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Using sum rules for spectral moments of linear and
nonlinear absorption we show that the j-th order off-
resonant polarizibilities of polyacetylene chains scale as ∼
j∆−jNj+1/(N + L)j , N is the number of carbon atoms, ∆
being the bond-length alternation, and L(∆) is the exciton co-
herence size. This result is in excellent agreement with time-
dependent Hartree-Fock (TDHF) calculations performed for
chains with up to 200 carbon atoms. [S0031-9007(96)01747-4]

PACS numbers: 7866.Qn, 36.20.Kd

The complex highly correlated electronic structure of
conjugated molecules is attributed to their low dimen-
sionality and delocalizated electronic states. Besides
the fundamental interest in these systems, the ability to
manipulate their structures by substitution makes them
ideal candidates for various applications including opti-
cal materials and electroluminescence devices. A crucial
open theoretical problem is how to relate the optical re-
sponse to ground state (i.e. chemical) properties, thus
providing guidelines for the synthesis of new optical ma-
terials [1–6].

The scaling of nonlinear polarizabilities with molecu-
lar size has drawn much theoretical [1,4,6–9] and exper-
imental [10–12,14,15] attention. The scaling of optical
polarizabilities with number N of carbon atoms is usu-
ally described using an ∼ N b power law. For small sizes
the scaling exponent b of the third order polarizability
γ varies between 3 and 8 depending on the system and
model. For large sizes we expect b to saturate and ap-
proach 1, since the polarizability then becomes an exten-
sive property. Problems with controlled synthesis of long-
chain polymers restricted early experiments to molecules
with fewer then 20 double bonds, which show no satu-
ration of b [11,15]. These difficulties were overcome in
[10] where solution measurement of γ as a function of
chain length in long chains (up to 240 double bonds) have
been reported, and a saturation of b with chain length
has been observed at N ∼ 200 sites. Nonlinear polar-
izabilities depend also on other molecular parameters:
strong dependence of off-resonant optical susceptibilities
on bond-order alternation in short chains (containing up
to 8 carbon atoms) has been demonstrated [4].

In this letter we derive simple expressions for the off-
resonant optical polarizabilities of polyacetylene chains
which reproduce remarkably well their magnitude and
scaling with molecular size and bond-length alternation.
These relations provide a convenient parameterization
of the optical response and allow a quick prediction of
trends. Our analysis is based on the Time-Dependent
Hartree-Fock (TDHF) approximation which connects the

optical susceptibilities to the Hartree-Fock ground state
reduced single-electron density matrix ρ̄. This procedure
further maps the optical response of a many electron
system onto a coupled set of oscillators representing the
eigenmodes of the linearized TDHF equation; optical sus-
ceptibilities then originate from mode scattering induced
by anharmonicities [16].

The present results are obtained by combining two re-
cent developments. The first is the observation that the
optical response is dominated by a few collective oscilla-
tors [6,17]. Consequently only a few parameters (mode
frequencies and scattering amplitudes) determine the op-
tical susceptibilities [16]. A second ingredient in the
present analysis is a family of sum rules which connect
the short time evolution of the density matrix (and its
spectral moments) to the parameters of the hamiltonian,
completely avoiding the tedious computation of many-
electron wavefunctions [18]. These sum rules provide a
closed description of the optical response in terms of a
finite set of oscillators whose number can be increased
gradually until convergence is achieved. This is remi-
niscent of the calculations of spectral lineshapes using a
finite set of spectral moments.

We use the Pariser-Parr-Pople (PPP) tight-binding
Hamiltonian [19]. The nearest-neighbor transfer integral
between n-th and m-th atoms: tn,n±1 = β0 + (−1)nβ′∆
depends on the bond length alternation parameter ∆. In
addition it contains an analytical approximation for the
Coulomb interaction (the Ohno formula). Following [6]
we use the following values of parameters β0 = −2.4eV ,
β′ = −3.5eV Å−1. We assume localized basis set and
fixed geometry so that the dipole moment is diagonal
µnm = eznδnm with zn = na + (−1)n∆/2, a = 1.22Å be-
ing the unit cell size (the average of a single and a double
bond length along the backbone). Since the ground state
is a singlet, it can be described by the HF single elec-
tron density matrix ρ̄nm, and the spin variables may be
eliminated [16].

The chemical bonding is described by the bond order
σn ≡ (ρ̄n,n+1 + ρ̄n+1,n+2)/2 and the bond order alter-
nation parameters κn ≡ |ρ̄n,n+1 − ρ̄n+1,n+2|. Numerical
calculations show that the bond order parameter σn de-
pends only weakly on the bond length alternation ∆ in
polyacetylene. Since ρ̄nm is a localized function of n−m,
and edge effects are short range, we thus expect both σn

and κn to depend very weakly on n (apart from small
edge effects). We can therefore safely use the average
values of σ =< σn >= 0.31 and κ =< κn > as good
measures of the chemical bonding.

We start with the linear response. Upon diagonalizing

1 c© 1996 The American Physical Society



Volume 77, Number22, pp.4656-4659 PHYSICAL REVIEW LETTERS 25 November 1996

the linearized TDHF equation [16], we can describe the
system in terms of electronic normal modes represent-
ing the reduced single density matrix. We denote the
frequency, dipole moment, and oscillator strength of the
µ’th oscillator by Ων , µν , and fν ≡ 2|µν |2Ων respectively.
The linear polarizability is given by

α(ω) =
∑

ν

fν

Ω2
ν − (ω + iη)2

. (1)

We next introduce the spectral moments of the linear
absorption f (n) ≡∑ν(Ων)nfν . For even integers n ≥ 0,
f (n) can in turn be expressed in terms of the Hamilto-
nian parameters and the ground state reduced density
matrix ρ̄mn. The moments for different values of n then
provide a family of sum rules [18]. By taking the sim-
plest (single-mode) approximation we obtain closed an-
alytical expressions for the susceptibilities. Making use
of sum rule for n = 0, 2 and Eq. (1) we obtain for the
off-resonant polarizability α ≡ α(ω = 0)

α = [f (0)]2/f (2), Ω = [f (2)/f (0)]1/2 (2)

The single mode approximation lumps the contributions
of all electronic oscillators into a single effective oscilla-
tor with frequency Ω. This mode may not be identified
with any of the original TDHF modes; it is rather a nat-
ural collective variable which represents in the best way
the contribution of all electronic oscillators to the zero
frequency optical response.

Eqs. (2) express the linear polarizability α and the op-
tical gap Ω in terms of the parameters of the Hamilto-
nian and its ground state ρ̄mn. This provides an impor-
tant structure-polarizability relationship, which allows to
predict the magnitude of the linear response using de-
tailed information regarding the chemical structure and
bonding. The moments contain the global relevant in-
formation about system and are much easier to model
and parameterize compared with individual frequencies
Ων and oscillator strengths fν .

To proceed further, we examine the dependence of the
spectral moments f (0) and f2) on molecular parameters.
We expect that for large sizes, f (n) ∼ N for all n. Nu-
merical results for ρ̄mn show that boundary effects on
ρ̄mn are short range [6], and only affect it when the dis-
tance of m and n from an edge is one or two atoms. This
suggests that boundary effects on the sum rules should
also be short range, and that f (n) can be written in the
form f (n) = Nf

(n)
1 + f

(n)
0 , where f

(n)
1 is related to the

N → ∞ behavior, and f
(n)
0 represent edge effects in the

sum rules. Careful examination of the sum rules shows
that the largest corrections to this form are ∼ N−1 and
∼ N−1lnN , which can be safely neglected for N ≥ 10.
Expressions for f

(n)
1 and f

(n)
0 can be obtained by inspect-

ing the behavior of f (n) for large N : f
(n)
1 are expressed

in terms of the saturated components of ρ̄mn, i.e., the
values of ρ̄mn for large N when m and n are far from
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FIG. 1. Scaling of the first f (1) [e3Å2V ] and second f (2)

[e5Å2V 3] moments of the linear absorption with number of
carbon atoms for different values of bond-length alternation.
Calculations were made using the sum rules [18].

the edges, while f
(n)
0 involves the values of ρ̄mn near the

edges (note that ρ̄mn is strongly localized in m−n). Ne-
glecting edge effects we have f (0) = Nf

(0)
1 . For f (2) we

retain the N-independent term f
(2)
0 . This will be ratio-

nalized below.
Substituting f (2) and f (0) in Eq (2) we obtain

α = χ(1) =
[f (0)

1 ]2

f
(2)
1

N2

N + L
(3)

where L ≡ f
(2)
0 /f

(2)
1 is the effective coherence length.

Having established the size-scaling of α with size N,
we turn to its dependence on other molecular param-
eters. Using the sum rules of [18] for f (0) we have
f

(0)
1 = 4e2a2β0σ. The second moment f (2) is more com-

plicated. The formal expression for f (2) [18] implies that
it vanishes in a translationally invariant system. There
are three mechanisms which break the translational sym-
metry with respect to the lattice constant and make f (2)

finite: bond order alternation related to symmetry break-
ing in ρ̄, bond-length alternation which causes symmetry
breaking in the Hamiltonian, and edge effects. 1 The sec-
ond mechanism does not contribute to f

(2)
1 ; this means

that f
(2)
1 is small when ∆ is small, that edge effects are

important even for large N, and we need to keep the term
f

(2)
0 .
We have calculated numerically the moments f (1) and

f (2) using the sum rules [18] for different values of ∆
and N. The results are presented in Fig.1. The left panel
shows f (0) = f

(0)
1 N with f

(0)
1 = 4.4 e3Å2V independent

of ∆ as expected. The right panel shows f (2) = f
(2)
1 N +

f
(2)
0 . The dependence of f

(2)
1 and f

(2)
0 on ∆ are displayed

in Fig.2 (upper panels). For 0.02Å ≤ ∆ ≤ 0.1Å they can

1Note that a finite κ in the infinite chain even when ∆ = 0
is a signature to spontaneous symmetry breaking induced by
Coulomb interaction.

2



Volume 77, Number22, pp.4656-4659 PHYSICAL REVIEW LETTERS 25 November 1996

0.00 0.04 0.08

1

2

3

 Ω 
 

 

 

 ∆

0

20

40

f1
(2)

 

 

 

 

 

300

320

340

360

  

 

f0
(2)

 

0.00 0.04 0.08
0

40

80

120

 

 

 L

 ∆
FIG. 2. Upper panels: variation of the coefficients (f

(2)
1

[e5Å2V 3] and f
(2)
0 [e5Å2V 3]) in the Taylor expansion of the

second moment with the bond length alternation ∆ [Å]. Cal-
culations were made using the sum rules [18]. Bottom panels:
The ∆ [Å] dependence of the coherence size L and the optical
gap Ω̃ [eV]. Solid lines - full TDHF calculations. Dashed line
- Eq. (5)

be approximated by the Taylor expansions f
(2)
1 = a1∆,

f
(2)
0 = b0 + b1∆+ b2∆2. Numerical fits give the following

coefficients: a1 = 410 e5ÅV 3; b0 = 350 e5Å2V 3; b1 =
−140 e5ÅV 3; b2 = −3900 e5V 3. The ∆-dependence of Ω
and L is then given by

Ω(N, ∆) =

(
N + L(∆)

N

) 1
2

Ω̃(∆), (4)

with

L(∆) =
b0 + b1∆ + b2∆2

a1∆
; Ω̃(∆) =

√
a1∆

f
(0)
1

. (5)

The coherence length L(∆) and the optical gap for in-
finite chains Ω̃(∆) are displayed in Fig.2 (lower panel).
Eq. (4) gives the Ω ∼ N−ν behavior of the optical gap
with ν = 0.5 for short chains (N < L(∆)) and its satu-
ration for N > L(∆) (for comparison, the Hückel model
[1,9] where Coulomb interactions are neglected predicts
ν = 1). Exponents close to 0.5 has been observed exper-
imentally in various oligomers [11,12].

The linear scaling of f
(2)
1 with ∆ yields our final ex-

pression for the single-mode approximation of the linear
response α ≡ χ(1)

χ(1) =
(ea)2

8β′∆
k1

N2

N + L(∆)
. (6)

Here 4β′∆ is the Hückel band gap. The dimensionless
parameter k1 defined by Eqs. (6) can be estimated us-
ing ρ̄mn in a long chain. Eqs. (4) and (6) give α(N) ∼
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FIG. 3. Scaling of the first third and fifth order polarizabil-
ities (α, γ, and δ are in the units of eÅ2V −1 [1.441×10−23esu],
eÅ4V −3 [1.297 × 10−34esu], and eÅ6V −5 [1.167 × 10−45esu])
of polyacetylene chains with the numbers of carbon atoms
for various values of the bond length alternation parameter
∆ = 0.03Å, 0.05Å, 0.07Å, and 0.09Å, as indicated, solid line -
full TDHF calculation, dashed line - Eq. (7)

N/Ω2(N) in agreement with the result of Silbey [13] who
used an “average” frequency Ω̄ to perform the sum over
states in α. This “average” frequency is identified as the
frequency of our collective electronic oscillator.

The sum rule analysis of χ(1) can be extended to higher
order (nonlinear) polarizabilities. These calculations are
more tedious since the number of terms in the susceptibil-
ities is much larger, which requires the use of additional
sum rules, and the introduction of a new effective elec-
tronic mode at each order of response. We have exam-
ined the scaling behavior of all terms contributing to the
third order response. Upon retaining only the dominant
ones and applying similar arguments for higher order re-
sponses we finally obtained

χ(j) = kj
j(ea)j+1

2(4β′∆)j

N j+1

[N + L(∆)]j
, (7)

where j = 1, 3, 5 correspond to the polarizabilities α, γ, δ
etc. These expressions are valid only for finite bond-
length alternation ∆. ∆ = 0 needs to be treated sepa-
rately.

The solid lines of Fig.3 represent the the full TDHF
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FIG. 4. Variation of the dimensionless parameters kj with

the bond length alternation ∆ [Å]. kj were obtained by fitting
Eq.(7) to the TDHF (see Fig.3).

calculations of α, γ and δ for polyacetylene chains with
up to 200 carbon atoms for various values of ∆. The
dotted lines were calculated using Eq. (7) and show an
excellent agreement. We computed L(∆) ≡ f

(2)
0 /f

(2)
1

using the expressions given in [18]. kj(∆), j = 1, 3, 5
displayed in Fig.4 were the only fitting parameters. kj

are order 1 and depend only weakly on ∆.

Eq. (7) predicts the following relation between the sat-
urated third order off-resonant susceptibility γ and op-
tical gap Ω̃: γ ∼ ∆−3 ∼ Ω̃−6. In the Hückel model on
the other hand we have γ ∼ ∆−6 ∼ Ω̃−6 [1]. This Ω̃−6

scaling is in agreement with experiment [14]. Note that
these two models predict a different scaling with ∆.

To examine the χ(j) ∼ N bj power law we calculated
the scaling exponent bj = d[lnχ(j)]/d[lnN ] [6]. This gives

bj =
(
1 + jL

N+L

)
. For small sizes it starts as bj = 1 + j.

The convergence of the scaling exponent b to 1 allows us
to introduce an operational definition of the saturation
size, defined as size N? whereby bj = 1 + η, η being
a chosen small parameter. We then get N? = (j/η −
1)L. For η = 0.1 this gives (10j − 1)L. It is clear from
Fig.3 that the effective saturation size increases with j as
predicted by this equation, even though it still depends
on a single coherence size. For j = 3, η = 0.5, and ∆ =
0.03Å which corresponds to L = 27 we obtain N? = 135,
in good agreement with Fig.2 of [10] where the value of
η = 0.5 is reached at N? ∼ 120.

In summary, we have derived expressions for size-
dependent off-resonant polarizabilities χ(j) and the op-
tical gap Ω̃ [Eqs. (4) - (7)] which predict their variation
with the bond-length alternation parameter ∆. The satu-
rated (N → ∞) values of χ(1), χ(3), and χ(5) show strong
dependence on bond-length alternation ∆: α ∼ ∆−1,
γ ∼ ∆−3, δ ∼ ∆−5. ∆ can be varied while keeping
β0 fixed (for example by using different solvents or by
substitution). Our expressions predict correctly the ex-

perimental scaling Ω ∼ N−0.5 [11,12], γ ∼ Ω̃−6 [1,14],
and provide a good estimate of the saturation length of
γ [10].
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