non-convex polygons. This makes
our approach applicable to a wide range of grids and methodologies. For
example, we can think of a two-dimensional AMR grid [8] as consisting from
quadrilaterals and pentagons, while in three dimensions [9] such grids will
contain cubes and polyhedrons.

We assume that Ω is endowed with two different grid partitions Kh(Ω)

and K̃h(Ω) having the same connectivity. In what follows, quantities defined

on the new grid will have the tilde accent, e.g. f̃ , whereas the quantities
on Kh(Ω) will have no accent. In the context of ALE methods we refer to

Kh(Ω) as the old or Lagrangian grid and K̃h(Ω) as the new or rezoned grid.
Typically, the rezoned grid is close to the Lagrangian but has better geometric
quality. The cells on the new grid are denoted by κ̃i, with barycenters b̃i,
i = 1, . . . , K. Because Kh(Ω) and K̃h(Ω) have the same connectivity, it is
convenient to assume that the new cells are numbered in the same order as
the old cells. Therefore, the Lagrangian parent of the rezoned cell κ̃i is the
cell κi.
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The neighborhood N(κi) of κi comprises of the cell κi itself and all its
neighbors, i.e. those cells in Kh(Ω) that share a vertex (in 1D), vertex or
edge (in 2D) and vertex, edge or face (in 3D) with κi. The remap problem
is stated under the assumption that the rezoned grid satisfies the locality
condition

κ̃i ⊂ N(κi), for all i = 1, . . . , K , (2.2)

that is, each rezoned cell κ̃i is contained in N(κi), the neighborhood of its
Lagrangian parent. Here the relation κ̃i ⊂ N(κi) is interpreted geometri-
cally (in contrast to its set-relational definition).4 In the context of ALE
methods, assumption (2.2) corresponds to using the continuous rezone strat-
egy. Finally, I denotes the operator that returns the index of a cell, i.e.
I (κi) = I (κ̃i) = i. The extension of this operator to sets of cells is natural,
e.g.

I (N(κi)) = {I (κi) |κi ∈ N(κi)}
is the set of all indices of the cells in N(κi).

For completeness, we review the specialization of some notation to one-
dimensional domains Ω = [a, b] where a < b are real numbers. In this case
Kh(Ω) is defined by a set of K+1 points a = x0 < x1 < . . . < xK−1 < xK = b,
the Lagrangian cells are the intervals κi = [xi−1, xi] and their volumes are

V (κi) = hi = xi − xi−1. The new grid K̃h(Ω) comprises of rezoned cells
κ̃i = [x̃i−1, x̃i] such that a = x̃0 < x̃1 < . . . < x̃K−1 < x̃K = b. In one
dimension, (2.2) assumes a particularly simple form:

κ̃i ⊂ (κi−1 ∪ κi ∪ κi+1) for i = 2, . . . , K − 1,

κ̃1 ⊂ (κ1 ∪ κ2) and κ̃K ⊂ (κK−1 ∪ κK) ,

or
κ̃i ⊂ [xi−2, xi+1] for i = 2, . . . , K − 1,

κ̃1 ⊂ [a, x2] and κ̃K ⊂ [xK−2, b] .

An equivalent form of the locality condition is given by

xi−1 ≤ x̃i ≤ xi+1 , i = 1, . . . , K − 1 . (2.3)

4In what follows, we use the set-relational definitions and the corresponding geometric
interpretations of ⊂, ⊆, ∪, ∩, \, ∈ interchangeably. Their meaning will be clear from the

context. In particular, relations between entities defined on K̃h(Ω) and those defined on
Kh(Ω) only make sense when interpreted geometrically relative to the common domain Ω.
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2.2. Statement of the remap problem

For convenience, we recall the formal statement of mass-density remap
following [6, 1]. We assume that there is a positive function ρ(x) > 0, referred
to as density, that is defined on Ω and whose values on the boundary ∂Ω are
known. The only information given about ρ in the interior of Ω is its mean
value on the old cells:

ρi =

∫
κi

ρ(x)dV

V (κi)
.

Equivalently, we can write

ρi =
mi

V (κi)
or mi = ρiV (κi) (2.4)

where

mi =

∫
κi

ρ(x)dV

is the (old) cell mass. The total mass is

M =

∫
Ω

ρ(x)dV =
K∑
i=1

∫
κi

ρ(x)dV =
K∑
i=1

mi =
K∑
i=1

ρiV (κi) .

For further reference we note that the mean density on every Lagrangian
cell κi trivially satisfies the bounds

ρmin
i ≤ ρi ≤ ρmax

i , (2.5)

where

ρmin
i =


min

j∈I (N(κi))
{ρj} if κi ∩ ∂Ω = ∅

min

{
min

j∈I (N(κi))
{ρj}, min

x∈N(κi)∩∂Ω
ρ(x)

}
if κi ∩ ∂Ω 6= ∅

(2.6)

and

ρmax
i =


max

j∈I (N(κi))
{ρj} if κi ∩ ∂Ω = ∅

max

{
max

j∈I (N(κi))
{ρj}, max

x∈N(κi)∩∂Ω
ρ(x)

}
if κi ∩ ∂Ω 6= ∅ .

(2.7)
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In words, for cells that do not intersect the boundary ∂Ω, the values of ρmin
i

and ρmax
i give the smallest and the largest mean densities in the neighborhood

of κi, respectively. For cells adjacent to the boundary, ρmin
i is the smaller of

the smallest mean cell density in the cell neighborhood and the smallest
density on the boundary segment N(κi) ∩ ∂Ω; ρmax

i is defined analogously.
For every cell κi the cell masses trivially satisfy the bounds

ρmin
i V (κi) = mmin

i ≤ mi ≤ mmax
i = ρmax

i V (κi) . (2.8)

A formal statement of the mass-density remap problem is as follows.

Definition 2.1 (Remapping of mass-density). Given mean density values ρi
on the old grid cells κi, find accurate approximations m̃i for the masses of
the new cells κ̃i,

m̃i ≈ m̃ex
i =

∫
κ̃i

ρ(x)dV ; i = 1, . . . , K , (2.9)

such that the following conditions hold:

R1. The total mass is conserved:

K∑
i=0

m̃i =
K∑
i=0

mi = M .

R2. If the exact density ρ(x) is a linear function on all of Ω, then the
remapped masses are exact:

m̃i = m̃ex
i =

∫
κ̃i

ρ(x)dV ; i = 1, . . . , K . (2.10)

R3. Given approximate masses m̃i on the new cells, define ρ̃i as in (2.4).
Let ρmin

i and ρmax
i be the numbers defined in (2.6)–(2.7). Then the

bounds
ρmin
i ≤ ρ̃i ≤ ρmax

i

and
ρmin
i V (κ̃i) = m̃min

i ≤ m̃i ≤ m̃max
i = ρmax

i V (κ̃i) (2.11)

hold on every new cell κ̃i. 2
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Requirements (R1–R3) in Definition 2.1 are derived from the desired
remap properties stated in (P1–P3). Obviously, (R1) and (R2) are just for-
mal statements of (P1) and (P2), whereas (R3) follows from the bounds in
(2.5) and (2.8), and the locality assumption (2.2). Therefore, the last re-
quirement is specific to a continuous rezone strategy and may have to be
modified for other settings. Such a modification is beyond the scope of this
paper.

2.3. Optimization formulation of the remap problem

In this section we develop an inequality-constrained optimization formu-
lation of remap that satisfies requirements (R1–R3). In preparation for this
task we examine sufficient conditions for (R1–R3), starting with (R1), the
conservation of mass. Owing to the locality assumption (2.2), the exact
masses of the new cells can be expressed in flux form (see [6]),

m̃ex
i = mi +

∑
j∈I (N(κi))

F ex
ij , (2.12)

where the (exact) fluxes are given by

F ex
ij =

∫
κ̃i∩κj

ρ(x)dV −
∫
κi∩κ̃j

ρ(x)dV . (2.13)

The flux form (2.12) is a consequence of the identity

κ̃i =

(
κi ∪

⋃
j∈I (N(κi))

κ̃i ∩ κj
)
\

⋃
j∈I (N(κi))

κi ∩ κ̃j ,

which holds for any two grids that satisfy the locality assumption (2.2). From
(2.13) it follows that the exact mass fluxes are antisymmetric: F ex

ij = −F ex
ji .

Assume now that we are given approximations F h
ij of the exact fluxes that

have the same property, i.e.

F h
ij = −F h

ji . (2.14)

Substituting F h
ij in (2.12) yields the following approximation5 for the new

cell masses:
m̃i = mi +

∑
j∈I (N(κi))

F h
ij . (2.15)

5A simplified version of (2.15) can be obtained by limiting flux exchanges to cells that
share a side. We refer to [10, 6] for further details.
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The use of this formula with approximate fluxes that satisfy (2.14) guarantees
global mass conservation, i.e. (R1) in Definition 2.1.

A standard way to compute F h
ij is to reconstruct an approximate density

ρhi (x) from the mean values on the old mesh and then integrate the result
over the regions in (2.13):

F h
ij =

∫
κ̃i∩κj

ρhi (x)dV −
∫
κi∩κ̃j

ρhi (x)dV . (2.16)

Therefore, sufficient conditions for (R2) are that (i) the integrals in (2.16)
are computed exactly6 for linear functions and that (ii) the reconstruction
procedure defining ρhi is exact for linear polynomials. Indeed, if these two
conditions hold and ρ is a linear polynomial on the entire domain Ω, then
ρhi = ρ for all 1 ≤ i ≤ K and

F h
ij =

∫
κ̃i∩κj

ρhi (x)dV −
∫
κi∩κ̃j

ρhi (x)dV = F ex
ij ,

that is, exact and approximate fluxes coincide. Consequently, formula (2.15)
gives the exact masses on the new cells, i.e. (2.10) holds.

Finally, sufficient (and necessary) conditions for (R3) can be readily ob-
tained by substituting the approximate mass in (2.11) with the flux form
formula (2.15). The result is a global system of linear inequalities for the
mass fluxes:

m̃min
i ≤ mi +

∑
j∈I (N(κi))

F h
ij ≤ m̃max

i ; i = 1, . . . , K . (2.17)

Having identified sufficient conditions for (R1)–(R3) in Definition 2.1 we
formulate a constrained optimization problem which fulfills these require-
ments. To this end, we assume that for every old cell κi ∈ Kh(Ω) there is a
density reconstruction ρhi (x) that is exact for linear functions. We recall that
this is one of the two sufficient conditions for linearity preservation, (R2).
Given ρhi (x) we define the target fluxes according to

F T
ij =

∫
κ̃i∩κj

ρhi (x)dV −
∫
κi∩κ̃j

ρhi (x)dV ,

6In practice this means that the integrals in (2.16) should be approximated by quadra-
tures that are exact for linear functions.
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and regard the fluxes in formula (2.15) as unknowns. We define the objective
(cost) functional to be the sum of squares7 of the differences between target
and unknown fluxes, so that its unconstrained minimizer is given by F T

ij .
Finally, to fulfill (R1) and (R3), we constrain the minimization process by
the antisymmetry condition (2.14) and the local bounds (2.17). Succinctly,
we have expressed remap as the constrained optimization problem

min
Fhij

K∑
i=1

∑
j∈I (N(κi))

(F h
ij − F T

ij )
2 subject to

F h
ij = −F h

ji i = 1, . . . , K, j ∈ I (N(κi))

m̃min
i ≤ mi +

∑
j∈I (N(κi))

F h
ij ≤ m̃max

i i = 1, . . . , K .

(2.18)

In practice, in lieu of (2.18) one works with the equivalent version
min
Fhij

K∑
i=1

∑
j∈I (N(κi))

i<j

(F h
ij − F T

ij )
2 subject to

m̃min
i ≤ mi +

∑
j∈I (N(κi))

i<j

F h
ij −

∑
j∈I (N(κi))

i>j

F h
ji ≤ m̃max

i i = 1, . . . , K ,

(2.19)

in which the antisymmetry constraint is explicitly enforced by using only the
fluxes F h

pq for which p < q.
By construction, any solution of (2.19) satisfies (R1) and (R3). However,

it is not immediately clear that (2.19) is a linearity-preserving formulation.
To establish (R2) one has to show that the target fluxes F T

ij are in the feasible
set of (2.19) whenever the exact density ρ is a linear function, i.e. that the
inequalities

m̃min
i ≤ mi +

∑
j∈I (N(κi))

i<j

F T
ij −

∑
j∈I (N(κi))

i>j

F T
ji ≤ m̃max

i i = 1, . . . , K , (2.20)

hold for linear ρ. The proof of this fact requires a simple technical result.

7This definition is used for simplicity. The cost functional can be defined using any
valid norm function.
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Lemma 2.1. Let n > 0 be an integer and let c ∈ IRn be an arbitrary fixed
vector. For any closed and bounded set of points P ⊂ IRn

min
x∈P

(cTx) = min
x∈H (P )

(cTx) and max
x∈P

(cTx) = max
x∈H (P )

(cTx) , (2.21)

where H (P ) is the convex hull of P .

Proof. The real-valued function cTx is continuous on IRn. The set P is closed
and bounded, which implies that cTx attains its minimum and maximum
over P . Since the convex hull of a closed and bounded set is closed and
bounded, see [11, Theorem 17.2], the same is true for H (P ). Therefore, the
statement (2.21) is well defined.

The function cTx is linear, hence both convex and concave. The claim
of the lemma follows from a standard result on the supremum of convex
(infimum of concave) functions, see e.g. [11, Theorem 32.2].

The following theorem provides sufficient conditions for (2.20) to hold.

Theorem 2.2. Assume the locality condition (2.2) and suppose that the exact
density ρ is linear in all of Ω. Let Bi denote the set of barycenters of the
Lagrangian cells in N(κi),

Bi = {bj | j ∈ I (N(κi))},

and let b̃i be the barycenter of the rezoned cell κ̃i. Sufficient conditions for
the target fluxes to be in the feasible set of (2.19), that is for (2.20) to hold,
are

b̃i ∈H (Bi) if κi ∩ ∂Ω = ∅, (2.22)

b̃i ∈H (Bi ∪ (N(κi) ∩ ∂Ω)) if κi ∩ ∂Ω 6= ∅, (2.23)

where H (·) denotes the convex hull.

Proof. Because ρ is linear and the density reconstruction is exact for linear
functions it follows that the remapped mass equals the exact mass on every
rezoned cell κ̃i:

m̃i = mi +
∑

j∈I (N(κi))
i<j

F T
ij −

∑
j∈I (N(κi))

i>j

F T
ji = mi +

∑
j∈I (N(κi))

i<j

F ex
ij −

∑
j∈I (N(κi))

i>j

F ex
ji = m̃ex

i .
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Therefore, proving that (2.20) holds reduces to showing that

m̃min
i ≤ m̃ex

i ≤ m̃max
i for all i = 1, . . . , K . (2.24)

Recalling ρ(x) = c0 + cTx and using the barycenter formula (2.1) yields

m̃ex
i =

∫
κ̃i

(c0 + cTx)dV = c0V (κ̃i) + cT

[∫
κ̃i

x dV

]

= c0V (κ̃i) + cT

[∫
κ̃i

x dV

V (κ̃i)

]
V (κ̃i) = (c0 + cT b̃i)V (κ̃i) .

We consider two cases, κi ∩ ∂Ω = ∅ and κi ∩ ∂Ω 6= ∅.

Case 1: Suppose κi ∩ ∂Ω = ∅. Using

ρmin
i = min

j∈I (N(κi))
{ρj} and ρmax

i = max
j∈I (N(κi))

{ρj} ,

the barycenter formula yields

m̃min
i = min

j∈I (N(κi))

[∫
κj

(c0 + cTx)dV

V (κj)

]
V (κ̃i) = min

bj∈Bi
(c0 + cTbj)V (κ̃i)

for the lower bound and

m̃max
i = max

j∈I (N(κi))

[∫
κj

(c0 + cTx)dV

V (κj)

]
V (κ̃i) = max

bj∈Bi
(c0 + cTbj)V (κ̃i)

for the upper bound in (2.24). From Lemma 2.1 it follows that

min
bj∈Bi

(c0+cTbj) = min
x∈H (Bi)

(c0+cTx) and max
bj∈Bi

(c0+cTbj) = max
x∈H (Bi)

(c0+cTx) .

(2.25)
Consequently, whenever κi ∩ ∂Ω = ∅, (2.24) is equivalent to

min
x∈H (Bi)

(c0 + cTx) ≤ (c0 + cTb̃i) ≤ max
x∈H (Bi)

(c0 + cTx) . (2.26)

A sufficient condition for (2.26) is given by (2.22).

15



Case 2: Suppose κi ∩ ∂Ω 6= ∅. We have

ρmin
i = min

{
min

j∈I (N(κi))
{ρj}, min

x∈N(κi)∩∂Ω
(c0 + cTx)

}
and

ρmax
i = max

{
max

j∈I (N(κi))
{ρj}, max

x∈N(κi)∩∂Ω
(c0 + cTx)

}
.

Using again the barycenter formula, we obtain

m̃min
i = min

{
min
x∈Bi

(c0 + cTx), min
x∈N(κi)∩∂Ω

(c0 + cTx)

}
and

m̃max
i = max

{
max
x∈Bi

(c0 + cTx), max
x∈N(κi)∩∂Ω

(c0 + cTx)

}
.

In other words,
m̃min
i = min

x∈Bi∪(N(κi)∩∂Ω)
(c0 + cTx)

and
m̃max
i = max

x∈Bi∪(N(κi)∩∂Ω)
(c0 + cTx) .

Treating Bi ∪ (N(κi) ∩ ∂Ω) as a set of points in IRn, another application of
Lemma 2.1 gives

m̃min
i = min

x∈H (Bi∪(N(κi)∩∂Ω))
(c0 + cTx)

and
m̃max
i = max

x∈H (Bi∪(N(κi)∩∂Ω))
(c0 + cTx) .

Therefore, whenever κi ∩ ∂Ω 6= ∅, a sufficient condition for (2.24) is given by
(2.23). This concludes the proof.

Remark 2.1. We note that the sufficient condition (2.23) can be replaced by
generally more restrictive conditions of the type

b̃i ∈H (Bi ∪ Si) if κi ∩ ∂Ω 6= ∅ ,

where Si ⊆ (N(κi) ∩ ∂Ω), i.e. Si is any (for example, finite) set of points
taken from the boundary segment N(κi) ∩ ∂Ω.
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In one dimension conclusions of Theorem 2.2 can be strengthened to show
that (2.22) and (2.23) are necessary and sufficient for linearity preservation.

Corollary 2.3. Assume that Ω = [a, b] is endowed with an old grid Kh(Ω)

and K̃h(Ω) is a rezoned grid that satisfies locality condition (2.3). If the exact
density is linear, but not constant, i.e. ρ(x) = c0 + c1x with c1 6= 0, then the
target fluxes are in the feasible set of the optimization problem (2.19) if and
only if (2.22) and (2.23) hold for the rezoned mesh.

Proof. Let B = {b1, . . . , bK} be the set of barycenters (midpoints) of all

cells in Kh(Ω). Let b0 = x0 and bK+1 = xK , and let b̃i be the barycenter
(midpoint) of the rezoned cell κ̃i. With this notation, conditions (2.22) and
(2.23) are equivalent to the single condition

b̃i ∈ [bi−1, bi+1] for all i = 1, . . . , K. (2.27)

The extrema of ρ(x) = c0 + c1x are attained at the endpoints of these
intervals. Therefore, following the argument that leads to statement (2.26)
in the proof of Theorem 2.2, the target fluxes are in the feasible set of the
optimization problem (2.19) if and only if

min{c1bi−1, c1bi+1} ≤ c1b̃i ≤ max{c1bi−1, c1bi+1} for all i = 1, . . . , K.

For c1 > 0, dividing all terms by c1 yields the inequalities

min{bi−1, bi+1} ≤ b̃i ≤ max{bi−1, bi+1} .

For c1 < 0, dividing all terms by c1 yields the (equivalent) inequalities

max{bi−1, bi+1} ≥ b̃i ≥ min{bi−1, bi+1} .

These inequalities are equivalent to (2.27).

Additionally, in one dimension the locality condition (2.3) is sufficient to
guarantee linearity preservation.

Lemma 2.4. Assume that Ω = [a, b] is endowed with an old grid Kh(Ω) and

K̃h(Ω) is a rezoned grid that satisfies locality condition (2.3). Then (2.27)

holds for K̃h(Ω).
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Proof. As in Corollary 2.3, let B = {b1, . . . , bK} be the set of midpoints of

all cells in Kh(Ω). Let b0 = x0 and bK+1 = xK , and let b̃i be the midpoint of
the rezoned cell κ̃i. In addition, define x−1 = x0 and xK+1 = xK . With this
notation, the locality condition (2.3) directly implies

xi−2 + xi−1

2
≤ x̃i−1 + x̃i

2
≤ xi + xi+1

2
for all i = 1, . . . , K ,

which is equivalent to the statement bi−1 ≤ b̃i ≤ bi+1, i.e. condition (2.27).

Remark 2.2. The converse is not true, i.e. the locality condition (2.3) is not
necessary for the barycenter condition (2.27) to hold. A simple example is
as follows. Let h > 0 and define the old mesh using the nodes xi = ih,
i = 0, 1, 2, 3. The midpoints of the old cells are

b1 =
h

2
; b2 =

3h

2
; b3 =

5h

2
.

Define the rezoned mesh using the nodes

x̃0 = x0 = 0; x̃1 =
9h

4
; x̃2 = b2 =

5h

2
; x̃3 = x3 = 3h .

The locality condition is violated because x̃1 = 9h/4 > 2h = x2. However,
the barycenters of the rezoned cells are

b̃1 =
9h

8
; b̃2 =

19h

8
; b̃3 =

22h

8
,

and (2.27) still holds.

Remark 2.3. We note that the proof of Theorem 2.2 does not depend in any
way on the type of the cells in the new and old grids. In particular, the suffi-
cient conditions (2.22) and (2.23) for linearity preservation remain in force for
grids comprising of cells such as nonconvex polygons, in two dimensions, and
nonconvex polyhedra, in three dimensions. In one dimension, from Corol-
lary 2.3 we know that these conditions become necessary and sufficient, and
that they are implied by the locality assumption (2.2), i.e. when the mesh
nodes satisfy (2.3).

Remark 2.4. The observations of Remark 2.3 related to one-dimensional do-
mains cannot be extended to higher dimensions. Specifically, in two and three
dimensions, (2.22) and (2.23) are sufficient but not necessary for the target

18



! 

c ="#

! 

c ="#

! 

cU
"

! 

cL
"

Figure 1: Corollary 2.3 gives a sufficient and necessary condition for linearity preser-
vation in one dimension; in two dimensions the level sets of ρ(x) = c0 + cTx are
perpendicular to ∇ρ(x) = c and the extrema of ρ(x) are achieved along the par-
allel lines c⊥L and c⊥U shown in the plot. Therefore, inequality (2.26) holds for all

points between the two lines, while (2.22) requires b̃i to remain in the convex hull
H (Bi) (the gray hexagon).

fluxes to be in the feasible set of (2.19). It is easy to see, as shown in Figure 1,
that in more than one dimension (2.26) can hold even if the barycenter of κ̃i
is not in the convex hull H (Bi). However, to take advantage of this fact, so
as to allow a wider range of mesh motions, would require knowledge of the
exact linear density, which of course is not a realistic assumption.

Simple examples showing mesh motions that comply with or violate con-
dition (2.22) are shown in Figure 2. It is worth pointing out that a similar but
more restrictive condition κ̃i ⊂ H (Bi) is necessary and sufficient for linear
functions to be preserved under Van Leer slope limiting; see [12]. The center

panel in Figure 2 shows an example for which κ̃i * H (Bi) but b̃i ∈H (Bi),
i.e. condition (2.22) in Theorem 2.2 holds.

3. Connection with flux-corrected remap

In this section we examine the connections between the global OBR prob-
lem (2.19) and the FCR algorithm [1]. The first step in this process is to
rewrite (2.19) in terms of the low-order and high-order fluxes employed by
FCR. The reformulation of OBR amounts to a change of variables that leaves

19



!" #"

$"%"
!"# $"#

%"#&"#

!"# $"#

%"#

&"#

(a) (b) (c)

Figure 2: Examples of admissible and inadmissible mesh motions for linearity
preservation: (a) the neighborhood N(κi) consisting of 9 square cells, the La-
grangian parent of κ̃i with vertices (P,Q,R,S), its barycenter (the diamond), the
set Bi (the solid dots), and its convex hull H (Bi) (the dotted square); (b) an
admissible rezoned grid for which b̃i ∈ H (Bi); (c) an inadmissible rezoned grid
for which b̃i /∈ H (Bi). In (b) and (c) κ̃i is the cell with vertices (P’,Q’,R’,S’).
All cells in (a)–(c) satisfy the locality condition (2.2). Note that the rezoned cell
in (b) violates κ̃i ⊂ H (Bi) which is necessary and sufficient for Van Leer slope
limiting to recover linear functions [12], but which is not required for the OBR
formulation.

the solution of (2.19) intact but places the OBR problem in a form that can
be compared with FCR. The second step replaces the constraints in OBR by
a set of inequalities which are sufficient for the original constraints to hold
but have a simpler structure. This step gives rise to a modified version of
OBR, termed M-OBR, in which the original objective is minimized over a
subset of the original OBR feasible set. The final step entails showing that
the optimal solution of M-OBR coincides with the FCR solution.

3.1. Reformulation of the optimization-based remap

The low-order fluxes in FCR are defined by the formula

FL
ij =

∫
κ̃i∩κj

ρhi (x) dV −
∫
κi∩κ̃j

ρhi (x) dV ,

using a piecewise constant reconstruction ρhi (x) of the old mesh values ρi, i.e.

ρhi (x) = ρi ∀x , i = 1, . . . , K .
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We seek the solution of (2.19) as a linear combination of the low-order fluxes
and the high-order target fluxes

F h
ij = (1− aij)FL

ij + aijF
T
ij = FL

ij + aijdFij , (3.1)

where dFij = F T
ij − FL

ij . The coefficients aij are the new variables for the
optimization problem. Except for the symmetry condition aij = aji, the new
variables are not subject to any additional constraints. As before, we enforce
the symmetry constraint by using only coefficients apq for which p < q.

Under the change of variables (3.1) the objective and the constraints in
(2.19) transform as follows. Using (3.1), each term in the objective functional
in (2.19) can be written as

F h
ij − F T

ij = FL
ij + aijdFij − F T

ij = (aij − 1)dFij .

To transform the constraints, note that in terms of the new variables the
remapped mass is given by the formula

m̃i = mi +
∑

j∈I (N(κi))
i<j

F h
ij −

∑
j∈I (N(κi))

i>j

F h
ji

= mi +
∑

j∈I (N(κi))
i<j

(
FL
ij + aijdFij

)
−
∑

j∈I (N(κi))
i>j

(
FL
ji + ajidFji

)
=

(
mi +

∑
j∈I (N(κi))

i<j

FL
ij −

∑
j∈I (N(κi))

i>j

FL
ji

)
+
∑

j∈I (N(κi))
i<j

aijdFij −
∑

j∈I (N(κi))
i>j

ajidFji

= m̃L
i +

∑
j∈I (N(κi))

i<j

aijdFij −
∑

j∈I (N(κi))
i>j

ajidFji ,

where
m̃L
i = mi +

∑
j∈I (N(κi))

i<j

FL
ij −

∑
j∈I (N(κi))

i>j

FL
ji

is a low-order approximation of the mass in the rezoned cell κ̃i. If the new
mesh satisfies the locality condition (2.2), it is not hard to prove that

m̃min
i ≤ m̃L

i ≤ m̃max
i .

Therefore,

Q̃min
i := m̃min

i − m̃L
i ≤ 0 and Q̃max

i := m̃max
i − m̃L

i ≥ 0 ,
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and the transformed constraints can be written in the form

Q̃min
i ≤

∑
j∈I (N(κi))

i<j

aijdFij −
∑

j∈I (N(κi))
i>j

ajidFji ≤ Q̃max
i i = 1, . . . , K . (3.2)

In summary, after changing variables according to (3.1), the OBR problem
(2.19) assumes the form

min
aij

K∑
i=1

∑
j∈I (N(κi))

i<j

(1− aij)2(dFij)
2 subject to

Q̃min
i ≤

∑
j∈I (N(κi))

i<j

aijdFij −
∑

j∈I (N(κi))
i>j

ajidFji ≤ Q̃max
i i = 1, . . . , K .

(3.3)

Problems (2.19) and (3.3) are completely equivalent. For example, the global
minimizer aij = 1 of (3.3), sans constraints, corresponds to F h

ij = F T
ij , which

is the global minimizer of (2.19), sans constraints. The sufficient conditions
in Theorem 2.2 guarantee that aij = 1 are in the feasible set of (3.3) when
the exact density ρ(x) is linear function in all of Ω.

3.2. The modified optimization-based remap formulation

In this section we modify (3.3) to another inequality-constrained opti-
mization problem, termed M-OBR, in which the same objective is minimized
subject to a set of simple box constraints. The box constraints are sufficient
for the original inequality constraints in (3.3) to hold and are derived by
following the same reasoning as in [1]. To this end, we define the quantities

P−i =

dFij≤0∑
j∈I (N(κi))

i<j

dFij −
dFji≥0∑

j∈I (N(κi))
i>j

dFji ≤ 0 ; P+
i =

dFij≥0∑
j∈I (N(κi))

i<j

dFij −
dFji≤0∑

j∈I (N(κi))
i>j

dFji ≥ 0 ;

(3.4)

D−i =


Q̃min
i

P−i
if P−i < 0

0 if P−i = 0

and D+
i =


Q̃max
i

P+
i

if P+
i > 0

0 if P+
i = 0

.

Using these quantities we reduce the constraints in (3.3) to a set of box
constraints in three steps.
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In the first step we replace the upper and lower bounds in the constraints
of (3.3) by D−i P

−
i and D+

i P
+
i , respectively:

D−i P
−
i ≤

∑
j∈I (N(κi))

i<j

aijdFij −
∑

j∈I (N(κi))
i>j

ajidFji ≤ D+
i P

+
i i = 1, . . . , K . (3.5)

In the second step we split (3.5) into two parts, according to the signs of the
flux differentials:

(a) D−i P
−
i ≤

dFij≤0∑
j∈I (N(κi))

i<j

aijdFij −
dFji≥0∑

j∈I (N(κi))
i>j

ajidFji ≤ 0

(b) 0 ≤
dFij≥0∑

j∈I (N(κi))
i<j

aijdFij −
dFji≤0∑

j∈I (N(κi))
i>j

ajidFji ≤ D+
i P

+
i

i = 1, . . . , K . (3.6)

Finally, using definition (3.4), we reduce (3.6) to a set of box constraints by
applying the upper and the lower bounds componentwise:

(a)

{
D−i dFij ≤ aijdFij ≤ 0 for i < j, dFij ≤ 0

D−i dFji ≥ ajidFji ≥ 0 for i > j, dFji ≥ 0

(b)

{
0 ≤ aijdFij ≤ D+

i dFij for i < j, dFij ≥ 0

0 ≥ ajidFji ≥ D+
i dFji for i > j, dFji ≤ 0

i = 1, . . . , K

j ∈ I (N(κi))
.

(3.7)
Using the box constraints (3.7) in lieu of the original set of inequalities in
(3.3) yields the modified OBR problem (M-OBR)

min
aij

K∑
i=1

∑
j∈I (N(κi))

i<j

(1− aij)2(dFij)
2 subject to

(a)

{
D−i dFij ≤ aijdFij ≤ 0 for i < j, dFij ≤ 0

D−i dFji ≥ ajidFji ≥ 0 for i > j, dFji ≥ 0

(b)

{
0 ≤ aijdFij ≤ D+

i dFij for i < j, dFij ≥ 0

0 ≥ ajidFji ≥ D+
i dFji for i > j, dFji ≤ 0

i = 1, . . . , K

j ∈ I (N(κi))
.

(3.8)
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3.2.1. Properties of the M-OBR formulation

In this section we study the global M-OBR formulation (3.8) and its
connections to the OBR problem (3.3). The first result shows that (3.8)
always has a solution.

Proposition 3.1. The feasible set of the modified OBR problem (3.8) is
non-empty.

Proof. The inequalities in (3.8) are always satisfied for aij = 0 because D−i ≥
0 and D+

i ≥ 0 for all i = 1, . . . , K. Therefore, the feasible set of (3.8) always
contains at least one point.

We note that aij = 0 results in F h
ij = FL

ij , which corresponds to a low-
order mass remap or, using an advection parlance, to a “donor-cell” solution
of the remap problem. Thus, at the least, the M-OBR problem admits the
same solution as a conventional low-order local remapper.

The following theorem examines the relationship between M-OBR and
OBR.

Theorem 3.2. The feasible set of the M-OBR formulation (3.8) is a subset
of the feasible set of the OBR formulation (3.3).

Proof. The feasible sets of the OBR and M-OBR problems are given by

UO = {aij ∈ IR | (3.2) hold for i = 1, . . . , K and j ∈ I (N(κi))} ,

and

UM = {aij ∈ IR | (3.7) hold for i = 1, . . . , K and j ∈ I (N(κi))} ,

respectively. To show that UM ⊆ UO define the intermediate sets

UA = {aij ∈ IR | (3.5) hold for i = 1, . . . , K and j ∈ I (N(κi))} ,

and

UB = {aij ∈ IR | (3.6) hold for i = 1, . . . , K and j ∈ I (N(κi))} ,

corresponding to the first and the second stages in the transformation of the
OBR constraints to the box constraints of M-OBR.

To prove the theorem we will show that

UM ⊆ UB ⊆ UA ⊆ UO .

24



Step 1: UM ⊆ UB.. Let {aij} ∈ UM . Summing up the inequalities in (3.7)
yields

dFij≤0∑
j∈I (N(κi))

i<j

D−i dFij −
dFji≥0∑

j∈I (N(κi))
i>j

D−i dFji ≤
dFij≤0∑

j∈I (N(κi))
i<j

aijdFij −
dFji≥0∑

j∈I (N(κi))
i>j

ajidFji ≤ 0 ,

0 ≤
dFij≤0∑

j∈I (N(κi))
i<j

aijdFij −
dFji≥0∑

j∈I (N(κi))
i>j

ajidFji ≤
dFij≤0∑

j∈I (N(κi))
i<j

D+
i dFij −

dFji≥0∑
j∈I (N(κi))

i>j

D+
i dFji .

From (3.4) we see that the left hand side in the first inequality equals D−i P
−
i

and the right hand side in the second inequality is D+
i P

+
i . Therefore, in-

equalities (3.6) hold for {aij}, i.e. {aij} ∈ UB. This proves the inclusion
UM ⊆ UB.

Step 2: UB ⊆ UA.. Assume that {aij} ∈ UB. Summing up inequalities (a)
and (b) in (3.6) gives

D−i P
−
i ≤

dFij≤0∑
j∈I (N(κi))

i<j

aijdFij−
dFji≥0∑

j∈I (N(κi))
i>j

ajidFji+

dFij≥0∑
j∈I (N(κi))

i<j

aijdFij−
dFji≤0∑

j∈I (N(κi))
i>j

ajidFji ≤ D+
i P

+
i

from where it follows that (3.5) hold for {aij}, i.e. {aij} ∈ UA. This proves
the inclusion UB ⊆ UA.

Step 3: UB ⊆ UO.. Finally, let {aij} ∈ UA. Note that

Q̃min
i ≤ D−i P

−
i and D+

i P
+
i ≤ Q̃max

i .

Therefore, inequalities (3.2) hold for {aij}, i.e. {aij} ∈ UO. This proves the
inclusion UA ⊆ UO.

Remark 3.1. Since the M-OBR feasible set is contained in the OBR feasible
set due to Theorem 3.2, it follows that the OBR solution is always at least
as accurate as the M-OBR solution.
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3.2.2. Connection with the FCR algorithm

In this section we show that the M-OBR formulation is equivalent to the
recently proposed FCR algorithm. For convenience, below we summarize the
FCR formulation for the mass-density remap. Full details can be found in [1,
Section 3].

The original motivation for FCR is to replace a global optimization prob-
lem such as OBR by a series of local problems. To this end, FCR restricts
the mass fluxes in (2.15) to convex combinations of the low-order and the
high-order target fluxes, i.e.

F h
ij = (1− aij)FL

ij + aijF
T
ij = FL

ij + aijdFij , (3.9)

where aij = aji and 0 ≤ aij ≤ 1. The convexity assumption is motivated by
analogies with the FCT approach [7] for advection. Except for this require-
ment, formula (3.9) is identical to the change of variables in (3.1). In the
FCR algorithm the approximate mass flux exchanges in (3.9) are computed
using the following values for the unknown coefficients:

aij =

{
min{D+

i , D
−
j , 1} if dFij > 0

min{D−i , D+
j , 1} if dFij < 0

1 ≤ i, j ≤ K

and i < j
. (3.10)

For completeness, one can set aij = 1 whenever dFij = 0. In [1] it is shown
that (3.10) is sufficient for the local mass-density bounds in (3.2) to hold.

We proceed to show that the solution of the global M-OBR problem is also
given by (3.10). This fact establishes the equivalence of FCR and M-OBR
and is a direct consequence of the following theorem.

Theorem 3.3. The M-OBR formulation (3.8) is equivalent to the following
set of independent, single-variable, constrained optimization problems: for
1 ≤ i, j ≤ K and i < j solve

min
aij

(1− aij)2(dFij)
2 subject to

0 ≤ aij ≤

{
min{D+

i , D
−
j } if dFij > 0

min{D−i , D+
j } if dFij < 0 .

(3.11)

Proof. A flux differential dFij, i < j, can be negative, zero or positive. If
dFij = 0, we denote the variable aij as free, because the box constraint
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in (3.7) holds for any value of aij. Note that the terms associated with free
variables do not contribute to the objective, because (1 − aij)2(dFij)

2 = 0.
It follows that all free variables can be eliminated8 from the optimization
problem. Thus, without loss of generality we may assume that dFij 6= 0.

It is easy to see that whenever dFij 6= 0, the associated variable aij enters
in exactly one constraint of type (a) and one constraint of type (b). Solving
the inequalities for aij gives

0 ≤ aij ≤ D+
i and 0 ≤ aij ≤ D−j

for i < j and dFij > 0, and

0 ≤ aij ≤ D−i and 0 ≤ aij ≤ D+
j

for i < j and dFij < 0. Succinctly,

0 ≤ aij ≤

{
min{D+

i , D
−
j } if dFij > 0

min{D−i , D+
j } if dFij < 0

1 ≤ i, j ≤ K

and i < j

is a new set of box constraints that is completely equivalent to (3.8). Because
each of the terms in the objective functional depends on only one variable,
it follows that (3.8) decouples into the set of independent, single-variable,
constrained optimization problems given in (3.11).

The equivalence of FCR and M-OBR easily follows.

Corollary 3.4. The solution {aij} of the M-OBR problem (3.8) is given by
the FCR formula (3.10).

Proof. To find the solution of the M-OBR problem we set all free variables
to 1. The rest of the variables are computed by solving the decoupled op-
timization problems in (3.11). For a given pair of indices i < j let Dij ≥ 0
denote the upper bound in the constraint of the optimization problem for the
variable aij. The cost functional (1− aij)2(dFij)

2 in this problem represents
a parabola with the vertex at (1,0). Therefore, the constrained minimum is
achieved at the smaller of the two values aij = 1 or aij = Dij. It follows
that whenever dFij 6= 0, the solution of the optimization problem in (3.11)
is given by formula (3.10).

8For a complete match with FCR we can set all free variables to 1.
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4. Computational studies

In this section we present computational examples in one space dimension
which examine the qualitative and quantitative properties of the OBR and
M-OBR formulations. Because, as shown in Corollary 3.4, the solution of the
M-OBR problem (3.8) is equivalent to the one given by the FCR algorithm,
the studies in this section effectively compare and contrast the computa-
tional properties of OBR and FCR. Nonetheless, because FCR is not an
optimization formulation and does not posses a notion of a feasible set, in
the discussion we continue to differentiate between FCR and the M-OBR
whenever the role of the feasible set needs to be highlighted. For simplicity,
in all tests the computational domain Ω is the unit interval [0, 1]. We refer
to Section 2.3 for relevant notation.

4.1. Optimization techniques for the solution of the OBR problem

In one space dimension, the OBR problem (2.19) reduces to

min
Fhi,i+1

K−1∑
i=1

(F h
i,i+1 − F T

i,i+1)2 subject to

Fmin
1 ≤ F h

1,2 ≤ Fmax
1 ,

Fmin
i ≤ F h

i,i+1 − F h
i−1,i ≤ Fmax

i i = 2, . . . , K − 1 ,

Fmin
K ≤ −F h

K−1,K ≤ Fmax
K ,

(4.1)

where Fmin
i := m̃min

i −mi, F
max
i := m̃max

i −mi. This quadratic programming
problem (QP) can be solved numerically using a variety of well-established
techniques for inequality-constrained optimization, such as interior-point and
active-set methods, see [13, Ch.16] and references therein. A detailed inves-
tigation of the performance of interior-point and active-set algorithms in the
context of OBR problems is beyond the scope of this paper. Instead, we of-
fer two alternatives that rely on either (i) an equivalent reformulation of the
problem (4.1) into a singly linearly constrained QP, or (ii) an asymptotically
equivalent reformulation into a sequence of box-constrained QPs. For both
classes of problems, specialized solution approaches are available that take
full advantage of the inherent structure, see [14, 15, 16] and [17, 18], and
therefore can be extremely efficient. In particular, the box-constrained refor-
mulation allows us to develop an algorithm that in practice exhibits the same
O(K) complexity as the state-of-the-art remap techniques, such as FCR.
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It is straightforward to verify that the change of variables

fh1 = F h
1,2, fhi = F h

i,i+1 − F h
i−1,i, i = 2, . . . , K − 1, fhK = −F h

K−1,K

yields the reformulation
min
fhi

K−1∑
i=1

(
i∑

j=1

fhj − F T
i,i+1

)2

subject to

Fmin
i ≤ fhi ≤ Fmax

i i = 1, . . . , K,∑K
i=1 f

h
i = 0,

(4.2)

which is equivalent to (4.1). We call this the singly linearly constrained 1D-
OBR QP. Algorithms developed in [14, 15, 16] can be used for an efficient
solution of (4.2). We plan to investigate their effectiveness in a future pub-
lication.

The single equality constraint in (4.2) can be enforced via a quadratic
penalty term, see [13, Ch.17], which gives the box-constrained 1D-OBR QP

min
fhi

K−1∑
i=1

(
i∑

j=1

fhj − F T
i,i+1

)2

+
1

γ

(
K∑
i=1

fhi

)2

subject to

Fmin
i ≤ fhi ≤ Fmax

i i = 1, . . . , K,

(4.3)

where γ > 0. In a penalty approach, one typically drives γ to zero by solving
a sequence of box-constrained QPs, however, in remap applications, setting
γ to a sufficiently small value and solving a single QP proves as effective as
solving a sequence of QPs with a decreasing sequence {γk}. For the solution
of (4.3) we adapt the algorithm for box-constrained QPs developed by Cole-
man and Hulbert in [17]. In contrast to Coleman and Hulbert, who suggest
the use of Cholesky factorizations of a matrix that has the structure of the
system matrix given by the objective functional in 4.3, we take full advantage
of the structure of the system matrix and develop a procedure for the appli-
cation of its inverse in O(K) operations. The details of the linear-algebraic
considerations are beyond the scope of this paper. The application of the
inverse of the system matrix dominates the cost of each optimization itera-
tion. The outer optimization loop converges to machine precision in 6 to 15
Newton iterations for all examples, which agrees with the observations made
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by Coleman and Hulbert for a variety of box-constrained QPs. Therefore, as
demonstrated in Section 4.4, the total computational cost is O(K).

In the following we use γ = 10−3. For all numerical results presented
here, it can be verified that the solutions of (4.2) and (4.3) agree to at least
six significant digits in the reported norms.

4.2. Shape preservation

In this section we examine the preservation of the shape of the density
function under the OBR and M-OBR formulations. The goal is to show that
the smaller feasible set of the M-OBR formulation (3.8) can limit its ability
to accurately preserve the shape of a given density distribution. To this end
we design a “torture” test example which shows how the shape of a given
“peak” density distribution can be changed by M-OBR into a step-function
profile. Of course, because M-OBR and FCR are equivalent, the same will
hold true for the FCR solution.

A schematic of the torture test is shown in Figure 3. The old mesh Kh(Ω)
is defined by a uniform partition of the unit interval into 3 cells using the
vertices x1 = 0, x2 = 1/3, x3 = 2/3 and x4 = 1. The nodes of the new mesh

K̃h(Ω) are set to x̃1 = x1, x̃2 = x2 + ∆1, x̃3 = x3 −∆2 and x̃4 = x4, where
∆1 > 0 and ∆2 > 0 are such that ∆1 + ∆2 < 1/3; see Figure 3. In other
words, the new mesh is defined by compressing the middle cell of the old
mesh. Note that K̃h(Ω) satisfies the locality assumption (2.3) and that

x2 < x̃2 and x̃3 < x3 . (4.4)

To complete the specification of the torture test we prescribe the mean den-
sity values ρ1, ρ2, ρ3 on the old cells and boundary values ρb1 = 0, ρb3 = 0 at
the endpoints. The mean density values are subject to the conditions

ρ1 > ρ3 and ρ2 = max{ρ1, ρ2, ρ3} . (4.5)

To explain these choices it is necessary to examine the structure of the feasible
set of (3.3) and its modification (3.8), specialized to the torture test. As
before, we follow the rule that the antisymmetry of fluxes and the symmetry
of coefficients are enforced by using index pairs {i, j} for which i < j. In the
case of the torture test, which has three cells, there are two such pairs, given
by {1, 2} and {2, 3}. Therefore, the independent fluxes are F h

12 and F h
23, the

unknown coefficients are a12 and a23, and the OBR problem (3.3) specializes
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to 

min
a12 ,a23

(1− a12)2(dF12)2 + (1− a23)2(dF23)2 subject to

Q̃min
1 ≤ a12dF12 ≤ Q̃max

1 (1)

Q̃min
2 ≤ a23dF23 − a12dF12 ≤ Q̃max

2 (2)

Q̃min
3 ≤ − a23dF23 ≤ Q̃max

3 (3)

(4.6)

Regarding the M-OBR formulation (3.3), a simple but tedious calculation
shows that dF12 > 0 and dF23 > 0 whenever (i) the middle cell is compressed,
i.e. (4.4) holds, and (ii) the first condition in (4.5) holds, i.e. ρ1 > ρ3. As a
result, the M-OBR problem assumes the form

min
a12 ,a23

(1− a12)2(dF12)2 + (1− a23)2(dF23)2 subject to

0 ≤ a12 ≤ min{D+
1 , D

−
2 } (1)

0 ≤ a23 ≤ min{D+
2 , D

−
3 } (2)

(4.7)

The left and the right panels in Figure 4 show cartoons of the feasible sets
of (4.6) and (4.7), respectively. The horizontal and the vertical axes in these
plots correspond to the unknowns a12 and a23, respectively. The strips be-
tween the pairs of lines marked by OBR(1), OBR(2) and OBR(3) corre-
spond to the three inequality constraints in (4.6). Note that the slope of
the lines marked by OBR(2) is given by dF12/dF23 and is therefore positive.
The lines marked by M-OBR(U1) and M-OBR(U2) represent the two upper
bounds in the two inequality constraints in (4.7), respectively. The lower
bounds coincide with the coordinate axes and are marked by M-OBR(L1)
and M-OBR(L2), respectively.

The relation between the two feasible sets can be understood by exam-
ining the points A, B, C, D, E and F. The first pair of points corresponds
to the lower and upper bounds on a12 imposed by the first constraint in
(4.6). The second pair, i.e., C, and D, corresponds to the lower and upper
bounds on a23 imposed by the third constraint in (4.6). The last two points
correspond to the intercepts of the lines associated with the upper and lower
bounds in the second constraint in (4.6) with the vertical and horizontal co-
ordinate axes, respectively. The definitions of these points and their values
corresponding to the actual test data used in the study are summarized in
Table 1.
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Point A B C D E F

Definition
Q̃min

1

dF12

Q̃max
1

dF12

Q̃max
3

−dF23

Q̃min
3

−dF23

Q̃max
2

dF23

Q̃min
2

−dF12

Value -25.04 4.10 -20.53 8.62 0.00 3.28

Table 1: Control points for the feasible sets of the OBR (4.6) and the M-OBR (4.7)
problems and their values for ∆1 = ∆2 = 0.14, ρ1 = 80, ρ2 = 100 and ρ3 = 0.

To explain the construction of the torture test, note that the shape of the
M-OBR feasible set is completely determined by the positions of E and F
along the vertical and the horizontal coordinate axes. This is a consequence of
the worst-case analysis used to derive the constraints of (4.7). Consequently,
by moving E to the origin the M-OBR feasible set can be reduced to a line
extending from the origin to point F. This removes the point (1, 1) from
the feasible set and forces the M-OBR formulation to pick a solution that
corresponds to remap by low-order fluxes. By moving E to the origin we
also shrink the OBR feasible set. However, because the lines corresponding
to the second constraint have positive slopes, they can be chosen in such a
way that (1, 1) remains in this feasible set.

In order to move E to the origin we need to set Q̃max
2 /dF23 = 0. It is not

hard to see that this is true whenever (i) the middle cell is compressed, i.e.
(4.4) holds, and (ii) the second condition in (4.5), i.e. ρmax

2 = ρ2 holds.
Figure 5 compares the OBR and M-OBR solutions on the new mesh

for ∆1 = ∆2 = 0.14, ρ1 = 80, ρ2 = 100, ρ3 = 0, and boundary values
ρb1 = ρb3 = 0. Table 2 shows the corresponding values of the lower and
the upper inequality bounds as well as the values of the flux differentials
in (4.6)–(4.7).

The initial density distribution has the shape of a “peak” and is shown
in the top panel of Figure 5. The bottom panel in Figure 5 shows clearly
that the OBR solution preserves this shape on the new mesh. However, as
one can see from the middle panel in Figure 5, the M-OBR solution changes
the shape of the peak to a step-function profile on the new mesh. Of course,
owing to the equivalence of M-OBR and FCR the same will happen with the
FCR solution.

The constraint sets of (4.6) and (4.7) for this example are compared
in Figure 6. We see that (1, 1) is included in the former but not in the
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i = 1 i = 2 i = 3

Q̃min
i -40.66 -5.33 -14.00

Q̃max
i 6.66 0.00 33.33

dFi,i+1 1.62 1.62 —

Table 2: Numerical values for the lower and the upper bounds and the flux differentials in
(4.6)–(4.7) corresponding to ∆1 = ∆2 = 0.14, ρ1 = 80, ρ2 = 100, ρ3 = 0, and ρb1 = ρb3 = 0.

latter. This is a consequence of the worst-case analysis used to obtain the
constraint set in (4.7).

4.3. Convergence study of the OBR and the M-OBR formulations

The convergence studies in this section are designed to asses the asymp-
totic accuracy of the OBR and M-OBR (FCR) algorithms in the context of
a continuous rezone strategy. In this case, the appropriate notion of remap
error and convergence rates can be defined with the help of a cyclic remap
test. The precise methodology used in the paper is described below.

4.3.1. Methodology for estimation of convergence rates of remap algorithms

A cyclic remap test simulates continuous rezone by performing remap
over a parameterized sequence of grids Kr

h(Ω), r = 0, . . . , R, such that the
following three condition are satisfied:

• Every Kr
h(Ω), r = 1, . . . , R, is topologically equivalent to the initial

grid K0
h(Ω), i.e. all grids in the sequence have the same number of cells

and the same connectivity as K0
h(Ω).

• Any two consecutive grids Kr−1
h (Ω), Kr

h(Ω) satisfy the locality assump-
tion (2.2).

• The first and the last grids coincide, i.e., K0
h(Ω) = KR

h (Ω).

The integer R is the number of remap steps. Its reciprocal 1/R can be
thought of as a “pseudo-time” step which defines the temporal resolution of
the cyclic remap test. The total resolution of the test is specified by the pair
(K,R), where K is the number of cells in K0

h(Ω).
Given a cyclic mesh sequence {Kr

h(Ω)}Rr=0, called a cyclic grid, with total
resolution (K,R), let ~ρ r ∈ IRK denote the approximate density solution on
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Figure 3: Specification of the “torture” test for shape preservation. The new mesh is
defined by compressing the middle cell of the old mesh. The mean density values are
subject to the conditions that ρ1 > ρ3 and that ρ2 is the largest value. The results
reported in this section correspond to ∆1 = ∆2 = 0.14, ρ1 = 80, ρ2 = 100, ρ3 = 0, and
ρb1 = ρb3 = 0.

Kr
h(Ω), and ‖ · ‖ be a given norm on IRK . The remap error on {Kr

h(Ω)}Rr=0 is
defined by the norm of the density difference on the first and the last grids
in the sequence, i.e.

E (ρ; ‖ · ‖, K,R) = ‖~ρ 0 − ~ρ r‖ . (4.8)

This definition is justified by the fact that K0
h(Ω) = KR

h (Ω), and so the
difference between the first and last solutions provides a measure of the total
error accrued by the remap algorithm.

To compute the remap error E (ρ; ‖ · ‖, K,R) in (4.8) we use three norms

suggested in [6]. Given an arbitrary vector ~φ ∈ IRK these norms are defined
as follows:

‖~φ‖2 =

(
K∑
i=1

φ2
ihi

)1/2

, ‖~φ‖1 =
K∑
i=1

|φi|hi , ‖~φ‖∞ = max
0≤i≤K

|φi| . (4.9)
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Figure 4: Structure of the OBR (left panel) and M-OBR (right panel) feasible sets when
dF12 and dF23 are positive. The strips between the pairs of lines marked by OBR(1),
OBR(2) and OBR(3) correspond to the three inequality constraints in (4.6). The lines
marked by OBR(2) have positive slopes given by dF12/dF23. The lines marked by M-
OBR(U1) and M-OBR(U2) represent the two upper upper bounds in the two inequality
constraints in (4.7), respectively. The lower bounds correspond to the coordinate axes and
are identified by M-OBR(L1) and M-OBR(L2), respectively. The shadows point towards
the interiors of the domains defined by the constraints.

If ~φ is a piecewise constant approximation of a given scalar function φ(x),
then these norms are discrete approximations of the L2, L1 and L∞ norms
on Ω, respectively.

Once the appropriate notion of remap error is defined, the estimate of
convergence rates proceeds in the usual fashion: we compute remap errors
using a sequence of cyclic grids with increasing resolution and then estimate
the slope of the curve representing the log-log plot of the remap error versus
the spatial resolution of the cyclic grid. To this end we use least-squares
regression fit. Specifically, for a sequence of cyclic grids with resolutions
(Ki, Ri), i = 0, . . . , Q and corresponding remap errors Ei = E (ρ; ‖ ·‖, Ki, Ri),
the rate of convergence νQ is estimated by least-squares regression, i.e. by
solving the minimization problem

{νQ, ωQ} = arg min

Q∑
i=1

(log Ei + ν logRi − ω)2 . (4.10)

4.3.2. Convergence study on smooth cyclic grids

The cyclic grids and the density functions for this study are adopted
from [6]. Specifically, for r = 0, . . . , R the mesh node positions in Kr

h(Ω) are
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given by
xrk = g(x0

k, tr) ; k = 0, . . . , K , (4.11)

where

x0
k =

k

K
; k = 0, . . . , K and tr =

r

R
; r = 0, . . . , R

are the uniform initial grid and sequence of pseudo-time steps, respectively,
and

g(x, t) = (1− α(t))x+ α(t)x3; α(t) =
sin(4πt)

2
(4.12)

is the grid mapping. One can show that for any 0 ≤ t ≤ 1 the grids generated
by this mapping are valid [6]. As a result, for any 0 ≤ r ≤ R grids Kr

h(Ω)
satisfy

0 = xr0 < xr1 < . . . < xrK = 1 .

If R is sufficiently large the locality condition (2.3) also holds for every pair
of consecutive grids.

Convergence rates are estimated as follows. First, we use (4.11) to define
a sequence of Q = 4 cyclic grids with total resolutions (Ki, Ri) given by
(64, 320), (256, 1280), (1024, 5120), and (4096, 20480), respectively. Thus,
the resolution is increased by a factor of four in every subsequent set. Then,
for every norm in (4.9) we compute the errors Ei = E (ρ; ‖ · ‖, Ki, Ri), i =
1, 2, 3, 4, and solve (4.10) with {E1,E2}, {E1,E2,E3}, and {E1,E2,E3,E4}. This
approach yields three increasingly accurate estimates of the convergence rates
in each norm.

This estimation procedure is applied to three different density distribu-
tions suggested in [6]: the “sine”

ρ(x) = 2 + sin(2πx) , (4.13)

the “peak”

ρ(x) =


0 x < 0.25 or x > 0.75

max{0.001, 4(x− 0.25)} 0.25 ≤ x ≤ 0.50

max{0.001, 4(0.75− x)} 0.50 ≤ x ≤ 0.75

(4.14)

and the “shock”

ρ(x) =

1 0.0 ≤ x ≤ 0.5

0 0.5 ≤ x ≤ 1.0
. (4.15)
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OBR

#cells #remaps L2 err L1 err L∞ err L2 rate L1 rate L∞ rate

64 320 1.68e-3 9.17e-4 6.65e-3 — — —
256 1280 8.32e-5 3.03e-5 5.82e-4 2.17 2.47 1.76
1024 5120 4.47e-6 9.30e-7 5.50e-5 2.14 2.49 1.72
4096 20480 3.12e-7 3.46e-8 8.14e-6 2.07 2.46 1.62

M-OBR (FCR)

64 320 1.99e-3 1.09e-3 7.47e-3 — — —
256 1280 1.30e-4 4.58e-5 8.34e-4 1.97 2.29 1.58
1024 5120 1.05e-5 2.17e-6 1.06e-4 1.89 2.24 1.53
4096 20480 9.96e-7 1.24e-7 1.56e-5 1.83 2.19 1.48

Table 3: OBR and M-OBR (FCR) errors and convergence rate estimates for the “sine”
density (4.13) using 4 cyclic grids defined by (4.12).

OBR

#cells #remaps L2 err L1 err L∞ err L2 rate L1 rate L∞ rate

64 320 1.48e-2 7.94e-3 6.35e-2 — — —
256 1280 3.08e-3 1.01e-3 2.46e-2 1.13 1.49 0.68
1024 5120 6.49e-4 1.27e-4 9.25e-3 1.13 1.49 0.69
4096 20480 1.35e-4 1.61e-5 3.40e-3 1.13 1.49 0.70

M-OBR (FCR)

64 320 1.48e-2 7.94e-3 6.40e-2 — — —
256 1280 3.13e-3 1.02e-3 2.52e-2 1.12 1.49 0.67
1024 5120 6.73e-4 1.31e-4 9.65e-3 1.11 1.48 0.68
4096 20480 1.46e-4 1.71e-5 3.66e-3 1.11 1.48 0.69

Table 4: OBR and M-OBR (FCR) errors and convergence rate estimates for the “peak”
density (4.14) using 4 cyclic grids defined by (4.12).

Errors of the OBR and M-OBR (FCR) algorithms and the corresponding
convergence rates are presented in Tables 3–5. From the data in these tables
we see that in most cases the convergence rates of OBR and M-OBR are
very close to each other. The only exception is the sine density for which the
L2 and L∞ rates of OBR are better by 0.2. Overall, however, these results
seem to suggest that OBR and M-OBR have roughly the same accuracy. In
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OBR

#cells #remaps L2 err L1 err L∞ err L2 rate L1 rate L∞ rate

64 320 8.67e-2 2.47e-2 4.14e-1 — — —
256 1280 5.23e-2 8.97e-3 4.42e-1 0.36 0.73 -0.05
1024 5120 3.13e-2 3.20e-3 4.63e-1 0.37 0.74 -0.04
4096 20480 1.88e-2 1.15e-3 4.79e-1 0.37 0.74 -0.03

M-OBR (FCR)

64 320 8.67e-2 2.47e-2 4.14e-1 — — —
256 1280 5.22e-2 8.87e-3 4.41e-1 0.37 0.74 -0.05
1024 5120 3.13e-2 3.18e-3 4.62e-1 0.37 0.74 -0.04
4096 20480 1.88e-2 1.15e-3 4.78e-1 0.37 0.74 -0.03

Table 5: OBR and M-OBR (FCR) errors and convergence rate estimates for the “shock”
density (4.15) using 4 cyclic grids defined by (4.12).

the next section we show that this is not the case and that the accuracy of
M-OBR can degrade for certain types of mesh motions.

4.3.3. Convergence study on hourglass cyclic grids

Theorem 3.2 asserts that the feasible set of M-OBR is always a subset
of the feasible set of the OBR formulation. This suggests that (3.3) may be
more accurate than (3.8), and by virtue of the equivalence of M-OBR and
FCR, this conclusion extends to the latter as well. The examples in this
section show that this is indeed the case and that the smaller feasible set of
(3.8) can impact adversely the accuracy of M-OBR (FCR).

To this end, we compare convergence rates of the OBR and M-OBR
(FCR) algorithms for the sine density (4.13) on a sequence of cyclic grids
defined by the discrete “hourglass” grid mapping

xrk = g(x0
k, tr) =


x0
k if r is even, for all k, otherwise:

x0
k if k ≡ 0 (mod 3), or if k = K,

x0
k + ∆(K,R) if k ≡ 1 (mod 3), for k < K,

x0
k −∆(K,R) if k ≡ 2 (mod 3), for k < K .

(4.16)

As before, the initial grid K0
h is a uniform grid on the unit interval. For every

pair (K,R) we set

∆(K,R) =
19

40
(x0

1 − x0
0),
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resulting in a constant compression ratio of 1:20 for every third grid cell
(starting with cell κ2) whenever r is odd. For even r the grid is relaxed to
its original position.

Estimates of the convergence rates of OBR and M-OBR (FCR) are pre-
sented in Table 6. The first observation is that the performance of the OBR
algorithm on the hourglass cyclic grid is comparable to its performance on
the smooth cyclic mesh reported in Table 3. In particular, the convergence
rates of OBR in all three norms equal the best possible theoretical rates for
a linearity-preserving scheme.

In contrast, it is clear that the convergence rates of M-OBR (FCR) suffer
on the hourglass cyclic grid. The estimates in all three norms show a consis-
tent drop from second to first order. Moreover, an examination of the error
values in Table 6 reveals that on the finest mesh the M-OBR (FCR) errors
are two to three orders of magnitude greater than the OBR errors.

OBR

#cells #remaps L2 err L1 err L∞ err L2 rate L1 rate L∞ rate

64 320 1.52e-3 1.23e-3 3.87e-3 — — —
256 1280 8.96e-5 7.50e-5 2.44e-4 2.04 2.02 1.99
1024 5120 5.54e-6 4.68e-6 1.54e-5 2.03 2.01 1.99
4096 20480 3.45e-7 2.93e-7 1.39e-6 2.02 2.01 1.92

M-OBR (FCR)

64 320 7.71e-3 5.96e-3 1.57e-2 — — —
256 1280 1.78e-3 1.31e-3 3.81e-3 1.06 1.09 1.02
1024 5120 4.42e-4 3.25e-4 9.51e-4 1.03 1.05 1.01
4096 20480 1.10e-4 8.10e-5 2.38e-4 1.02 1.03 1.01

Table 6: OBR and M-OBR (FCR) errors and convergence rate estimates for the sine
density (4.13) using 4 cyclic hourglass grids defined by (4.16).

4.4. Computational Cost

From Theorem 3.3 we know that (3.8) decouples into a set of independent
single-variable inequality-constrained optimization problems whose solution
is given by (3.10), i.e. M-OBR (FCR) is quite cheap computationally. On the
other hand, the OBR formulation is a globally coupled inequality-constrained
optimization problem. It is therefore of considerable practical interest to as-
sess the performance cost incurred by the need to solve a global optimization
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problem. Owing to the equivalence of M-OBR and FCR, our study also
provides information about the performance cost of OBR relative to FCR.

Table 7 presents preliminary results using a Matlab
TM

implementations
of OBR and M-OBR. While additional studies with more efficient implemen-
tations of M-OBR (FCR) and, especially, OBR are needed, we can already
see that the cost of OBR is only a constant factor times the cost of M-
OBR (FCR). The worst ratio occurs for the sine density where OBR costs
approximately 6.5 times more than M-OBR (FCR). However, for density
distributions such as the shock, the OBR algorithm efficiently eliminates re-
dundant (fixed) optimization variables that are due to flat regions in the
density distribution, which leads to OBR actually outperforming M-OBR
(FCR).

Sine

# cells # remaps M-OBR(sec) OBR(sec) ratio

262,144 10 6.35 43.11 6.8
524,288 10 12.60 85.56 6.8
1,048,576 10 25.33 165.67 6.5

Peak

262,144 10 6.09 24.88 4.1
524,288 10 12.08 49.79 4.1
1,048,576 10 23.73 106.35 4.5

Shock

262,144 10 6.12 5.28 0.86
524,288 10 12.11 10.07 0.83
1,048,576 10 23.76 19.77 0.83

Table 7: Comparison of computational costs of the OBR and FCR algorithms, as measured
by wall-clock times, for the density distributions defined in (4.13), (4.14) and (4.15).

5. Conclusions

We formulate and study a new, optimization-based, conservative, bound
and linearity preserving remap algorithm (OBR). The use of an optimization
setting allows us to separate accuracy considerations from the enforcement
of physical bounds by making the former the objective of optimization, while
the latter is used to define the constraints in the optimization problem. In so
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doing we obtain a scheme that is provably linearity preserving and monotone
on arbitrary unstructured grids, including grids with non-convex polygonal
or polyhedral cells.

The new OBR approach is compared and contrasted with the FCR al-
gorithm [1]. We show that the FCR solution coincides with the solution of
another inequality-constrained optimization problem, termed M-OBR, which
is derived from OBR by replacing its constraints by a set of simpler sufficient
conditions for the local bounds. These conditions are represented by box
constraints obtained using a worst-case local analysis to simplify the original
inequality constraints. As a result, we prove that the feasible set of M-OBR
is always contained in the feasible set of OBR. It follows that OBR is always
at least as accurate as M-OBR and owing to the equivalence of M-OBR and
FCR, at least as accurate as the latter.

Computational examples show that for relatively smooth cyclic grids there
are no significant differences in the accuracy and the convergence rates of
M-OBR (FCR) and OBR. However, our study shows that on less smooth
cyclic grids such as the “hourglass” grid, the smaller feasible set of M-OBR
can adversely impact its accuracy. In particular, we demonstrate that on
such grids M-OBR (FCR) defaults to a first-order accurate scheme, while
OBR achieves the theoretically best possible accuracy (second order) for a
linearity-preserving scheme. Furthermore, a “torture” test reveals that under
certain conditions the smaller feasible set of M-OBR can lead to the loss of
qualitative information about the shape of the remapped density distribution.
Owing to the equivalence of M-OBR and FCR, these conclusions extend to
the latter.

Preliminary studies show that for a set of standard remap test prob-
lems the cost of OBR is a constant factor times the cost of M-OBR (FCR).
This suggests that OBR can be competitive in practical applications where
a (i) provably linearity-preserving (and otherwise optimally accurate) and
(ii) monotone method is desired.

Extension of the OBR approach to systems, its efficient implementation in
2D and further theoretical and computational studies, including a comparison
with iterated FCR, will be the subject of a forthcoming paper.
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Figure 5: Initial density distribution (top panel), M-OBR solution (middle panel) and
OBR solution (bottom panel) for ∆1 = ∆2 = 0.14, ρ1 = 80, ρ2 = 100, ρ3 = 0, and
ρb1 = ρb3 = 0. The OBR solution preserves the shape of the original density distribution,
while the M-OBR (FCR) solution does not.
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Figure 6: Level sets of the objective functional and the feasible sets of problems (4.6)
and (4.7) for ∆1 = ∆2 = 0.14, ρ1 = 80, ρ2 = 100, ρ3 = 0, and ρb1 = ρb3 = 0. The
regions between horizontal (magenta), slanted (red) and vertical (blue) lines on the left
panel correspond to the first, second and third constraints in the OBR problem (4.6).
Their intersection (red region) gives the OBR feasible set which contains the point (1, 1).
The feasible set of M-OBR is given by the solid horizontal segment (black) and does not
contain the point (1, 1). The right panel shows a zoom of the OBR and M-OBR feasible
sets.
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