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Recursive Density-Matrix-Spectral-Moment Algorithm for
Molecular Nonlinear Polarizabilities.
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An iterative algorithm is developed for calculating nonlin-
ear optical polarizabilities using a series of generalized sum
rules that resemble the Lanczos algorithm and connect spec-
tral moments of the driven single-electron density matrix to
ground state charge distributions and bonding network. The
size-scaling and saturation of off-resonant polarizabilities (up
to seventh order) of polyacetylene oligomers with up to 300
carbon atoms is analyzed in terms of collective electronic oscil-
lators. Simple analytical expressions for size and bond-length
alternation dependence of off-resonant polarizabilities are de-
rived using a single-oscillator approximation.

PACS numbers: 42.50.M, 42.65.R, 42.65.D

I. INTRODUCTION

Relations between chemical and electronic structure
and linear and nonlinear optical polarizabilities of con-
jugated molecule have drawn much attention of chemists
and physicists over the past 20 years [1–4]. Resonant
nonlinear spectroscopy provides most valuable informa-
tion on states that are inaccessible by linear techniques
[5–9], whereas off-resonant measurements probe the col-
lective response of many molecular eigenstates [1–3].

The size-scaling of various optical properties has been
studied extensively, both theoretically [10–12] and ex-
perimentally [5,9,13,14]. Linear absorption of short
oligomers with N < 12 − 20 carbon atoms shows an
Ω ∼ N−µ scaling of the optical gap with µ ∼ 0.4 − 0.6
[5]. The Hückel model yields µ = 1 [12]. An impor-
tant relation is the scaling of nonlinear susceptibilities
with molecular size. The power scaling law γ ∼ N b

for the third-order polarizability, where N is the num-
ber of carbon atoms, has been established experimen-
tally in the early 70’th [15], and supported by theoreti-
cal calculations using the free electron model [16]. Nu-
merous subsequent studies showed that for short chains,
the exponent b can vary between 3 and 8, depending
on the system and model, and eventually approaches
1 (saturates) for long molecules. The crossover be-
tween these two behaviors is related to the exciton co-
herence size [4,5,13]. Calculations performed using the
Hückel model (which neglects Coulomb interactions) pre-
dict saturation at long chains (N ∼ 50) and b ∼ 5 − 9
[12,17], whereas calculations based on the Pariser-Parr-
Pople (PPP) Hamiltonian which includes electronic cor-
relations predict a shorter saturation size (N ∼ 20 − 30)
and b ∼ 4−5 [4,18,1]. Sum-over-states calculations of γ in

short oligomers yield a scaling exponents b ≈ 8 for sym-
metric linear cyanites and b ≈ 4 for linear polyenes [19].
Difficulties with the controlled synthesis and poor solu-
bility of polyenic oligomers restricted early experimen-
tal studies to molecules with up to 30-40 carbon atoms
[14,15,20] which showed no saturation. These problems
have been overcome, and the saturation of γ has been ob-
served experimentally at ∼ 200 double bonds [13], which
is much larger than early estimates.

Considerable attention has been also paid to the de-
pendencies of nonlinearities on other molecular parame-
ters. It has to be argued that the bond-length alternation
parameter ∆ is related to electron localization [21]. In
alternating chains the Hückel model predicts γ ∼ ∆−6

divergence at small ∆ [12]. Flytzanis and co-workers
employed the Hückel model to study the scaling of off-
resonant γ of large oligomers with the saturated optical
gap Ω̃ [10,21]. The resulting γ ∼ Ω̃−6 scaling law is
in a qualitative good agreement with experimental data
collected for both off-resonant and resonant third-order
polarizabilities of different conjugated polymers [22]. Re-
cent resonant experiments show the following relation
γ(−3ω; ω, ω, ω)/αmax ∼ Ω̃−10 [5,9], where the scaling of
both γ and αmax (absorption maximum) depends on the
concentration of chromophores in films and the ratio is
approximately independent on dilution.

Calculations of optical hyperpolarizabilities usually in-
volve an extensive numerical effort. The sum-over-states
(SOS) [3,23] method includes the calculations of both
the ground state and exited states wavefunctions and
the transition dipole moments between them. The time-
dependent Hartree-Fock (TDHF) procedure [4,24–26]
which is based on the solution of equations of motion
for the single electron reduced density matrix [27] pro-
vides an oscillator (quasiparticle) picture of the optical
response [4,24]. This allows the description of electronic
motions in terms of collective electronic normal modes,
in complete analogy with the standard treatment of nu-
clear vibrations. Within this approximation, the only
relevant ground state information is the Hartree-Fock
(HF) ground state reduced single-electron density matrix
whose diagonal elements give electronic charges, and the
off-diagonal elements characterize the bond-order [27].
Important interference effects are naturally built in, and
it reproduces the correct scaling with system size. The
TDHF has tremendous computational advantages over
the sum over states method, but calculating the oscilla-
tors still requires the diagonalization of a K2×K2 matrix
representing the linearized TDHF equations, K being the
basis set size. Eventhough it has been established that
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only a few oscillators eventually dominate the response,
we cannot tell that beforehand. We need then to first cal-
culate all the oscillators and then sort them out to find
the dominant ones. This poses a severe computational
problem since we end up calculating much redundant in-
formation. The TDHF is a great improvement over the
sum over states, however, sorting out the oscillators is
still a major difficulty.

In this paper we develop a simple and extremely power-
ful Density-Matrix-Spectral-Moment algorithm (DSMA)
for calculating linear and nonlinear optical response of
many-electron system. The method allows us to focus
on the relevant oscillators from the outset, thus greatly
reducing computational cost and clearly establishing the
origin of the dominant mode picture. This is accom-
plished using a family of sum rules which connect the
short-time behavior of the response function of many-
electron systems to ground state properties. By apply-
ing the closed expressions derived in [28], we can then
calculate the frequency-dependent optical susceptibilities
using a small number of parameters characterizing the
dominant modes. The short-time response functions are
determined by these parameters as well. By solving these
equations and substituting the parameters into the ex-
pressions for the polarizabilities, we establish a connec-
tion between the polarizabilities and the ground state
reduced single-electron density matrix.

The DSMA has a close formal connection with other
short-time algorithms widely used in different contexts.
These include the Lanczos algorithm for computing the
eigenvalues of a hermitian matrix [29], the Mori-Zwanzig
procedure of reduced dynamics [30] and the continued
fraction representation of correlation functions [31].

In particular, we note the analogy with the analysis of
optical lineshapes in terms of spectral moments [32]. The
moments can be easily calculated without going through
a complex eigenvalue problem, and often very few mo-
ments provide for an adequate representation of the line-
shape. We use the same ideas to compute nonlinear op-
tical susceptibilities. We calculate the spectral moments
of the density matrix induced by the external field, and
use them to construct the electronic modes relevant to
optical response. Similar to conventional moment analy-
sis, convergence is verified by incrementally adding more
moments.

In Section II we introduce the tight-binding Hamil-
tonian for π-electrons and present the restricted TDHF
equation [4,24] which describes the time-evolution of
particle-hole (interband) components of the reduced
single-electron density matrix ρ. In Appendix A we show
how to express the intraband components of ρ in terms of
the interband part ξ of the deviation of ρ from its ground-
state ρ̄. In Section III we express the polarization using
the eigenmodes ξν of the linearized TDHF equation. The
DSMA which makes it possible to calculate polarizabil-
ities at any order, keeping as many modes as necessary,
is presented in Section IV. The relations necessary for
numerical applications of the DSMA are outlined in Ap-

pendix B. In Section V we present numerical calcula-
tions for polyacetylene oligomers and discuss the com-
putational advantages of the DSMA. We further give a
simple analytical expression for off-resonant polarizabil-
ities obtained using a crude single oscillator approxima-
tion. The detailed derivations of this formula are given in
Appendices C, D, and E. This expression is in excellent
agreement with the full TDHF calculations, reproduces
the correct scaling of observables, and provides a sim-
ple and clear physical connection between chemical and
optical properties.

II. THE TIGHT-BINDING HAMILTONIAN AND
THE SINGLE-ELECTRON DENSITY MATRIX

We consider a π-electron system described by the tight-
binding Pariser-Parr-Pople (PPP) Hamiltonian which
reproduces many important properties of conjugated
polyenes [33].

Ĥ =
∑

m,n,σ

tmnc+
m,σcn,σ +

1
2

∑
m,n,σ,σ′

Vnmc+
m,σc+

n,σ′

× cn,σ′cm,σ − E(t)
∑
n,σ

µnnc+
n,σcn,σ, (1)

where c+
m,σ(cm,σ) is the annihilation (creation) operator

of a π-electron on site m with spin σ, satifying the Fermi
anticommutation relation {c+

m,σ, cn,σ′} = δm,nδσ,σ′ .
The first term is the Hückel hamiltonian, where tnn =∑
m Vnm is the Coulomb integral at the n-th atom and

tmn (m 6= n) is the nearest-neighbor transfer integral be-
tween the n-th and m-th atoms: tn,n±1 = β−β′ln and ln
is the deviation of the n-th bond length from the mean
bond length along the chain. The second term represents
electron-electron Coulomb interactions; the repulsion be-
tween the n-th and m-th sites is given by Ohno’s formula:

Vnm =
U√

1 + (rnm/a0)2
(2)

where U = U0/ε is the on-site Hubbard repulsion and
ε is the static dielectric constant. The last term rep-
resents interaction between π-electrons and an external
field E(t) polarized along the chain z-axis. We assume
a localized basis set so that the dipole moment is diag-
onal µnm = eznδnm. The size of basis set is equal to
the number of carbon atoms K = N . The parameters
used were adjusted to reproduce the energy gap for poly-
acetylene (2.0 eV ): U0 = 11.13eV , β = −2.4eV, β′ =
−3.0eV Å

−1
, ε = 1.5 a0 = 1.2935Å [4]. In all calculations

we used fixed geometry with unit cell size along the back-
bone a = 1.22Å and bond-length alternation parameter
ln = ∆ = 0.07Å.

The analysis of this paper is based on following the
evolution of reduced single-electron density matrix

ρσ
nm(t) = 〈Ψ(t)|c+

m,σcn,σ|Ψ(t)〉, (3)
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where Ψ(t) is the time-dependent many-electron wave-
function. In the present model the wavefunction is a sin-
glet at all times, so that spin variables may be eliminated
[24]. We first find the ground state HF single-electron
density matrix ρ̄nm by solving the stationary HF equa-
tion using iterative diagonalization [4].

[h(ρ̄), ρ̄] = 0. (4)

Here h is the Fock operator

h(ρ̄) = t + V (ρ̄), (5)

and V (ρ̄) is the Coulomb operator

V (ρ̄)mn = −Vmnρ̄mn + 2δmn

∑
l

Vmlρ̄ll. (6)

When the molecule is driven by an external field, the
density matrix acquires a time dependent part δρ(t) and
we have

ρ(t) = ρ̄ + δρ(t) = ρ̄ + ξ(t) + T (ξ(t)). (7)

Here ξ represents the particle-hole (interband) and T (ξ)
is the particle-particle and the hole-hole (intraband)
parts of δρ(t). The matrix T (ξ(t)) is given by the follow-
ing expansion, which can be derived using the relation
ρ(t)2 = ρ(t) (see Appendix A)

T (ξ) =
(

ρ̄ − I

2

)(
I −

√
I − 4ξ2

)
, (8)

where I is the unit matrix. Eq. (8) can be expanded in
powers of ξ

T (ξ) = (I − 2ρ̄)(ξ2 + ξ4 + 2ξ6 + · · ·), (9)

or alternatively (see Appendix A)

T (ξ) =
1
2!

[[ξ, ρ̄], ξ] +
1
4!

[[ξ, ρ̄], [[ξ, ρ̄], [[ξ, ρ̄], ξ]]] + · · · .
(10)

In Eqs (9) and (10), all ξ are taken at time t, ξ = ξ(t).
The expansions (9) and (10) are identical. For example,
to second order in ξ, Eq. (10) reads 1

2! [[ξ, ρ̄], ξ] = ξρ̄ξ −
1
2 (ρ̄ξ2 + ξ2ρ̄). The projection property of ρ̄ [24] implies
the following relations for any interband density matrix ξ:
ξ = ρ̄ξ + ξρ̄ and ρ̄ξ2 = ξ2ρ̄ (note, that ξ2 is an intraband
matrix). Using these identities we recover the second
order term in Eq. (9).

The evolution of the reduced density matrix is de-
scribed by the time-dependent Hartre-Fock (TDHF)
equation:

i
∂ξ

∂t
= Lξ − E [µ, ρ̄] + [[R(ξ), ρ̄], ρ̄], (11)

whose linear part is

Lξ = [t + V (ρ̄), ξ] + [V (ξ), ρ̄]. (12)

L is a linear operator in Liouville space (i.e. superoper-
ator) [4] and

R(ξ) = [V (ξ), ξ] + [V (T (ξ)), ξ] + [V (T (ξ)), ρ̄]
+ [V (ξ), T (ξ)] − E [µ, ξ + T (ξ)]. (13)

R(ξ) contains both inter- and intraband components, and
the projection property of ρ̄ [24] is used to project R(ξ)
onto the particle-hole subspace Rp−h = [[R(ξ), ρ̄], ρ̄].

The time-dependent polarization, which determines all
optical properties, is finally given by 1

P (t) = Tr(µξ(t)) + Tr(µT (t)) (14)

where T (t) ≡ T (ξ(t)), and the dipole operator is rep-
resented by a diagonal matrix with elements µnm =
eznδnm.

III. THE NONLINEAR OPTICAL RESPONSE
AND ELECTRONIC NORMAL MODES

The equations of motion (11) may be solved by ex-
panding the interband (particle-hole) components of the
reduced single-electron density matrix in powers of the
external field

ξ = ξ(1) + ξ(2) + ξ(3) + · · · (15a)

The intraband (particle-particle and hole-hole) compo-
nents are similarly given by

T (ξ) = T (2)(ξ) + T (3)(ξ) + T (4)(ξ) + · · · , (15b)

where T (j)(t) is expressed in terms of ξ(j) by comparing
Eq. (9) (or Eq. (10)) with Eq. (15). T (1)(t) ≡ 0, T (2)(t) =
(I−2ρ̄)[ξ(1)(t)]2 etc. The polarization to j’th order in the
external field E(t) is calculated by taking the expectation
value of the dipole operator µ with respect to the time
dependent density matrix

P (j)(t) = Tr(µδρ(j)(t)), (16)

with

δρ(j)(t) = ξ(j)(t) + T (j)(t). (17)

Using these equations, the original nonlinear equa-
tion (11) is transformed into a hierarchy of linear inho-
mogeneous equations. To j-th order we have

i
∂ξ(j)(t)

∂t
− Lξ(j)(t) = η(j)(t). (18)

1Note that the trace includes summation over spin variables.
For a given spinless system [24] it is twice the trace over space
variables

3



J. Chem. Phys. 77(22) pp.8914-8928, 15 November 1996

The formal solution of this equation in the frequency
domain is

ξ(j)(ω) = G0(ω)η(j)(ω), (19)

where

G0(ω) =
1

ω − L
, (20)

is a zero order tetradic Green function, and η(j)(t) is j-th
order term from r.h.s. of Eq. (11) η(1)(t) = −E(t)[µ, ρ̄],
etc. Throughout this paper, the Fourier transform is de-
fined by

f(ω) =
∫ ∞

−∞
dteiωtf(t). (21)

The optical polarizabilities are readily obtained using
δρ(j)(ω). Following the procedure outlined in Appendix
D of [4], η(j)(ω), T (j)(ω), and ξ(j)(ω) contain permuta-
tions over all frequencies of the applied fields, which are
given by

E(t) =
∑

k

E(k)
0 cos ωkt. (22)

The j-th order frequency-dependent polarization is

P (j)(∓ω1 ∓ · · · ∓ ωj ;±ω1, · · · ,±ωj)

= χ(j)(∓ω1 ∓ · · · ∓ ωj ;±ω1, · · · ,±ωj)E(1)
0 · · · E(j)

0 , (23)

and the optical polarizabilities assume the form

χ(j)(∓ω1 ∓ · · · ∓ ωj ;±ω1, · · · ,±ωj) = − 1

E(1)
0 · · · E(j)

0

× Tr(µδρ(j)(∓ω1 ∓ · · · ∓ ωj;±ω1, · · · ,±ωj)). (24)

Hereafter we focus on the off-resonant response. Setting
all frequencies to zero we obtain

T (1)(ω = 0) ≡ 0,

T (2)(ω = 0) = (I − 2ρ̄)(ξ(1))2,

T (3)(ω = 0) = (I − 2ρ̄)(ξ(2)ξ(1) + ξ(1)ξ(2)), (25)

T (4)(ω = 0) = (I − 2ρ̄)(ξ(3)ξ(1) + ξ(2)ξ(2) + ξ(1)ξ(3)),
and
η(1)(ω = 0) = −E0[µ, ρ̄],

η(2)(ω = 0) = [[
(

[V (δρ(1)), δρ(1)] + [V (T (2)), ρ̄]

− E0[µ, δρ(1)]
)

, ρ̄], ρ̄], (26)

η(3)(ω = 0) = [[
(

[V (δρ(2)), δρ(1)] + [V (δρ(1)), δρ(2)]

+ [V (T (3)), ρ̄] − E0[µ, δρ(2)]
)

, ρ̄], ρ̄].

Here ξ(j) ≡ ξ(j)(ω = 0) and δρ(j) ≡ δρ(j)(ω = 0). The
off-resonant polarizablities are given by

χ(j) = − 1
Ej
0

(
Tr(µξ(j)(ω = 0)) + Tr(µT (j)(ω = 0))

)
,

(27)

where χ(1), χ(3), χ(5) denote the polarizabilities α, γ, δ
etc.

To compute Eqs. (19) we need to find all eigenmodes
ξν and eigenfrequencies Ων of the Liouville operator L
[4].

Lξν = Ωνξν . (28)

The eigenmodes come in pairs: Each vector ξν with fre-
quency Ων has a counterpart ξ−ν = ξ+

ν with frequency
-Ων . Since L is real, the electronic modes can be taken
to be real. We shall adopt the following normalization
for the eigenvectors related to positive frequencies [24]

Tr(ρ̄[ξ+
α , ξβ ]) = δαβ , (29a)

Tr(ρ̄[ξ+
α , ξ+

β ]) = Tr(ρ̄[ξα, ξβ ]) = 0. (29b)

Using these modes, the Green function assumes the form

G0(ω) =
∑

ν

ξ+
ν ξν

ω − Ων
, (30)

where we used a tensor notation, and the sum runs over
all modes with positive as well as negative frequencies.

A mode classical picture of optical response is obtained
by constructing the electronic oscillators defined by the
coordinate-momentum variables

Qν =
ξν + ξ+

ν√
2

, Pν = −i
ξν − ξ+

ν√
2

, (31)

The normalization of Qν and Pν follows directly from
Eqs. (29)

Tr(ρ̄[Pα, Qβ]) = iδαβ , (32a)

Tr(ρ̄[Pα, Pβ ]) = Tr(ρ̄[Qα, Qβ]) = 0. (32b)

The linearized TDHF equation thus reads Q̇ν =
−ΩνPν , Ṗν = ΩνQν .

The Coupled Electronic Oscillator representation maps
the calculation of the optical response onto the dynam-
ics of a set of anharmonic oscillators representing the
electron-hole pair components of the reduced single elec-
tron density matrix. The linear polarizability then as-
sumes the form [24]

χ(1)(ω) =
N2/4∑
ν=1

Ων [Tr(µQν)]2

Ω2
ν − (ω + iε)2

, (33)

4
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where ε is a linewidth. Closed expressions for χ(2) and
χ(3) were given in [24].

Calculating the electronic modes is the most computa-
tionally demanding task of the TDHF scheme, since we
retain the complete information about the single electron
density matrix. The procedure becomes numerically in-
tractable for long chains. Applications of the procedure
have been limited to N ∼ 40 atoms. The DSMA devel-
oped in the next Section overcomes this difficulty.

IV. THE
DENSITY-MATRIX-SPECTRAL-MOMENT

ALGORITHM.

The DSMA allows us to calculate ξ(j) from η(j) by
solving Eq. (19) without a direct diagonalization of L. In
principle we need to expand the interband components
ξ(j) of the reduced single-electron density matrix in the
complete set of eigenmodes of L. Typically, however, only
a few modes (4-5) contribute to the response [34]. The
DSMA reduces the computational effort considerably by
calculating only these relevant modes.

The interband component of the reduced single-
electron density matrix to j’th order in the field ξ(j)(ω)
(Eq. (19)) can be represented as

ξ(j)(ω) =
∫ +∞

0

dt eiωtS(j)(t, ω), (34)

where we have introduced the matrix S(j)(t, ω)

S(j)(t, ω) ≡ −ie−iLtη(j)(ω). (35)

This matrix satisfies the equation

i
∂S(j)(t, ω)

∂t
− LS(j)(t, ω) = 0, (36)

with the initial condition

S(j)(0, ω) = −iη(j)(ω). (37)

In Eqs. (35) and (37) the S(j) matrix is viewed as a
vector in Liouville space. We next expand the solution
of Eq. (36) in a Taylor series

S(j)(t, ω) = −i(S(j)
0 (ω) + (−i)

S
(j)
1 (ω)
1!

t + ...)

= −i
∑
n=0

(−i)n S
(j)
n (ω)
n!

tn, (38)

where S
(j)
0 (ω) = η(j)(ω) and S

(j)
k (ω) = LkS

(j)
0 (ω), k =

1, 2, ... . This expansion which describes the short time
evolution of initial vector η(ω) in the subspace deter-
mined by −ie−iLt allows us to calculate S

(j)
k+1 recursively:

S
(j)
k+1 = LS

(j)
k = [t + V (ρ̄), S(j)

k ] + [V (S(j)
k ), ρ̄]. (39)

Since the procedure involves merely matrix multiplica-
tion (no inversion or diagonalization), it can be readily
applied even for very large systems (thousands of atoms).

We will use the short time expansion (38) to derive an
algorithm for computing the electronic normal modes.
η(j)(ω) can be expressed in terms of the modes (Eq.
(4.16a) in [24])

η(j)(ω) =
N2/4∑
ν=1

(
Tr(ρ̄[ξ+

ν , η(j)(ω)])ξν

− Tr(ρ̄[ξν , η(j)(ω)])ξ+
ν

)
. (40)

Using the mode representation, the solution of Eq. (36)
can be written as

S(j)(t, ω) = −i

N2/4∑
ν=1

(
Tr(ρ̄[ξ+

ν , η(j)(ω)])ξνexp(−iΩνt)

− Tr(ρ̄[ξν , η(j)(ω)])ξ+
ν exp(iΩνt)

)
. (41)

Since the electronic modes are real, the expansion coeffi-
cients can be taken to be real and we have

Tr(ρ̄[ξ+
ν , η(j)(ω)]) = Tr(ρ̄[ξν , η(j)(ω)])

= Tr(µ(j)(ω)ξ+
ν ) ≡ µ

(j)
ν (ω)√

2
, (42)

and

Tr(µ(j)(ω)Qν) ≡ µ(j)
ν (ω), T r(µ(j)(ω)Pν) ≡ 0, (43)

where we have introduced the effective dipole moment
for the j-th order nonlinear response µ(j)(ω), using the
projection property of ρ̄

µ(j)(ω) = [η(j)(ω), ρ̄], η(j)(ω) = [µ(j)(ω), ρ̄]. (44)

In particular, for the linear response we have µ(1)(ω) =
−E(ω)µ.

Making use of the oscillator coordinates and momenta
(Eq. (31)), we can finally recast Eq. (41) in terms of
normal modes

S(j)(t, ω) =
N2/4∑
ν=1

µ(j)
ν (ω)

[
Qνsin(Ωνt) + Pνcos(Ωνt)

]
.

(45)

The j-th order interband component of the reduced
single-electron density matrix can be expanded in the
form

ξ(j)(ω) =
N2/4∑
ν=1

µ(j)
ν (ω)

[
Ων

Ω2
ν − ω2

Qν − iω

Ω2
ν − ω2

Pν

]
. (46)

5
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This appears as the response of a collection of electronic
oscillators with frequencies Ων and effective (frequency-
dependent) transition dipoles µ

(j)
ν (ω).

To find the normal coordinates and momenta we ex-
pand the cos and the sin functions in a Taylor series, and
compare coefficients of the same powers of t with Eq.
(38). This yields

S(j)
n (ω) = i

M∑
ν=1

Ωn
νµ(j)

ν (ω)Pν n = 0, 2, 4, ..., 2M − 2,

(47a)

S(j)
n (ω) =

M∑
ν=1

Ωn
νµ(j)

ν (ω)Qν n = 1, 3, 5, ..., 2M − 1.

(47b)

These are closed equations for 2M parameters (µν , Ων),
and 2M N × N matrices (Pν and Qν). M is the desired
number of modes which can be controlled by the number
of moments we keep, M = 1, 2, . . ..

Using the identity (43), we can trace these equations
with the effective dipole moment, resulting in a nonlinear
system of 2M equations for the M frequencies Ων and M

effective oscillator strengths f
(j)
ν (ω) ≡ Ων(µ(j)

ν (ω))2

M∑
ν=1

f (j)
ν (ω)Ω2k

ν = K
(j)
k (ω) k = 0, 1, 2, . . . , 2M − 1,

(48)

where

K
(j)
k (ω) ≡ Tr(µ(j)(ω)S(j)

2k+1(ω)), (49)

are the even spectral moments of j-th order nonlinear
polarizability. Eqs (49) and (39) provide an extremely
convenient algorithm of computing the higher-order spec-
tral moments. Alternative expressions for the spectral
moments, which provide a better physical insight, since
they highlight the crucial role of the bond alternation in
the spectral moments, are given in Appendix C. Eq. (49)
and (39) are, however, more suitable for numerical com-
putations.

The system (48) can be easily solved numerically for
f

(j)
ν (ω) and Ων , as shown in Appendix B. This results

in the dominant mode frequencies and their oscillator
strengths. We start with a single mode approxima-
tion and by successively adding new modes we obtain
improved approximations for frequencies and oscillator
strengths of the dominant modes, until some convergence
criteria are satisfied. At each level of the hierarchy (deter-
mined by M) the resulting oscillators are natural collec-
tive variables which describe in the best way the contri-
bution of all electronic oscillators to the optical response.
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FIG. 1. Variation of electronic oscillator frequencies Ων , ef-
fective dipole moments µ

(1)
ν , and first (α,) third (γ), fifth (δ),

and seventh (ζ) off-resonant polarizabilities with the num-
ber of modes used for octateraene (N=8). Convergence to
the full TDHF calculation (M = 16) is demonstrated. The
magnitudes of polarizabilities are normalized at their con-
verged values: α = 3.2 × 10−23 esu, γ = 6.6 × 10−35 esu,
δ = 1.4 × 10−46 esu, ζ = 2.3 × 10−59 esu.

The convergence as a function of the number of modes
M , M = 1−6 is shown in Fig. 1 for octatetraene (N = 8).
Only few (3-4) modes contribute significantly to the re-
sponse, but to calculate them accurately we need to in-
clude some additional high frequency modes with very
small oscillator strengths. Using six modes we repro-
duce the frequencies and the first order effective dipoles
µ

(1)
ν (ω = 0) to 10−8 of the values for the full TDHF (16-

mode) calculation. The figure also shows that the po-
larizabilities converge much faster than the frequencies
and dipoles of individual modes. The convergence of the
linear absorption (the imaginary part of χ(1) (Eq. (33)))
with the number of modes for a N=40 atom oligomers
is displayed in Fig. 2. Note that the strong band edge
transition is reproduced well even at M=4. The weaker
transitions at higher frequencies require more modes.
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FIG. 2. Convergence of the linear absorption (the imagi-
nary part of α (Eq. (3.17))) with the number of modes used for
N=40 atom oligomer. The linewidth is ε = 0.2eV . Note, that
the fundamental band at 2.57 eV with strength 109 eÅ2/V
[1.57 × 10−21 esu] remains basically the same in all panels.

Once Ων and µν are calculated and substituted in
Eqs. (47), we can then solve these linear equations for
the elements of matrices Pν and Qν representing the
momenta Pν and coordinates Qν of the desired modes.
The calculation is first performed for the linear response
j = 1. The resulting modes are used to calculate the
modes for the second order response (j = 2) and so forth.

In summary, the DSMA for computing the off-resonant
j-th order response involves four steps:

1. Finding the matrices S
(j)
n (ω) defined as the short-

time expansion coefficients of S(j)(t) = G0(t)η(j)(ω), and
the moments K

(j)
n (ω), n=0,1,..., [Eqs. (37), (39), (49)];

2. Solving the nonlinear system of equations (48) for
the frequencies Ων and the effective oscillator strengths
f

(j)
ν (ω);
3. Solving the linear systems of equations (47) for the

matrices representing the dominate modes Pν and Qν ;
4. Calculating the j–th order term in the expansion of

the density matrix ξ(j)(ω) [Eq. (46)].
For the third order response we use η(3) and T (3) given

by Eqs. (26) and (25). After some algebraic transforma-
tions and expanding in the modes, we obtain the eight

term expression for γ derived in [24] which represents the
response in terms of quasiparticle scattering.

An alternative form for the j-th order nonlinear re-
sponse χ(j) is obtained by rewriting Eq. (27) as

χ(j) = − 1
Ej
0

[
Tr(µG0(ω)η(j)(ω)) + Tr(µT (j))

]
. (50)

We next make use the fact that for any linear operators
ζ(ω) and ϑ(ω)

Tr(ζ(ω),G0(ω)ϑ(ω)) = Tr([G0(ω)([ζ(ω), ρ̄])ϑ(ω)], ρ̄)

(51)

to recast Eq. (50) in the form

χ(j) = − 1
Ej
0

(
Tr([ξ(1)(ω), η(j)(ω)], ρ̄) + Tr(µT (j)(ω))

)
.

(52)

Note that η(j)(ω) and T (j)(ω) can be expressed in terms
of lower order intra- and interband components of the
off-resonant density matrix δρ(k)(ω), k < j. Eq. (52),
therefore, allows us to compute χ(j) using ξ(1), . . ., ξ(j−1),
avoiding the explicit calculation of ξ(j).

In concluding this Section we comment on the connec-
tion of the DSMA with the Lanczos algorithm conven-
tionally used for calculating the eigenmodes of Hermitian
matrices. The Lanczos algorithm is based on following
the short time evolution determined by a Hermitian op-
erator L, i.e. looking at the quantity e−iLtξ where ξ is
the initial vector, and reducing the space of states to a
k-dimensional Krylov subspace [29] generated by ξ, Lξ,
. . ., Lk−1ξ. We assume that the initial vector ξ can be ex-
panded using a finite number of eigenmodes of L, say, ξ0,
. . ., ξk−1. The Krylov subspace then coincides with the
subspace generated by ξ0, . . ., ξk−1, and is invariant with
respect to L, ξ0, . . ., ξk−1 being linear combination of ξ,
Lξ, . . ., Lk−1ξ. The problem is now reduced to work-
ing in a k-dimensional Krylov subspace, which in many
cases is much smaller than the original space. There-
fore, the success (i.e. fast convergence) of the Lanczos
type schemes depends on the number of eigenmodes with
non-zero projection onto the initial vector ξ: the smaller
the number, the faster the convergence. This depends
crucially on the choice of initial vector. A formally simi-
lar procedure is the continued fraction representation of∫∞
0 dteiωt〈ξ|e−iLt|ξ〉 [31], which is also a resumed short

time expansion.
In our case the linearized TDHF operator L is non-

hermitian, and our approach is based on an important
observation that the operator L is simplectic, i.e. “her-
mitian” with respect to an assymetric “scalar product”
introduced in [24] and given by Eq.(29). This “scalar
product” plays the same role in the DSMA as the usual
scalar product in the Lanczos scheme. In the DSMA we
apply the Lanczos type scheme in each order of the re-
sponse, with the effective dipole moment µ

(j)
ν playing the

7
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FIG. 3. Scaling of linear α third order γ, fifth order
δ, and seventh order ζ polarizabibilities with size. Shown
are the magnitudes of polarizability normalized at its sat-

urated value χ(j)(N)

Nχ
(j)
sat

, where χ
(j)
sat = χ(j)(N)

N
at N → ∞,

j=1,3,5,7. The magnitudes of saturated polarizabibilities
are: αsat = 1.7 × 10−23 esu, γsat = 1.1 × 10−33 esu,
δsat = 1.9 × 10−43 esu, ζsat = 5.2 × 10−53 esu.

role of the initial vector ξ. The effective dipole moment
is expressed in terms of modes which show up in lower
responses and can be computed by applying the short-
time propagation for the lower responses. To accomplish
this program we need to calculate the eigenvalues as well
as the eigenmodes of the Liouville operator. This is done
by solving the linear problem whose dimensionality is the
number of modes showing up in the expansion of an ef-
fective dipole moment. It is at this point that we exploit
the dominant mode character of the response, namely
that only a few modes show up in this expansion at each
order of the response.

V. RESULTS AND DISCUSSION

We have utilized the collective nature of the electronic
optical response in conjugated polyenes to construct an
efficient algorithm for computing optical nonlinearities
using the electronic dominant modes. Since we only
need few modes, computational time scales very favor-
ably with system size (∼ N2 compared with ∼ N6 for
the TDHF [4]). We can, therefore, calculate nonlinear
polarizabilities of very large molecules with hundreds of
carbon atoms using modest numerical effort. Moreover,
the computational time of χ(m) scales only linearly with
m, which allows us to calculate high order nonlinearities
without a major difficulty.

We have calculated the off-resonant polarizabilities up
to seventh order, for polyacetylene oligomers with up
to 300 carbon atoms. The variation of the lowest four
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FIG. 4. Upper panel: size dependence of mode frequencies,
lower panel: the number of dominant modes, needed to com-
pute susceptibilities with 0.1% accuracy compared with the
full N2/4 modes TDHF calculations.

nonvanishing polarizabilities α, γ, δ, and ζ with the num-
ber of carbon atoms N is displayed in the Fig.3. Since
the molecules have an inversion symmetry, antisymmet-
ric (Bu) modes contribute to the odd order responses
(j = 1, 3, 5, 7), whereas the symmetric (Ag) oscillators
appear only in the even order responses (j = 2, 4, 6).
Only 11 Bu and 10 Ag modes (see Fig.4) were required
to obtain a 0.1% accuracy compared with the full (N2/4)
modes TDHF calculations (comparisons were made for
chains with up to 40 carbon atoms and up to the third-
order response, where the full TDHF calculations were
feasible). Comparison of the absolute magnitudes of
the calculated polarizabilities with ab initio coupled per-
turbed Hartree-Fock theory [35] show an agreement to
within a factor of 1.5 for linear and 2.5 for third-order
static polarizabilities. This agreement is very encourag-
ing, in particular given that the present calculations did
not employ any geometry optimization.

The effective dipole moments, µ
(j)
ν (Eq. (46)) of an-

tisymmetric (Bu) and symmetric (Ag) oscillators of a
N = 100 polyacetylene chain are displayed vs. mode
frequencies Ων in Figs.5 and 6 respectively. An impor-
tant observation is that the same modes dominate at all
orders. These modes manifest themselves in the response
with different effective oscillator strengths at each order.
The higher-frequency modes make more significant con-
tributions to the higher order response. The mode size
measured by the off-diagonal electronic coherence of its

8



J. Chem. Phys. 77(22) pp.8914-8928, 15 November 1996

10-3
10-2
10-1
100
101  

µ(1)

 

10-2

10-1

100

101

 

µ(3)

 

100

101

102

 

µ(5)

 

2 4 6 8 10 12 14 16

101

102

103

104

 Ω (eV)

µ(7)

FIG. 5. The effective dipole moments µν vs. Electronic Os-
cillator Frequencies Ων for an N = 100 polyacetylene chain.
Shown are the dominant modes in first, third, fifth, and sev-
enth orders of nonlinearity.

eigenvector grows with its frequency [4], and, therefore,
the coherence size increases for higher orders nonlineari-
ties. This can be seen in Fig.7 where we display the vari-
ation of the scaling exponents b ≡ d[lnχ]/d[lnN ], χ =
α, γ, δ, and ζ with size. The curves shown in Fig.7 attain
a maximums bγ = 3.5 at Nγ = 8; bδ = 5.7 at Nδ = 10;
bζ = 7.9 at Nζ = 12.2 We note that b reaches a maximum
and eventually approaches 1 (saturates). This saturation
occurs at longer sizes with increased order of nonlinear-
ity. Measurements of γ in solution as a function of chain
length in long chains (up to 240 double bonds) were re-
ported in [13]. The experimental b-curve resembles Fig.7
with a maximum bγ = 2.5 for Nγ = 60 double bonds.

We note that the various terms in the effective dipole
moment η(i) (Eq. (26)) make different contributions to
the effective oscillator strengths and to the nonlinear re-

2b attains a larger maximum value for calculations with ge-
ometry optimization.
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FIG. 6. The effective dipole moments µν vs. Electronic
Oscillator Frequencies Ων for an N = 100 polyacetylene chain.
Shown are the dominant modes in second, forth, and sixth
orders of nonlinearity.

sponse. This allows us to separate the relative contribu-
tions of different processes to the response. As an exam-
ple, the ratio (a ≡ χ

(j)
p−h/χ(j)) of interband contribution

to the total polarizability γ, δ, and ζ for oligomers with
up to 150 atoms are depicted in Fig.8. For small chains,
the particle-hole contribution is negative in all cases.
With increased chain length this contribution changes
sign, and for chains longer than the exciton coherence
size (∼ 30) [4] the ratio saturates to the values aγ = 0.4;
aδ = 0.26; aζ = 0.19.

In addition to its clear numerical advantages, the oscil-
lator representation may be used to develop simple rules
of thumb for the scaling of optical polarizabilities with
molecular size and chemical bonding. To that end, we
have derived in Appendix C analytical expressions for
the lowest two nonzero spectral moments of linear ab-
sorption K

(1)
0 and K

(1)
2 . These two moments are then

used in Appendix D to construct a single-oscillator ana-
lytical approximation for the off-resonant linear polariz-
ability α. In Appendix E we repeat this calculation for
the third-order polarizability γ. Based on the results of
α and γ we make the following conjecture for the j-th
order off-resonant polarizability

9
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b ≡ d[lnχ]/d[lnN ], χ = α, γ, δ, and ζ with size. Note that
both the maximum value of b and the size where the maxi-
mum is attained increase with the degree of nonlinearity.

χ(j) =
j(ea)j+1

2(4β′∆)j
kj

N j+1

[N + L(∆)]j
. (53)

Here e is the electron charge, a is the unit cell size along
the backbone, ∆ is the average bond-length alternation
parameter (i.e. the difference between nearest neighbor
bond lengths), β′ is the electron-phonon coupling con-
stant [4], and L is the effective coherence size (see Ap-
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FIG. 8. The ratio of the interband contribution
(a = χ

(j)
p−h/χ(j)) to γ, δ, and ζ polarizabilities. Note that for

small chain lengths the particle-hole contributions to the high
order polarizabilities are negative, and the interband contri-
bution decreases with increased degree of nonlinearity. The
ratio saturates to the values aγ = 0.4; aδ = 0.26; aζ = 0.19.

pendix C). This approximation, which lumps the contri-
bution of all electronic oscillators into a single effective
oscillator, reproduces the main features of the scaling ex-
ponent b, and compares well with full TDHF calculations
[36].

In concluding this article we discuss some possible fu-
ture extensions of DMSA. First, the algorithm is not
limited to the semiempirical PPP-model and it can be
combined with ab initio electronic structure calculations
using different basis sets, and can be applied to more
complicated molecules as well as to semiconductor nanos-
tructures [37–39].

In this paper we only reported numerical calculations
for the off-resonant polarizabilities, however, the exten-
sion to the resonant regime is straightforward. One can
use the procedure described in Appendix D of [4] to com-
pute the frequency dependent effective dipole moments
µ(j)(ω), and the intraband components T (j)(ω) of the
density matrix δρ(j)(ω), or calculate the dominant modes
first using the DSMA for off-resonant response and then
obtain the anharmonicity constants introduced in [24]
which contain all relevant information about the reso-
nant response (both time and frequency domain). The
accuracy of the DSMA depends heavily on the accuracy
of the ground state density matrix ρ̄, because we apply
a commutator with ρ̄ (or with V (ρ̄)) 8k times for calcu-
lating K

(j)
k . This leads to increased errors in the higher

moments, especially in long chains and for high order
responses. Using double precision we obtained very ac-
curate results for the optical response and the most domi-
nant (1-2) modes contributing to this response. Resonant
calculations performed with frequency-dependent dipole
moment should allow us to focus on the desired spec-
tral range and obtain a good accuracy. Another way
to accomplish that is to use a crude approximation for
ξν obtained in an off-resonant calculations as an effec-
tive dipole moment. This dipole moment will be coupled
strongly with the desired single mode which can then be
extracted accurately using the DSMA.

Since the same modes are dominant at low and high
orders, we anticipate that this set of modes may be used
to compute the response to all orders. In [24] the re-
stricted TDHF equation were written in the oscillator
representation. By combining these equations with the
present dominant modes picture, one can find the non-
linear response by solving a closed system of equations
with only small number of variables. This means that the
equations of motion of [24] in the mode representation,
derived using the modes which dominate the response up
to third-order, can be applied to calculate the response
to a strong external field.

Another interesting future direction is to extend the
DSMA beyond the TDHF scheme, to treat electron cor-
relations more rigorously. This extension is based on
the observation [24] that the TDHF approximation is the
classical analog of the original model. The dominant pic-
ture of the response in all orders implies that evolution

10
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of the classical system occurs in the reduced phase space.
Quantizing the TDHF equations written in the dominant
mode representation (i.e. quantizing the reduced classical
system) using the procedure of geometrical quantization
[40] one can obtain an effective multilevel system with
space of states dimensionality that depends on the num-
ber of dominant TDHF modes rather then the molecule
size. This effective quantum system should maintain all
the important features of the original one, and should al-
low a nonperturbative calculation of strong electron cor-
relations, by treating explicitly the quantum evolution
of relevant (dominant) variables, which is achieved by
working in the effective multilevel quantum space.
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APPENDIX A: THE INTRABAND
COMPONENTS T (ξ) OF THE DENSITY MATRIX

[EQS. (8)-(10)].

The single-electron reduced density matrix in the
TDHF approximation satisfies the condition ρ2(t) = ρ(t)
at all times [4,24,25]. Using Eq. (7) this results in(

ρ̄ + ξ(t) + T (ξ(t))
)2

= ρ̄ + ξ(t) + T (ξ(t)). (A1)

The intraband part of this matrix equation is

(T (ξ))2 + (2ρ̄ − I)T (ξ) + ξ2 = 0. (A2)

The solution of this equation, with the condition T (ξ =
0) = 0 yields Eq. (8).

To obtain Eq. (10) we first note that the algebra A of
reduced density matrices can be decomposed (as a vector
space) into a direct sum of intraband (A0) and interband
(A1) density matrices

A = A0 ⊕A1, (A3)

with the following properties of the commutators:

[ξ, η] ∈ A0, for ξ, η ∈ A0, or ξ, η ∈ A1, (A4)

and

[ξ, η] ∈ A1, for ξ ∈ A0 and η ∈ A1. (A5)

Any density matrix ρ satisfying the constraint ρ2 = ρ,
i.e., ρ ∈ M, where M is the Grassman manifold [24]
becomes

ρ = gρ̄g−1, (A6)

where g is a unitary matrix. Since any g in a vicinity of
a unit matrix can be represented in a form g = exp(η)
with η ∈ A eq. (A6) can be represented in a form

ρ = exp(η)ρ̄ exp(−η), (A7)

or adopting the language of superoperators (i.e., opera-
tors acting in Liouville space)

ρ = exp(η̃)ρ̄, (A8)

where for any η ∈ A the superoperator η̃ is defined by

η̃ξ ≡ [η, ξ] for ξ ∈ A. (A9)

Expanding the exponent in Eq. (A8) in the superoperator
η̃ and making use of Eq. (A9) we obtain

ρ = ρ̄ + [η, ρ̄] +
1
2
[η, [η, ρ̄]] +

1
3!

[η, [η, [η, ρ̄]]] + . . . . (A10)

Comparing Eqs. (7) with (A10) results in the linear ap-
proximations in η

ξ ∼= [η, ρ̄]. (A11)

Since [ρ̄, [ρ̄, ξ]] = ξ for any ξ ∈ A1 [24], Eq. (A10) consti-
tutes a one-to-one mapping between A1 and the tangent
space to M at the point ρ̄. This implies that we can
always choose η ∈ A1 in the expansion of Eq. (A10). For
this choice, the even-order terms in the expansion belong
to A0, the odd to A1 [this follows from Eqs. (A4) and
(A5) and the fact that ρ̄ ∈ A0]. Combining Eqs. (A10)
and (A4) then yields

ξ = [η, ρ̄] +
1
3!

[η, [η, [η, ρ̄]]] + . . . . (A12)

T =
1
2
[η, [η, ρ̄]] +

1
4!

[η, [η, [η, ρ̄]]]] + . . . . (A13)

To derive Eq. (10) we solve Eq. (A12) to express η
in terms of ξ, and then substitute η into Eq. (A13).
Eq. (A12) may be solved iteratively leading to an ex-
pansion of η in powers of ξ which can be calculated in
any order in ξ and has a form

η = [ξ, ρ̄] − 1
3!

[κ, ρ̄] + . . . (A14)

with

κ ≡ [[ξ, ρ], [[ξ, ρ̄], ξ]]. (A15)

Substituting Eq. (A14) into Eq. (A13) finally yields the
expansion of Eq. (10).
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APPENDIX B: SOLUTION OF EQS. (48)

The system of nonlinear equations (48) may be solved
as follows. Let us consider the following system of 2n
equations with respect to n “nonlinear” frequency Ωn

and n “linear” oscillator strength fn variables.

K0 = f1 + f2 + f3 + · · · + fn

K1 = f1Ω2
1 + f2Ω2

2 + · · · + fnΩ2
n

K2 = f1Ω4
1 + f2Ω4

2 + · · · + fnΩ4
n

..............................................

Kn−1 = f1Ω
2(n−1)
1 + f2Ω

2(n−1)
2 + · · · + fnΩ2(n−1)

n (B1)
Kn = f1Ω2n

1 + f2Ω2n
2 + · · · + fnΩ2n

n

..............................................

K2n−1 = f1Ω
2(2n−1)
1 + f2Ω

2(2n−1)
2 + · · · + fnΩ2(2n−1)

n .

The frequency variables Ω2 = x are the roots of the poly-
nomial

xn − a1x
n−1 − a2x

n−2 − · · · − an−1x − an, (B2)

where the coefficients ai, i = 1, · · · , n are the solution of
system of n linear equations

Kn = Kn−1an + Kn−2an−1 + Kn−3an−2

+ · · · + K1a2 + K0a1

Kn+1 = Knan + Kn−1an−1 + Kn−2an−2

+ · · · + K2a2 + K1a1

Kn+2 = Kn+1an + Knan−1 + Kn−1an−2

+ · · · + K3a2 + K2a1 (B3)
.................................................................

K2n−1 = K2n−2an + K2n−3an−1 + K2n−4an−2

+ · · · + Kna2 + Kn−1a1.

To rationalize Eqs. (B2) and B3) we note that Viet’s
theorem [41] establishes the relationship between the
polynomial roots and coefficients

a1 = x1 + x2 + · · · + xn

a2 = −
∑

i1<i2

xi1xi2

..........................

ak = (−1)(k+1)
∑

i1<i2<···<ik

xi1xi2 · · ·xik
(B4)

..........................

an = (−1)(n+1)x1x2 · · ·xn.

To verify Eqs. (B3) let simply substitute Eqs. (B4) in the
expression for Kn (B3)

Kn = (
∑

i

fix
n−1
i )(

∑
j

xj)

− (
∑

i

fix
n−2
i )(

∑
j1<j2

xj1xj2) + . . .

=
∑

i

fix
n
i +

∑
i6=j

fix
n−1
i xj

− (
∑

i

fix
n−2
i )(

∑
j1<j2

xj1xj2) + . . .

= Kn −
∑

i6=(j1<j2)

fix
n−2
i xj1xj2

+ (
∑

i

fix
n−3
i )(

∑
j1<j2<j3

xj1xj2xj3) − . . . = . . .

= Kn + (−1)n
∑

i6=(j1<···<jn−1)

fixixj1 · · ·xjn−1

+ (−1)n+1
∑

i

fix1x2 · · ·xn = Kn. (B5)

Thus all terms (except Kn) in the r.h.s. of Eq. (B5)
vanish, leaving the identity Kn ≡ Kn.

Eqs. (B3) is known as the Toeplitz linear system. The
inversion of the Toeplitz matrices is straightforward [42]
and poses no numerical difficulties.

Once the frequencies are found, the oscillator strengths
can be computed by solving the linear system of the
first n-equations of (B1) for the variables fn. Thus
the solution of the nonlinear system (B1) is obtained
in three steps: two linear problems, and finding the zeros
of a polynomial with real coefficients (the only nonlinear
task).

Since f1 � f2 � f3 � · · · � fn, and Ωn
1 � Ωn

2 �
· · · � Ωn

n, the lower frequency terms are dominant in
the first equations of system (B1) and the higher fre-
quency terms dominate the higher ones. This allows us
to increase the accuracy of the low frequencies by adding
new high frequency modes (and the necessary higher mo-
ments).

APPENDIX C: EVALUATION OF THE LOWEST
TWO MOMENTS OF LINEAR ABSORPTION

In Appendices C-E we will introduce renormalized
spectral moments which are independent on the applied
static field

f (2k) ≡ − 1
E0

K
(1)
k (C1)

and oscillator strengths

fν ≡ − 1
E0

f (1)
ν . (C2)

We can then recast a family of sum rules for the linear
response Eq. (48) as

f (n) =
M∑

ν=1

(Ων)nfν , n = 0, 2, 4, . . . , (C3)

f (n) ≡ 0, n = 1, 3, 5, . . . .

12
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To invoke the single-oscillator approximation (M = 1) for
the off-resonant response we need to express the lowest
two spectral moments for linear response f (0) and f (2)

in terms of the Hamiltonian parameters and the ground
state reduced density matrix ρ̄mn.

In the Hamiltonian of Eq. (1) we recast a nearest-
neighbor hopping Su-Schrieffer-Heeger (SSH) model and
electron-electron Coulomb interactions (Ohno formula)
as

tn,n±1 = β + (−1)nβ′∆, Vnm = Uvn−m, (C4)

where ∆ is the bond-length alternation parameter and
vn−m is a dimensionless function (with v0 = 1). We
assume that the bond-length alternation only enters
through the hopping matrix given by Eq. (C4) and ne-
glect its effect on the Coulomb interaction. For simplic-
ity we shall neglect when possible the alternation in the
transfer parameter making use of ∆ � a. This is justi-
fied when the electron-phonon contribution to the gap is
much smaller than the Coulomb contribution [34].

Applying the results of [28] to the system described by
Eqs. (C4) and (2) we obtain

f (0) = Aβ; f (2) = B0β
3 + B1β

2U, (C5)

with

A ≡ 4e2a2
∑

n

ρ̄n,n+1, B0 ≡ 8e2a2ρ̄nL,nL+1,

B1 ≡ 2e2a2{2
∑
m 6=n

vm−nδρ̄nδρ̄m +
∑

n

(δρ̄)2

−
∑
m 6=n

vm−n(δρ̄mn)2 −
∑
mn

δρ̄mnδηmn}. (C6)

Here nL, nR denote the chain edges, and we have intro-
duced the following definitions

ηmn ≡ −vm−nρ̄mn(1 − δmn)

+ (2
∑
k 6=n

vn−kρ̄kk + ρ̄nn)δmn, (C7)

and for an arbitrary matrix ξmn we define

δξn ≡ ξn+1,n − ξn,n−1;
δξmn ≡ (ξm−1,n − ξm,n+1) − (ξm+1,n − ξm,n−1). (C8)

To analyze the size-scaling of moments, we note that
for large sizes we have f (n) ∼ N for all n. Numerical
results for ρ̄mn show that boundary effects on ρ̄mn are
short range [4], and only affect it when the distance of m
and n from an edge is one or two atoms. This suggests
that boundary effects on the sum rules are also short
range, and for N > 10 say, f (n) can be written in a form

f (n) = Nf
(n)
0 + f

(n)
1 , (C9)

where f
(n)
0 is related to the N → ∞ behavior, and f

(n)
1

represent edge effects in the sum rules. Careful examina-
tion of the sum rules shows that the largest corrections

to Eq. (C9) are ∼ N−1 and ∼ N−1lnN , which can be ne-
glected for N ≥ 10. Expressions for f

(n)
0 and f

(n)
1 can be

obtained by inspecting the behavior of f (n) for large N :
f

(n)
0 are expressed in terms of the saturated components

of ρ̄mn, i.e., the values of ρ̄mn for large N when m and n

are far from the edges, while f
(n)
1 involves the values of

ρ̄mn near the edges (note that ρ̄mn is strongly localized
in m− n). Making use of Eqs. (C5) and (C6), we obtain
from the first moment (n = 0)

f
(0)
j = Ajβ; j = 0, 1, (C10)

with

A0 ≡ 2e2a2(ρ̃n,n+1 + ρ̃n+1,n+2),

A1 ≡ 4e2a2
∑

n

(ρ̄(1)
n,n+1 − ρ̃n,n+1). (C11)

Here ρ̃mn are the saturated values of the ground state
density matrix in a large chain (N → ∞) when m and
n are far from the edges nL and nR. ρ̃mn can be, there-
fore, formally treated as the ground state reduced den-
sity matrix of an infinite chain (−∞ < m, n < +∞).
ρ̃mn = ρ̃n+2k,m+2k. ρ̄

(1)
mn denote the saturated values of

ρ̄mn in a large chain (N → ∞) when m and n are far from
one of the edges, namely nR. We can put nL = 0 and for
nR = N − 1 → ∞ formally treat ρ̄

(1)
mn (with m, n ≥ 0) as

the ground state density matrix in a semi-infinite chain.
Note that both ρ̃mn and ρ̄

(1)
mn do not depend on N since

they represent the saturated values of ρ̄mn. ρ̄
(1)
mn, how-

ever, carries information about the near-edge values of
ρ̄mn when N is large enough and it is not affected by the
other edge. For m, n � 1 we have ρ̄

(1)
mn ≈ ρ̃mn.

For the third moment (n = 2) we obtain

f
(2)
j = Bj0β

3 + Bj1β
2U, (C12)

with

B00 = 0,

B10 = 8e2a2ρ̄
(1)
0,1,

B01 ≡ e2a2{2
∑
m 6=n

vm(δρ̃0δρ̃m + δρ̃1δρ̃m+1) + (δρ̃0)2

+ (δρ̃1)2 −
∑
m 6=0

vm[(δρ̃m0)2 + (δρ̃2
m+1,1]

−
∑
m

(δρ̃m0δη̃m0 + δρ̃m+1,1δη̃m+1,1),

B11 = 4e2a2
∑

n

bn, (C13)

bn ≡ 2δρ̄(1)
n

∑
m 6=n

vm−nδρ̄(1)
m + (δρ̄(1)

n )2

−
∑
m 6=n

vm−n(δρ̄(1)
mn)2 −

∑
m

δρ̄(1)
mnδη(1)

mn − 1
e2a2

B01.
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In Eq. (C13) we have formally extended ρ̄
(1)
mn to arbitrary

m and n setting ρ̄
(1)
mn = 0 when m < 0, or n < 0.

On the other hand, making use of the stationary HF
equation for an infinite chain, we obtain the following
relation between the parameters βj ≡ β − (−1)jβ′∆, j =
0, 1, and U

βj = C−1
j U, j = 0, 1. (C14)

The expansion of Eq. (C12) can be obtained from the sum
rules for a chain. The easiest way to obtain Eq. (C14)
and calculate Cj is to apply the stationary HF equation
(which is a matrix equation) to the n, n + 1 component.
This yields

C−1
j = [ρ̃j+2,j − ρ̃j+1,j−1]−1

∑
m

(ρ̃2m+j+1,j+1 − ρ̃2m+j,j)

× (ρ̃2m+j+1,j+2v2m−1 − ρ̃2m+j+1,j−1v2m). (C15)

The most important fact is that the coefficients A, B, and
C do not depend explicitly on N or on the parameters of
the Hamiltonian β, β′, U ; they are expressed in terms of
the bond-length alternation and the ground state density
matrix ρ̄mn in a long chain, which can be obtained in
practice by performing a single calculation for a large
chain (say N ∼ 50).

Combining Eqs. (C9), (C12), and (C14) and setting
C0 ≈ C1 ≡ C we obtain

f (0) = A0β(N + L0), (C16)

f (2) = (B00 + B01C)β3(N + L1) (C17)

with

L0 ≡ A1

A0
, L1 ≡ B10 + B11C

B00 + B01C
. (C18)

Eqs. (C5) - (C18) express the linear spectral moments
of density matrix in terms of the parameters of the Hamil-
tonian and ρ̄mn. This constitutes an important structure-
polarizability relationship, which predicts the magnitude
of the optical response using detailed information regard-
ing the chemical structure and bonding. These results
will be used in Appendix D.

APPENDIX D: SINGLE OSCILLATOR
APPROXIMATION FOR THE LINEAR

RESPONSE.

By employing the identitities (43) and (C2) to Eq. (33),
we can write the off-resonant linear polarizability as

α(ω = 0) =
M∑

ν=1

fν

Ω2
ν

. (D1)

We now consider the lowest approximation (M=1) of the
hierarchy Eqs. (D1) and (C3), where we retain only a

single oscillator. This approximation is exact if the os-
cillator strength is concentrated in one oscillator. How-
ever, its range of validity goes far beyond this case. It
approximates the contributions of all oscillators by a sin-
gle effective one. Making use of Eq. (C3) for k = 0, 1
and Eq. (D1) we obtain for the off-resonant polarizabil-
ity α ≡ α(ω = 0) and the optical gap Ω

α =
[f (0)]2

f (2)
, Ω =

[
f (2)

f (0)

]1/2

. (D2)

Substituting Eqs. (C16) and (C17) into Eq. (D2) yields

α(N) =
κ

β

(N + L0)2

N + L1
, (D3)

Ω(N) =
(

N + L1

N + L0

)1/2

Ω̃, (D4)

where the parameters κ and Ω̃, which characterize the
values of the linear response and the optical gap in long
molecules, have the form

κ =
A2

0

B00 + B01C
, Ω̃ =

(
B00 + B01C

A0

)1/2

β. (D5)

Eqs. (D3) and (D4) together with Eqs. (C18) and (D5)
express the off-resonant linear polarizability α(N) in
terms of ground state properties of a large molecules.

At this point we estimate the coherence sizes L0 and
L1 and connect L1 with the magnitude of bond alterna-
tion. The coherence size L0 is related to f (0), and since
edge effects of ρ̄ are short range, L0 ∼ 1. The situation
is quite different for the coherence size L1 related to f (2).
It follows from Eqs. (C6) - (C8), that in a translationally
invariant system f (2) = 0. This also follows immediately
from the corresponding sum rule presented in [28], which
is written in terms of commutators, since translation-
ally invariant matrices commute. Two factors may break
the translational symmetry in finite chains: spontaneous
symmetry breaking, which leads to the alternation in pa-
rameters, and boundary (edge) effects. The first mech-
anism (which exists even in an infinite chain) leads to a
∼ N contribution to f (2) which decreases with decreased
bond alternation. The second mechanism leads to a fi-
nite (i.e., ∼ N0) contribution to f (2) which is indepen-
dent of the alternation parameter. Eqs. (C13) show that
f

(2)
0 has an extra small factor compared to f

(2)
1 related

to the bond-length alternation parameter in an infinite
chain [4], and for weak alternations we have L1 � L0,
which means that we can neglect L0 while retaining L1 in
Eqs. (D3) and (D4). On the other hand the fact that f

(2)
0

has small a factor means that the parameter B00 +B01C
in Eq (C17) is small provided effects of alternation are
weak. Numerical calculations of [36] show it scales as
B00 + B01C ∼ β′∆ with bond-length alternation. We
can then recast the parameter κ in the form

14
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κ =
(ea)2β
8β′∆

k1 (D6)

with k1 weakly dependent on ∆. Combining Eqs. (D3),
(D4), and (D6) and making use of the above arguments
we finally obtain:

Ω(N) =

(
N + L1

N

) 1
2

Ω̃, (D7)

α(N) =
(ea)2

8β′∆
k1

N2

N + L1
, (D8)

with the following scaling of Ω̃ and L1 with ∆: Ω̃2 ∼ ∆,
L1 ∼ ∆−1. Numerical calculations of [36] show k1 ∼ 1.
Eqs. (D7) and (D8) imply that for large N , f (0)(N) ∼
N, α(N) ∼ N , and Ω(N) is independent of N whereas for
small N , f(N) ∼ N, α(N) ∼ N2 and Ω(N) ∼ N−1/2.

This establishes a direct relation between the scaling
properties of the off-resonant polarizability to chemical
properties of conjugated molecules. L1 is thus the co-
herence size which determines the crossover of the short
and long chain behaviors of α(N) and Ω(N). The simple
relations of Eqs. (D7) and (D8) are in a good agreement
with full TDHF calculations [36].

APPENDIX E: SIZE-SCALING OF THE
THIRD-ORDER RESPONSE.

The calculation of the third-order nonlinear polariz-
ability γ is much more tedious than α, even when only
a few modes dominate. The TDHF expression for γ has
eight contributions [24], and each dominant oscillator ν

contains two variables (ξ̂ν and ξ̂+
ν or P̂ν and Q̂ν). The

number of coefficients becomes very large, and we need
a large number of sum rules to determine them, which
greatly complicates the picture. To derive a simple yet
qualitatively correct expression, we make some additional
assumptions. Numerical TDHF calculations of the opti-
cal response show that processes which do not conserve
the number of electron-hole pairs can be treated pertur-
batively. Neglecting these processes leads to the follow-
ing relevant level scheme for the third-order response: the
ground (vacuum) state with no electron-hole pairs (ex-
citons), one-exciton states with Bu symmetry, and two-
exciton states with Ag symmetry, which are made out of
two Bu excitons. Processes which do not conserve the
number of excitons mix the two-exciton states consist-
ing of two Bu-excitons and one-exciton Ag states [43].
There are two kinds of Ag states contributing to γ: (i)
2Bu states with a small component of 1Ag, and (ii) 1Ag

states with a small component of 2Bu states. The lat-
ter lead to sharp two-photon resonances in γ and show
up in the TDHF approximation as resonances related to
Ag oscillators. The former states to a certain extend are
taken into account by the TDHF approximation, which
fails near two-photon resonances on these states. This

is, however, not important for the off-resonant response.
The contribution of states (ii) is essential for the reso-
nant properties of γ (e.g., two-photon absorption), how-
ever, their contribution to the off-resonant response is
small provided the processes which do not conserve the
number of excitons are weak. Adopting TDHF terminol-
ogy, the contributions of (i) and (ii) states are related to
the terms in the expressions of [24] which do not and do
contain respectively Ag oscillators (which further lead to
sharp two-photon resonances). Assuming that processes
which do not conserve the number of excitons are weak,
we will take into account only those terms which do not
contain the Ag-oscillators [24]. This still leaves us with
a large number of terms related to summations over in-
dices denoting the momentum and coordinate variables
of each oscillator. This number can be considerably re-
duced when the terms induced by processes which do not
conserve the number of excitons are neglected (formally
this means that the eigenmodes ξ̂α and ξ̂+

α contain the
particle-hole and hole-particle components of the density
matrix respectively). If in addition we assume a single
dominant Bu oscillator, we obtain the considerably sim-
plified form of the third-order response function:

γ(−ωs; ω1, ω2, ω3) =
1
6

∑
perm

{
I1

1
ω1 − Ω + iη

1
ω2 + Ω + iη

×
[

1
ω1 + ω2 + ω3 − Ω + iη

− 1
ω1 + ω2 + ω3 + Ω + iη

]
+I2

1
ω1 − Ω + iη

1
ω2 + Ω + iη

×
[

1
ω3 − Ω + iη

1
ω1 + ω2 + ω3 − Ω + iη

+
1

ω3 + Ω + iη

1
ω1 + ω2 + ω3 + Ω + iη

]}
+ c.′c.′ (E1)

where
∑

perm stands for a sum of 6 permutations of the
frequencies ω1, ω2, and ω3; c.’c.’ denotes complex con-
jugation and changing the signs of all frequencies ω1, ω2,
and ω3.

γ is now expressed in terms of two parameters I1 and
I2 which may be determined by applying two sum rules.
Switching Eq. (E1) to the time domain and substituting
it into the sum rules of [28] we obtain the following system
of equations for I1 and I2.

ΩI1 − I2 =
3e2a2

2
f (0),

Ω2I2 =
3e2a2

4
f (2). (E2)

Solving Eqs. (E2), substituting I1 and I2 into Eq. (E1)
and further setting ω1 = ω2 = ω3 = 0 we obtain for the
off-resonant hyperpolarizability γ:

γ =
3e2a2f (0)

Ω4
. (E3)
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Finally, making use of Eqs. (C16), (D7), and the fact
that Ω̃2 ∼ ∆ we express the off-resonant third-order hy-
perpolarizability γ in terms of ∆ and the ground state
reduced density matrix in a large molecule

γ =
3e4a4

2(4β′∆)m−1
k3

Nm

(N + L1)m−1
, (E4)

with m = 3, and the dimensionless coefficient k3 depends
on the ground state single-electron density matrix.

One can apply similar arguments individually to each
of the eight contributions to the third order polarizabil-
ity [24]. This will involve two generalizations of the pro-
cedure presented above. First, we need to include the
higher order moments of the nonlinear response. Second,
instead of using the dipole operator µ in the sum rules for
the third-order response given in [28] we will consider its
interband and intraband components given by [ρ̄, [ρ̄, µ]]
and µ − [ρ̄, [ρ̄, µ]] respectively. New sum rules apply not
to the third-order polariability γ but rather for each of
eight contributions to γ itself presented in [24]. The pro-
cedure is lengthy and rather tedious and will not be given
here. The result is that the N- and ∆- dependence of each
contribution is given by Eq (E4) with b assuming values
m = 3, 4, 5 for different contributions. We have fitted
the results for γ(N) obtained by the TDHF calculations
using the full DSMA described with the expression of
Eq (E4) for different values of ∆ using k3 and b as fit-
ting parameters. We found that m = 4 applies over a
broad range of variation of ∆, k3 is order 1 and has a
weak dependence on ∆. Numerical results are presented
in [36].
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