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ABSTRACT

This article reviews recent studies of excited
states and optical properties of organic molecular
systems based on the Random Phase Approximation
combined with INDO/S, MNDO, AM1, and PM3
semiempirical Hamiltonian models. Fast Krylov-
space based algorithms for the required diagonal-
ization of large Hamiltonian matrices make possi-
ble to calculate excited state structure of organic
molecular systems with hundreds of heavy atoms
with only moderate computational effort. This tech-
nique is applied to compute the electronic struc-
ture of large conjugated molecules and molecular
aggregates. To mimic the experimental conditions,
the solvent contributions are incorporated using the
Self-Consistent Reaction Field approach. Calcu-
lated spectroscopic observables (excited-state ener-
gies, oscillator strengths and polarizabilities) agree
well with experimental data and each other. In par-
ticular, the results obtained with the Hamiltonians
parameterized for ground-state calculations such as
AM1 and PM3 agree well with the INDO/S results.
Subsequent two-dimensional real-space analysis of
corresponding transition density matrices provides
an efficient way for tracing the origin of various opti-
cal transitions by identifying the underlying changes
in charge densities and bond-orders.

I. INTRODUCTION

Technologies based on organic materials for
opto-electronic devices today have become a real-
ity and in the near future may well compete with
semiconductor and liquid crystal based tradi-
tional approaches. Potential technological appli-
cations include electroluminescent [1–3], photo-
voltaic [4], and optoelectronic [5–7] devices, pho-
todetectors [8,9], transistors [10,11], solid state
lasers [12–17], optical limiting materials [18].
One of the key points in the development of such
technologies is the synthesis of molecular struc-
tures with desired functionalities.

Accurate calculations of molecular vertical
excitation energies and polarizabilities are es-
sential for the modeling of spectroscopic probes,
addressing structure-function relations and pre-
dicting structures with desired optical properties
[19–21]. Generating a qualitatively acceptable
description of excited states is a much more chal-
lenging task than analogous ground state calcu-
lations. The reason is that the ground state elec-
tronic wavefunction is usually well approximated
by a single Slater determinant, whereas much
more complicated configuration interaction (CI)
representations are often needed for the excited
states [22]. The large computational demand as-
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sociated with CI calculations places severe limi-
tations on the size of the systems whose excited
states can be studied [23]. Alternatives to CI ap-
proaches such as time-dependent density func-
tional theory (DFT) [24–26] are now available
within the standard quantum chemistry packages
(e.g. Gaussian [27]). While we are still accumu-
lating experience with these techniques, it ap-
pears that they produce quite reasonable spec-
tra, especially when used with the new genera-
tion of gradient-corrected or hybrid functionals.
However, while applicable to larger systems than
traditional CI calculations, they are still fairly
computationally expensive. To our knowledge,
the largest system studied with these techniques
to date is the C70 cluster [24].

Calculation of nonlinear molecular polar-
izabilities is a closely related task. The
Coupled-Perturbed Hartree-Fock (CPHF) ap-
proach computes polarizabilities by evaluating
energy derivatives of a molecular Hamiltonian
perturbed by an external field [19]. Usu-
ally combined with semiempirical or ab ini-
tio Hamiltonians, this method involves substan-
tial computational effort especially in the lat-
ter case. A second method uses time-dependent
perturbation theory, which relates optical re-
sponse to the properties of the excited states.
The Configuration-Interaction/Sum-over-States
(CI/SOS) [19–21,28] approach involves the calcu-
lations of both the ground state and excited state
wavefunctions and the transition dipole moments
between them. This method is not necessarily
size-consistent (intrinsic interference effects re-
sulting in near cancellation of very large con-
tributions further limit its accuracy) and special
care needs to be taken when choosing the right
configurations. On the other hand, the exper-
imental measurements are usually conducted in
condensed phase, and therefore all spectroscopic
observables are heavily influenced by intermolec-
ular coupling in solid state or solute-solvent in-
teractions in solution which makes comparison of
calculations with experiment very tedious.

In this review we focus on RPA techniques

used in conjunction with the semiempirical ap-
proaches developed to target larger system sizes
[29–33]. These approaches are based on sim-
plified Hamiltonians parameterized using high-
level ab initio calculations and (or) experimental
data. The semiempirical approximations usu-
ally limit the basis set to a minimum valence
basis of Slater type orbitals. Coulomb and ex-
change terms in the two-electron interaction are
approximated and many are ignored completely.
Typically, only one- and two- center Coulomb in-
teractions are retained, and the exchange inter-
actions are usually limited to those on a single
atom. These approximations make semiempirical
techniques fast and efficient yet reasonably accu-
rate for computation of molecular properties. In
particular the recently developed Collective Elec-
tronic Oscillator (CEO) approach [34,35] is based
on the time-dependent Hartree-Fock (TDHF) ap-
proximation or Random Phase Approximation
(RPA) [36,37] for many-electron wavefunction
and used the ground state density matrix and
semiempirical Hamiltonian as an input. This
method provides a powerful tool for studying the
optical response of large conjugated and aggre-
gated molecules [34,35,38] and has been success-
fully used in calculations of the optical proper-
ties of a variety of conjugated chromophores such
as porphyrins, dendrimers, donor/acceptor poly-
mers, biological light-harvesting complexes, etc.
[34,39,40]. By focusing only on the spectroscop-
ically relevant observables, the CEO enables cal-
culations on excited electronic states of molecules
with hundreds of heavy atoms. In this arti-
cle we review some recent results obtained with
the CEO approach for photoluminescent poly-
mers and donor/acceptor substituted conjugated
molecules.

Section II describes the computational
method. In Section III we analyze the electronic
spectra of conjugated oligomers and their ag-
gregates and nonlinear optical polarizabilities of
donor/acceptor substituted molecules computed
with different semiempirical techniques. Finally,
we summarize the results in Section IV.
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II. THE RPA/SEMIEMPIRICAL
FORMALISM

The numerical CEO method for comput-
ing electronic structure is described in detail
elsewhere [34,35,41]. The procedure starts
with molecular geometry, optimized using stan-
dard quantum chemical methods [27], or ob-
tained from experimental X-ray diffraction or
NMR data. INDO/S, AM1, PM3, MNDO,
and MINDO/3 semiempirical Hamiltonians (Sec-
tion IIA) are then generated for each opti-
mal molecular structure using either ZINDO
(INDO/S) [42,43] or the MOPAC-93 (AM1,
PM3, MNDO, and MINDO/3) code [44]. The
Hartree-Fock ground state density matrix is
calculated next. These density matrix and
hamiltonian are the input into CEO calcula-
tions which solve the TDHF equation of mo-
tion by the diagonalization of the Liouville op-
erator (Section IIB). The latter could be effi-
ciently performed using Krylov-space techniques:
IDSMA [34,35,45], Lanczos [41,46,47], or David-
son’s [48,24] algorithms. Two-dimensional repre-
sentation of the resulting transition density ma-
trices provides an analysis of each electronic tran-
sition and molecular optical response in terms of
excited state charge distribution and motions of
electrons and holes in real space (Section III). Fi-
nally, computed vertical excitation energies and
transition densities may further be used to cal-
culate molecular spectroscopic observables such
as transition dipoles, oscillator strengths, linear
absorption, and static and frequency-dependent
nonlinear responses (Sections IIB and III). The
overall scaling of these computations does not
exceed K3 in time and K2 in memory (K being
the basis set size) for both ground and excited
state (per state) calculations. Typically, direct
diagonalization of the Liouville operator L or CI
Singles matrix A without invoking Krylov-space
methods decreases the computational efficiency
to ∼ K6 in time and ∼ K4 in memory for the
excited states.

A. Molecular Hamiltonian and semiempirical
approximation

Let us consider a general system of N elec-
trons which can occupy K single-electron states
(N ≤ K) and interact with an external field. The
Hamiltonian in second quantization form is most
generally given by [22]

Ĥ =
∑
mnσ

tmnc
†
mσcnσ +

∑
mnkl
σσ′

〈nm|kl〉c†mσc
†
nσ′ckσ′clσ

−
∑
mnσ

E(t) · µmnc
†
mσcnσ, (2.1)

where the subscripts i, j, k, l run over known spa-
tial atomic basis functions {χn} and σ, σ′ label
spin components. These atomic orbitals are as-
sumed to be orthogonal and c†n(cn) are the cre-
ation (annihilation) operators which satisfy the
Fermi anticommutation relations

cmσc
†
nσ′ + c†nσ′cmσ = δmnδσσ′ , (2.2)

and all other anticommutators of c† and c vanish.
For clarity, we hereafter focus on closed-

shell molecules and exclude spin variables as-
suming that N electron pairs occupy K spa-
tial atomic orbitals. Generalization to the un-
restricted opened-shell case and non-orthogonal
basis set is possible [22]. The first term in
Eq. (2.1) is the core-hamiltonian describing the
kinetic energy and nuclear attraction of an elec-
tron

tnm = 〈n| − 1

2
∇2

1 −
∑

A

ZA

|r1 − RA| |m〉 ≡
∫
dr1χ

∗
n(1)

(
−1

2
∇2

1 −
∑

A

ZA

|r1 −RA|

)
χm(1), (2.3)

where RA is the nuclear coordinate of atom
A. The second term represents electron-electron
Coulomb interactions where

〈nm|kl〉 =
∫
dr1dr2χ

∗
n(1)χ

∗
m(2)

1

r12
χk(1)χl(2),

(2.4)
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are the two-electron integrals. The interaction
between the electrons and the external electric
field E(t) is given by the last term in Eq. (2.1),
µ being the dipole operator

µnm = 〈n|µ|m〉 ≡
∫
dr1χ

∗
n(1)r1χm(1). (2.5)

To solve the Schrödinger equation ĤΨ =
EΨ for the ground state we assume the sim-
plest antisymmetric wavefunction i.e a single
Slater determinant Ψ = |φ1(1)φ2(2) . . . φN(N) >
[22] (Hartree-Fock approximation). Here {φα}
are the molecular orbitals (MO). Following
Roothaan’s procedure [22] they are expanded as
linear combinations of spatial atomic basis func-
tions {χn}

φα =

K∑
i

Cαiχi. (2.6)

The Hartree-Fock approximation replaces the
complex many-body problem by an effective one-
electron problem in which electron-electron re-
pulsion is treated in an average (mean field) way.
The Hartree-Fock eigenvalue equation is derived
by minimizing the ground state energy with re-
spect to the choice of MOs

FC = Cε. (2.7)

This equation may be recast in the form

[F (ρ̄), ρ̄] = 0. (2.8)

The ground-state density matrix ρ̄ is related to
the MO expansion coefficients (Eq. (2.6)) for
closed-shells as

ρ̄nm =
Nocc∑

a

CnaC
∗
ma = 2

N∑
a

CnaC
∗
ma. (2.9)

F (ρ̄) is the Fock matrix with matrix elements

Fnm(ρ̄) = tnm + Vnm(ρ̄), (2.10)

and the matrix representation of the Coulomb
electronic operator V in the atomic basis set {χn}
is

V (ρ̄)mn =

K∑
k,l

ρ̄kl[〈mk|nl〉 − 1

2
〈mn|kl〉]. (2.11)

The Hartree-Fock equation (2.7) is nonlinear and
may be readily solved iteratively using the self
consistent field (SCF) procedure [22].

In all computations presented below we use
semiempirical parameterizations of the hamilto-
nian (2.1). This approximation limits the basis
set to a minimum valence basis of Slater type or-
bitals. Coulomb and exchange terms in the two-
electron interaction are approximated and many
are ignored completely. Typically, only one- and
two- center Coulomb interactions are retained,
and the exchange interactions are usually limited
to those on a single atom:

〈χA
nχ

B
k |χA

mχ
B
l 〉 =

{ 〈χA
nχ

A
k |χA

mχ
A
l 〉 A = B

〈χA
nχ

B
k |χA

nχ
B
k 〉δnmδkl A �= B

(2.12)

where χA
n belongs to atom A and χB

n to atom
B. The tetradic matrix 〈χnχk|χmχl〉 thus be-
comes block-diagonal in two dimensions. Thus
this approximation allows to limit the number
and store all computed Coulomb matrix elements
in memory instead of recalculating them when
needed as is commonly done in ab initio compu-
tations, making semiempirical techniques signif-
icantly easier and faster.

The semiempirical Hamiltonians which have
evolved over the years differ both in the types
of two-electron integrals retained in the model,
and the manner in which the relevant param-
eters are determined. In particular, to study
excited states, M. C. Zerner [42,43] combined
the Intermediate Neglect of Differential Overlap
(INDO) model of Pople and coworkers [29] with
a CI method to generate excited states. The
CI expansion was limited to single excitations
from the ground state determinant, an approach
dubbed the CI singles (CIS) approximation. The
original INDO parameters did not work well,
but Zerner found that the model could be repa-
rameterized to reproduce the vertical excitation
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energies of small organic molecules and transi-
tion metal compounds [42,43]. This method was
christened the INDO/S [INDO/spectroscopy] ap-
proach and has proven to be an extremely valu-
able technique [49]. INDO/CIS calculations have
been successfully applied to studies of electron-
ically excited states in a wide variety of chro-
mophores, including transition metals [42,50,51].
The ZINDO code developed by Zerner and co-
workers serves as a convenient platform for these
calculations. We found that the RPA combined
with the INDO/S Hamiltonian works extremely
well without further reparameterization for many
molecules and thus provides an alternative ap-
proach for computing the optical properties of
a broad range of molecules [34,35,38–40]. How-
ever, reproducing the excitation energies came
at a price, however, as the INDO/S method does
very poorly for ground state geometries. In appli-
cations, typically either the experimental geome-
try or a semiempirical approach developed for the
ground state is used to determine the geometry
of the molecule, and is followed by an INDO/S
calculation to generate the excited states.

The other family of semiempirical models de-
veloped by Dewar and Stewart [30–33] adjusted
their parameters to reproduce the ground state
geometry, heats of formation and other proper-
ties at Hartree-Fock level. This approach as-
sumes that electron correlation effects can be in-
corporated in the empirically determined param-
eters. The models of choice for the ground state
[Austin Model 1 (AM1) [30], Parametric Model
3 (PM3) [31], Modified Intermediate Neglect of
Diatomic Overlap (MNDO) [32] and older Mod-
ified Intermediate Neglect of Differential Over-
lap 3 (MINDO/3) [33]] are the basis for MOPAC
2000 package which is a convenient and very fast
platform for studying chemical properties and re-
actions in gas. The accuracy of these semiempir-
ical approaches in prediction of numerous chem-
ical and physical properties such as Gibbs free
energies, activation energies, reaction paths and
dipole moments, rivals that of much more nu-
merically demanding ab initio and Density Func-

tional Theory (DFT) methods.
However these models have not been system-

atically studied as regards their applicability to
excited states, presumably because of the success
of INDO/S and the availability of the ZINDO
molecular orbital package [49]. Recently, the ap-
plicability of the CEO techniques combined with
semiempirical Hamiltonians other than INDO/S
has been examined. The motivation is that we
would like to treat both the ground state and its
excitations within the same model Hamiltonian.
As was mentioned earlier, the INDO/S param-
eterization does not work well for ground state
properties such as the equilibrium geometry. An
example where a unified treatment would be par-
ticularly useful is in the generation of excited
state potential energy surfaces by adding an ex-
citation energy to a ground state energy [52–54].
This is particularly awkward if one Hamiltonian
must be used to generate the ground state sur-
face and another to determine the excitation en-
ergy. In this review we also compare the results
of the CEO/AM1 and CEO/PM3 combinations
with the CEO/INDO/S model and also with ex-
periment.

In order to include the effects of the sur-
rounding medium it is possible to use the
Self-Consistent Reaction Field (SCRF) approach
[55–58], in which the interaction energy between
a solute and the surrounding medium is added
to the HF energy of an isolated molecule, and
the total energy of the system is then minimized
self-consistently. In the electrically neutral so-
lute, only the dipolar interactions contribute to
the solvation energy. Assuming that the solute is
separated from the solvent by a sphere of radius
ao the expression for this Onsager dipolar term
has been derived in [56,57]. The Fock operator
F 0

mn [22] is then modified by adding the response
of a dielectric medium, resulting in:

Fmn = F 0
mn − ε− 1

2ε+ 1

µg · µmn

a3
o

, (2.13)

where F 0
mn is the isolated complex Fock oper-

ator, ε is the dielectric constant, and ao is a
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cavity radius. µg is the ground-state dipole
moment given by the expectation value of the
molecular dipole operator µ. A reasonable esti-
mate for the radius of the Onsager solvent reac-
tion field model (ao) is readily available in the
standard Gaussian 98 package [27]. Onsager’s
SCRF is the simplest method for taking dielectric
medium effects into account and more accurate
approaches have been developed [59,60]. Here,
an effective sphere model captures the essential
solvent effect and is a reasonable approach within
semiempirical approximations. For example, this
CEO/SCRF approach has been successfully ap-
plied to compute electronic excitations in bio-
logical light-harvesting complexes which are sig-
nificantly affected by protein environment effects
[62]. Although the shape of the cavity has some
effect on the molecular electronic structure [61],
the methods taking into account ”real” molec-
ular shapes are computationally expensive and
are most appropriately utilized with accurate ab
initio or DFT approaches [61].

B. The RPA eigenvalue problem.

The CEO procedure computes the excited
states using each set of semiempirical Hamilto-
nian parameters, Onsager dipolar terms, and HF
ground state density matrices. This method, de-
scribed in detail elsewhere [34,35]1, solves equa-
tions of motion for the reduced single-electron
density matrix [63,64] given by

ρmn = 〈Ψ(t)|c†mcn|Ψ(t)〉, (2.14)

where Ψ(t) is the many-electron wavefunction.
When the molecule is driven by an exter-

nal field, its density matrix acquires a time-
dependent part. In the frequency domain, we de-

1In practice, computation in the dielectric medium
is conducted by replacing the isolated complex Fock
operator F 0

mn by a Fock operator in the dielectric
medium Fmn according to the procedure outlined in
[34,35].

compose the density matrix into a ground state
contribution ρ̄ and a field-induced part

ρmn(ω) = ρ̄mn + δρ(1)
mn(ω)

+ δρ(2)
mn(ω) + δρ(3)

mn(ω) + · · · , (2.15)

where δρ
(k)
mn(ω) is the kth order contribution from

the incoming optical field. The diagonal elements
δρ

(k)
mm represent the charge densities induced at

the mth AO by the external field, whereas the
off-diagonal elements δρ

(k)
mn with m �= n reflect

the optically induced coherence between the mth
and nth AO, which represents the probability of
finding an electron-hole pair with the electron
(hole) located at the mth (nth) AO. The den-
sity matrix thus provides a real-space picture of
the optical response order by order in the driv-
ing field, as explored in detail in [34,39]. The
polarization can be then expressed in terms of
the density matrix as

P (k) =
∑
nm

µnmδρ
k
mn. (2.16)

The polarizabilities α, β and γ are related to
P (1), P (2) and P (3), respectively. The linear po-
larizability, for example, is given by

α(ω) =
∑

ν

2Ωνµgνµ
∗
gν

Ω2
ν − (ω + iΓ)2

, (2.17)

where Γ is a dephasing rate, µν = Tr(µξν) is the
transition dipole moment for νth electronic state,
and Ων are the transition frequencies. In an anal-
ogous way, the second (β) and the third (γ) or-
der off-resonant nonlinear polarizabilities can be
expressed in terms of frequencies and transition
dipole moments [34,35,37].

The CEO calculates δρ
(k)
mn(ω) by expanding it

into a superposition of transition density matri-
ces (denoted the electronic normal modes, ξν),
representing the electronic transition between
the ground state |g〉 and an electronically excited
state |ν〉, given by

(ξν)mn = 〈g|c†mcn|ν〉. (2.18)
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The electronic modes are computed as eigen-
modes of the linearized TDHF equations of mo-
tion for the density matrix2. The eigenfrequen-
cies Ων of these equations provide the optical
transition energies [34,37,65,66]:

Lξν = Ωνξν Lξ†ν = −Ωνξ
†
ν

ν = 1, . . . , K2/2. (2.19)

L is a linear operator in Liouville space (i.e. su-
peroperator) with transition densities ξν being
its eigenvectors [34,35]. In the restricted TDHF
scheme [37] only particle-hole and hole-particle
components of ξν are computed. Therefore, this
non-hermitian eigenvalue problem of dimension
2M × 2M , M = Nocc × Nvir = N × (K −N) in
MO basis set representation is given by(

A B
−B −A

)[
X
Y

]
= Ω

[
X
Y

]
. (2.20)

This is known as the RPA eigenvalue equation
[67,24], where X and Y are, respectively, the
particle-hole and hole-particle components of the
transition density ξ =

[
X
Y

]
in MO representa-

tion [24,37,67,68]. In Eq. (2.20) the matrix A
is hermitian and identical to the CI Singles ma-
trix, whereas the hermitian matrix B represents
higher order electronic correlations which are in-
cluded in the TDHF approximation.

Direct diagonalization of the TDHF opera-
tor L or the CIS operator A in Eq. (2.20) is the
bottleneck, requiring computational effort which
scales as ∼ K6 in time and ∼ K4 in memory (for
comparison, SCF ground state calculations scales
as ∼ K3 in time and ∼ K2 in memory) because
we are working in the space of higher dimen-
sionality (electron-hole pairs). Direct diagonal-
ization of Eq. (2.20) results in all excited states
which span the entire spectral region. The tradi-
tional quantum-chemical approach addresses this

2The TDHF coincides with the Random Phase Ap-
proximation (RPA) for the linear optical response
of many-electron systems (e.g. Chapter 8.5 in [36]).
The electronic modes are identical to the transition
densities of the RPA eigenvalue equation.

problem by limiting the total basis set size vari-
ables K to a few MOs which are ”important”
for visible-uv optical response. Indeed most of
the electronic states obtained by diagonalization
of Eq. (2.20) lie in the X-ray spectral region
and correspond to atomic-core type transitions.
Visible-uv collective molecular excitations on the
other hand could be well described by taking into
account only few MOs close to HOMO-LUMO
energy gap by truncating an active space. Al-
though this approach works quite well and the
ZINDO code [42,50,51] became very successful,
truncating the active space is a complicated and
to some extend arbitrary procedure. In addition,
even truncated CI calculations are usually signif-
icantly more expensive than ground state com-
putations.

An alternative solution to this problem is pro-
vided by fast Krylov-space algorithms [69,70].
These algorithms construct a small subspace of
orthogonal vectors which contains a good ap-
proximation to the true eigenvector. This Krylov
subspace Sp{ξ, Lξ, L2ξ, . . . , Ljξ}, j � M , spans
the sequence of vectors generated by the power
method (the multiple action of the RPA oper-
ator L on the initial vector ξ). These meth-
ods find several eigenvalues and eigenvectors of
large matrix L using only matrix-vector opera-
tions [69,70]. Indeed, usually only a small frac-
tion of eigenstates of L (∼ 100) lie in the visible-
uv region and are of interest for optical spec-
troscopy. In addition, the action of the TDHF
operator L on an arbitrary matrix ξ which con-
tain particle-hole and hole-particle components
is given by

Lξ = [F (ρ̄), ξ] + [V (ξ), ρ̄], (2.21)

This product may therefore be constructed di-
rectly and the full matrix L is never stored in
memory [37,35,34]. The action of the CIS op-
erator A on an arbitrary matrix ξ can be also
computed directly [48,71] (e.g. using Eq. (2.21)
by setting the hole-particle component of ξ to
zero). Eq. (2.21) holds in an arbitrary represen-
tation (e.g. site). The cost of such operation in
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Hilbert K ×K space scales as ∼ K3 in time and
∼ K2 in memory with system size. Computing a
single eigenvalue-eigenvector of matrix L which
corresponds to molecular excited state thus re-
quires a computational effort comparable to that
of the ground state.

There are several types of Krylov-space based
algorithms. The original Lanczos algorithm com-
putes effectively the lowest eigenvalue and the
corresponding eigenvector of a large Hermitian
matrix [69]. Since the matrices L that need
to be diagonalized in the TDHF or adiabatic
TDDFT approaches are non-Hermitian, the stan-
dard Lanczos algorithm is not applicable, and
the modified Lanczos algorithm should be used
instead [41,46,46]. Similarly, Davidson’s algo-
rithm originally formulated for the diagonaliza-
tion of large Hermitian CI matrices [48] was fur-
ther modified for the TDHF [67,72] and adia-
batic TDDFT [24,68] methods. A third method
for computing the lowest frequency eigenmode
of a large Hamiltonian matrix is based on the
Iterative Density Matrix Spectral Moments Al-
gorithm (IDSMA) [34,35]. All three algorithms
show similar scaling of computational time, re-
sulting fromK×K matrix multiplications. How-
ever, the scaling prefactors are different. The
Davidson type algorithms, especially the recently
improved versions [24,68], are extremely fast but
I/O (input/ouput) intensive, since one needs to
keep all the previous iterations for the eigen-
modes throughout the iteration procedure. This
fast convergence is ensured by Davidson’s pre-
conditioning, which assumes that the matrices
L (or A) are dominated by their diagonal ele-
ments [48]. The Lanczos method usually requires
larger Krylov-space dimension to obtain an ap-
proximate eigenvalue with the same accuracy as
Davidson’s algorithm, however, it needs to keep
only 3 expansion vectors. Orthogonality among
expansion vectors is automatically ensured by
Lanczos recursion relations [69,41]. Even though
the IDSMA is slower than the Lanczos, it has
low memory requirements and allows to compute
both ”exact” eigenstates and ”effective” eigen-

states. The latter may represent overall contri-
bution from several electronic states into optical
response by a single effective state [34,35]. This
provides an approximation for the spectrum in
terms of very few variables [39]. None of these
three algorithms is universally superior and the
method of choice depends on the specific appli-
cation.

Since all algorithms converge to the lowest
eigenmode, the higher eigenmodes can be suc-
cessively obtained by finding the lowest mode in
the subspace orthogonal to that spanned by the
lower modes already found [69]. This orthogo-
nalization procedure is not always stable, lead-
ing to the accumulation of numerical error for
the higher frequency modes. Alternatively a de-
flection procedure [69,41] that involves the anti-
symmetric “scalar product” (known as the sym-
plectic structure) [37] may be used to avoid this
problem.

III. APPLICATIONS

In this Section we illustrate the CEO ap-
proach analyzing electronic structure and opti-
cal properties of linear polymers [35,39,45] and
donor/acceptor substituted oligomers [73–75].
The CEO has been applied to other molecular
systems such as chlorophylls [58,76,77], naph-
thalene [78] and PPV dimers [40,79,80], pheny-
lacetylene dendrimers [38,81] and photosynthetic
light-harvesting antenna complexes [58,62] as
well.

A. Electronic excitations of conjugated
oligomers and their aggregates.

Conjugated oligomers of polyacetylene (PA),
polydiacetylene (PDA), polytriacetylene (PTA),
poly-phenylenevinylene (PPV),
poly-p-phenylene (PPP), polythiophene (PTh),
polypyrrole (PPy), polyfuran (PF), and polyani-
line (PAn) with the structures given in the in-
sets of Figs. 1 and 3 have quite interesting opti-
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FIG. 1. Comparison of theoretical lowest transition energies (band-gap absorption maximum), computed
with INDO/S, AM1, PM3, MNDO, and MINDO/3 Hamiltonians combined with CEO, with experimental
data for conjugated oligomers with structures shown in the insets. Computations used the CEO code in
the full active space. Exact agreement of theory and experiment gives points lying at the diagonal of the
plots, whereas blue (red) shifted computed values vs. experimental data results in points lying higher
(lower) than the diagonal.

cal properties and show promise in device appli-
cations [14–18,82–87]. We will compare results,
obtained from different semiempirical parameter-
izations coupled with the CEO approach, with
experiment tracking both absolute values and
spectroscopic trends in absorption even though
some deviations of theory from experiment are
expected. Each conjugated oligomer of any poly-
mer type has a strongly allowed low-lying singlet
state of 1Bu symmetry showing up in linear ab-
sorption (band gap transition). In Fig. 1 we plot
1Bu transition frequencies of oligomers with var-
ious sizes computed for each semiempirical pa-
rameterization vs. experimental results reported
in the literature for PA [88], PTA, [89] PPV [90],

PTh [91,92], PPy [93–95], and PAn [96]. Each
panel represents the oligomer shown in the in-
set, whereas groups of points correspond to the
oligomers of different sizes. Points lying higher
(lower) than the diagonal of the plot indicate that
the computed value is blue (red) shifted com-
pared to experiment. Excitation energies of dif-
ferent oligomers are well separated since band-
gap transition energy shifts to the red with in-
creasing chain length and gradually saturates to
a constant for long chains [39,40]. This trend
can be understood by analogy with the particle-
in-a-box model. Fig. 1 suggests that overall
the INDO/S results provide the best agreement
with experiment. AM1 and PM3 values are very

10



1 2 3 4 5 6 7 8 9 10 11
2.5

3.0

3.5

4.0

4.5

5.0
1

13
27

41
54

1 13 27 41 54

ρ

1
13

27
41

54

1 13 27 41 54

Ω
1

1
13

27
41

54

1 13 27 41 54

Ω
2

1
13

27
41

54

1 13 27 41 54

Ω
3

0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6
0.4-0.5 0.3-0.4 0.2-0.3 0.1-0.2 0.0-0.1

1
13

27
41

54

1 13 27 41 54

Ω
4

1
13

27
41

54

1 13 27 41 54

Ω
L

1
3

2

5

4

6 8

7

54

Ω
1

Ω
2

Ω
3

Ω
4

Ω
(e

V
)
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3.64 eV, and ΩL = 3.99 eV. [39,40]
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similar with small shift of PM3 energies to the
blue. Compared with INDO/S, AM1 and PM3
results are shifted either to the blue (PTA, PTh,
and PPy) or to the red (PA, PPV, PAn) and
no universal trends could be discerned. MNDO
and MINDO/3 give energies generally red-shifted
compared to that of INDO/S.

We next analyze the electronic structure of
PPV oligomers in detail. The top panel of Fig
2 shows the variation with oligomer size of ener-
gies corresponding to the four lowest electronic
transitions. The energy of the lowest band-gap
transition 1 (solid line), responsible for band gap
transition, saturates to 2.7 eV for long chains,
which compares well with the experimental value
∼2.5 eV. The higher frequency transitions satu-
rate at a slower rate going toward the lowest ex-
citation saturated limit. All 4 excited states have
Bu symmetry.

To trace the origin of the various peaks
we have examined the corresponding collec-
tive electronic modes of a planar PPV-7
oligomer. Two-dimensional plots of the matrices
ξν [38,34,39,78,79] establish a direct link between
the optical response and the underlying pho-
toinduced real-space dynamics of charges. Af-
ter contraction [40] the matrix size is equal to
the number of carbon atoms, labeled accord-
ing to Fig. 2. These matrices represent collec-
tive motions of electrons and holes and carry
substantially less information than the complete
many-electron eigenstates, but more than that
required for calculating molecular polarizabilities
and spectroscopic observables. The diagonal el-
ements (ξν)nn represent the net charge induced
on the n’th atomic orbital by an external optical
field with frequency Ων , whereas (ξν)mn n �= m is
the dynamical bond-order (coherence) represent-
ing the joint amplitude of finding an electron on
orbital m and a hole on orbital n [39].

To establish a reference point, panel ρ in
Fig. 2 shows the ground state density matrix
of PPV-7. This is diagonally localized, reflect-
ing the nearest-neighbor chemical bonding in the
ground state. Seven phenyl rings are clearly

distinguishable. Panel Ω1 shows the band-edge
transition 1 and is very similar to that calcu-
lated with the PPP hamiltonian [39]. This pic-
ture shows that the electron-hole created upon
optical excitation is delocalized over the whole
chain (diagonal in the plot) and tends to be in the
middle of the molecule. The exciton size (maxi-
mal distance between electron and hole) is about
4-5 repeat units (largest off-diagonal extent of
the non-zero matrix area). Panel Ω2 displays the
next transition 2. This mode, forbidden in lin-
ear absorption, has the same off-diagonal coher-
ence size as mode 1, but a non-uniform diagonal
space distribution. The molecule is effectively
broken into two parts with sizes of 3 repeat units
and a very small electronic coherence between
them. The electron-hole pair is located either
in the first or in the second half of the chain,
but not in the center. Two contributions to the
transition dipole cancel each other resulting in a
vanishing oscillator strength. The next transition
3 shown in panel Ω3 is broken into the 3 parts.
As shown in [34], the total contribution from the
ends is approximately zero, and only the mid-
dle region contributes to the oscillator strength
of this mode. This transition therefore makes
only a weak contribution to the linear absorp-
tion. The molecule is effectively a trimer with
weak electronic coherence among its parts. The
off-diagonal coherence size is about 3 repeat units
and the diagonal sizes are 2, 3, and 2 repeat units.
The next mode (panel Ω4) is broken into 4 parts
and has a vanishing transition dipole since the
contributions from the sub-quarters cancel each
other. Finally the transitions in the higher fre-
quency spectrum (3.5-7 eV) become localized to
a single repeat unit and further to a single phenyl
and a single vinyl groups [39]: For example the
panel ΩL electronic mode (forbidden in linear ab-
sorption) corresponds to the exciton localized on
the central phenyl of the chain.

Thus the general trend of the electronic
modes with increasing frequency is an effective
aggregation of the molecule to small segments
with weak electronic coherence among them.
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This is universal for larger polymers. The higher
frequency modes tend to have more diagonal
nodes [39,34,35]. The number of nodes is n − 1,
n being the mode number in the energy hier-
archy (transition n in our notations). The mu-
tual cancellation of the transition dipoles leads to
vanishing oscillator strength of electronic modes
with odd number of nodes, whereas the oscillator
strength of electronic modes with even number of
nodes scales as ∼ 1/n2. For example, the inten-
sity of third transition with two nodes is about
9 times weaker than that of band gap 1Bu state.
All electronic modes are almost symmetric with
respect to the diagonal (ξmn ≈ ξnm). This means
that there is no preferred direction of motion for
electrons (or holes). The electron-hole separation
does not exceed 5 repeat units for all transitions,
and the PPV-7 oligomer, therefore, well reflects
the long chain limit.

We next examine the density matrices cor-
responding to band-gap transitions of different
oligomers with similar chain length (∼ 40 Å).
The transition densities are plotted in Fig. 3.
The axes of each color panel show the coordi-
nates of heavy atoms along the chain axis. All
these plots are structurally similar: the electron-
hole created upon optical excitation is delocal-
ized over the whole chain (diagonal in the plot)
and tends to be in the middle of the molecule.
However, the exciton size (maximal distance be-
tween electron and hole) shown, as the largest
off-diagonal extent of the non-zero matrix area,
is different from polymer to polymer. PA, PDA,
and PTA have the largest exciton size of about
∼ 20 Å (top row). This is reduced to ∼ 15 Å
for PPV and PPP and to ∼ 10 Å for PAn (mid-
dle row). PPy, PTh, and PF, which have dou-
ble bond conjugation paths similar to PA, again
have large electron-hole delocalization of ∼ 20 Å
(bottom row). In particular, large exciton size
corresponds to the increased onset of band gap
saturation for longer chains [21,39].

Finally we investigate how interchromophore
interactions affect the electronic structure of
molecules [40]. An important motivation for

this study is related to designing technologically-
relevant optoelectronic materials where the effect
of aggregation is the major problem in achieving
high luminescence quantum yields [97–102].

It is well understood that when the chro-
mophores are well separated in space, their inter-
action is electrostatic (i.e. electron exchange or
hopping is negligible). Each chromophore then
retains its own electrons and the system may be
described by a simple Frenkel exciton model com-
mon in molecular crystals and aggregated sys-
tems [103,104]. Each monomer peak splits into
two transitions in the dimer spectra and their
wavefunctions are symmetric and antisymmet-
ric combinations of the monomeric excited states
wavefunctions. This Davydov splitting [105–107]
reflects interaction between chromophores and
may be used to build an effective hamiltonian of
the system [58,62,81]. However, the short-range
electron exchange interaction becomes dominant
when the distance between the chromophores is
small. This strong interaction leads to charge
transfer (CT) between molecules and formation
of new localized electronic excitations. This gen-
eral behavior has been understood for some time.
In what follows, we will see the transition from
Frenkel exciton to CT character occurs at an
inter-oligomer distance of ∼4 Å.

We use the 7 repeat unit (PPV-7) oligomer
planar structure to create dimers consisting
of two identical molecules which have phenyl-
phenyl intersection (Fig. 4) at varying interchain
separation d = 3 − 10Å with 0.1Å step. Fig. 4
shows the variation of frequencies in dimer pair,
corresponding to the band gap transition. Here,
energies of Ω′

1 and Ω′′
1 are very close to the cor-

responding monomer energy Ω1. Their splitting,
as expected, increases with decreasing separation
between chains, indicating a stronger interac-
tion between monomer transition dipoles. These
properties follow from the Frenkel exciton model
for this simple aggregate.

To follow the evolution of the excited states
at close intermolecular distances, we need to an-
alyze the electronic modes in real-space which

14



3 4 5 6 7 8 9
2.0

2.5

3.0

3.5

4.0

1
26

54
82

10
8

1 26 54 82 108

Ω'
1
(3.5A)

d
1
3

2

5

4

6 8

7

54

55

108

3

33

3

1 26 54 82 108

1
26

54
82

10
8

Ω
L
(3.5A)

1 26 54 82 108

1
26

54
82

10
8

Ω
L
(4.0A)

Ω"
1

Ω'
1

Ω
L

Ω
(e

V
)

d (A)

FIG. 4. Top: Structure and atom labeling of oligo-PPV dimer (side view). The interchain distance d
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provides a convenient method for identifying the
electronic transitions. Atom labeling runs over
monomer I first then over monomer II, following
the top panel of Fig. 4. Even at close separa-
tions (d = 3.5 Å) 1′ (panel Ω′

1(3.5A) of Fig. 4)
is simply the superposition of the monomeric 1
states (compare to Ω1 in Fig. 2). The corners of
the plot represent the monomers and there are
only weak off-diagonal coherences between them
which reflect coherent interaction between chro-
mophores. The behavior of 1′′ electronic mode
(not shown) is very similar to 1′.

A prominent feature of the dimer spectrum
is evolution of the L mode (panel ΩL of Fig. 2)
localized on the central phenyl. It is clear that
L located at the contact should have the largest
coherent interaction with its counterpart on the
next molecule. Indeed, at d = 4 Å L (panel
ΩL(4.0A) of Fig. 4) already has noticeable coher-
ence and its frequency is therefore red-shifted by
0.5 eV compared to ΩL of monomer. ΩL rapidly
falls with decreasing intermolecular separation
and it becomes the lowest mode in the electronic
spectrum of dimer for d ≤ 3.5 Å (Fig. 4). This
red-shift is attributed to a significant intermolec-
ular electron exchange and associated coherence
(panel ΩL(3.5A) of Fig. 4). Similar transitions lo-
calized on the two phenyls were computed with
the CEO approach and observed experimentally
in the spectra of the family of paracyclophane
dimers [79,80]. Formation of such low-energy
states in locations, where PPV-chain have close
contacts (e.g. films), leads to effective fluores-
cence quenching [99–101]. Instead of emitting,
excitons migrate to these low-energy traps which
are non-emissive since L has a vanishing oscil-
lator strength. It is interesting to notice that
L does not mix with the 1 states even at 3.5 Å
when L and 1′′ states are near-degenerate. This
may be attributed to the nearly orthogonal na-
ture of these states. These low-lying intermolec-
ular states form for any contacts closer than ∼ 4
Å [40] which may account for the reduced pho-
toluminescence in these materials.

B. Size-scaling of nonlinear polarizabilities in
donor/acceptor conjugated molecules.

Conjugated molecules usually possess large
nonlinear polarizabilities due to their delocalized
π-electron excitations [19,20,28,108]. Adding an
electron-withdrawing and an electron-donating
group enhances the nonlinear optical response
even further [19,109–114]. These molecules have
interesting optical properties which make them
particularly promising materials for device ap-
plications. Understanding the mechanisms lead-
ing to dramatic changes in optical polarizabilities
with increasing chain length and donor/acceptor
strength, and the limiting factors of these en-
hancements are the key for a rational design
strategy of molecules possessing large optical po-
larizabilities [115].

The variation of off-resonant optical polariz-
abilities of polyenes with molecular size may be
described by the scaling law ∼ nb, n being the
number of repeat units. In first (α) and third
(γ) order responses the scaling exponents b vary
considerably for short molecules: 1 < bα < 2
and 2 < bγ < 8 [20,35,75,109,116–118]. For elon-
gated chains, the exponent b attains the limit-
ing value 1, indicating that the polarizabilities
become extensive properties. Recent theoretical
studies suggest that this sets in at about 30-50
repeat units. A saturation length was reported
experimentally in one case [119] (corrected ex-
perimental value of ∼ 60 repeat units have been
published later in [120]). Establishing the precise
scaling law of β and its the crossover to the bulk
is the primary goal of experimental and theoret-
ical studies. Experimental studies restricted by
synthetic limitations to chain length of 11 repeat
units show 1.4 < bβ < 3.2 [19,110–113] whereas
calculations performed with up to 22 repeat units
yield 1.5 < bβ < 2 [19,121].

The CEO technique provides a firm micro-
scopic basis for predicting the size-scaling of
molecular polarizabilities and pinpointing their
origin. We start our investigation with quanti-
tative comparison of calculated and experimen-
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FIG. 6. Total averaged deviations of magnitudes
of computed spectroscopic observables, for a, b, and
d series in the dielectric medium and in the gas phase
using model Hamiltonians, from the corresponding
experimental values.

tal spectroscopic observables [123]. By combin-
ing the semiempirical Hamiltonians (INDO/S,
AM1, PM3, MNDO, and MINDO/3) with the
CEO approach we computed the lowest absorb-
ing excited state (band-gap) energies and their
transition dipoles, and the first (α), the sec-
ond (β) and the third (γ) order static polariz-
abilities of several series of donor/acceptor sub-

stituted diphenyl-polyene oligomers with various
sizes. These molecules are fairly small compared
to limiting chain lengths when polarizabilities are
expected to saturate [73–75]. Therefore, nonlin-
ear polarizabilities of the considered substituted
oligomers grow rapidly with increasing molecu-
lar size. Donor/acceptor compounds were syn-
thesized and spectroscopically studied in [122].
In order to compare directly with experiment we
have therefore used the Self Consistent Reaction
Field (SCRF) approach, based on the Onsager
model (Eq. (2.13)). In our computations, these
substituted molecules have been treated (1) as
isolated complexes (gas phase) with the dielectric
constant ε = 1, and (2) in a dielectric medium
with ε = 2.219 for the dioxane solvent used in
experiment, and cavity radius a0 computed with
Gaussian package [27]. Fig. 6 shows the total de-
viation of computed values from the experimen-
tal results averaged over a, b, and d compounds.
The computed excitation energies are reasonably
accurate using any semiempirical model, and sys-
tematically improved when taking into account
the solvent environment. Transition dipoles cal-
culated with semiempirical Hamiltonians param-
eterized for the ground state (AM1, PM3, and
MNDO) compare slightly more favorably with
experiment than INDO/S values. The dielec-
tric medium has very little effect on the tran-
sition dipole moments. Thus the simplest On-
sager spherical cavity model, where an effective
sphere radius is associated with the ”real” molec-
ular volume, performs fairly well in addressing
the dielectric medium effects for the linear ab-
sorption spectrum.

The solvent environment has a dramatic ef-
fect on the magnitudes of nonlinear polarizabil-
ities and has to be taken into account to repro-
duce experimental results. Polarizabilities com-
puted with the INDO/S Hamiltonian parame-
terized for spectroscopic purposes show the best
comparison with experimental results (on aver-
age 16% and 20% accuracy for the second and the
third order static polarizabilities, respectively)
[123]. In addition, the comparison with the ex-
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periment for nonlinear polarizabilities of such
large molecular systems is complicated because
significant approximations (two- and three- level
models or projection of the frequency depen-
dent polarizability to the static limit) are usually
invoked to estimate experimental values [122].
Nevertheless, the agreement with experiment for
the series a, b, and d is encouraging. An ad-
ditional caveat concerns the use of a more so-
phisticated solvent model to describe the dielec-
tric medium effects. This investigation shows
that a reasonably accurate computation of ex-
citation energies, transition dipoles, and nonlin-
ear static polarizabilities is possible by combining
semiempirical parameterizations with the CEO
technique for excited states. Careful choice of
the optimal geometry and inclusion of dielectric
medium effects significantly improve the quan-
titative comparison with the experimental data.
The latter ingredient is extremely important for
computing nonlinear polarizabilities which may
be drastically enhanced by the solvent environ-
ment.

To study a size-scaling behavior of nonlinear
polarizabilities we consider a family of unsub-
stituted (N(n)) and substituted with the donor
and acceptor groups (DA(n)) molecules shown
in Fig. 7(A). To disentangle the effects of donor-
acceptor and bridge in the spectroscopy we study
molecules with short (n=9), medium (n=15) and
long (n=30) bridges. The calculated scaling ex-
ponents bα, bβ and bγ of donor/acceptor substi-
tuted polyenes are displayed in Fig. 7(B) [73].
As expected, bα and bγ reach the limiting value
1 at large sizes. bβ, however, is very different
and vanishes at large sizes. This markedly dif-
ferent behavior of β can be explained by plot-
ting the differences ∆ρ(2) ≡ δρ

(2)
DA−δρ(2)

N between
the induced density matrices in the substituted
and the neutral molecules (Fig. 7). This differ-
ence contributes to β. In complete analogy with
the ground state where ∆ρ̄ (Fig. 7) defines µgg

[73,74], the donor/acceptor influence is screened
by the π electrons and is confined to a finite sec-
tion of the bridge with about 15-17 double bonds.

For short chains (∆ρ(2)(10)) the donor and accep-
tor communicate directly since their influence re-
gions overlap spatially; significant electronic co-
herence then develops between them. However,
for larger chains ∆ρ(2)(30) is block diagonal and
their effects are clearly separable. This is the rea-
son why β levels off to a constant with bβ = 0:
only the ends of the molecule contribute to β
whereas the middle part is identical to that of
neutral molecule and only contributes to α and
γ [45].

Defining and predicting the saturation size of
optical properties is a key factor in developing
synthetic strategies for optical materials. The
two-dimensional CEO plots provide a highly in-
tuitive yet quantitative tool for addressing this
problem: the density matrix shows that the in-
fluence of the donor or the acceptor is limited
to a few double bonds in its vicinity; the size
of these coherence regions depends on the donor
and the acceptor strength. Direct donor-to ac-
ceptor charge transfer does occur at short chains.
However when the molecular size is larger than
the coherence size the donor and the acceptor are
decoupled and their effects are additive; β itself
(rather than β/n) then become size-independent.

IV. DISCUSSION

The connection between electronic structure
and optical properties of organic compounds con-
stitutes a complex fundamental problem with im-
portant technological implications. There is a
clear need for computational methods which pro-
vide intuitive and compact interpretation of ob-
tained results. In addition, calculated spectro-
scopic observables should be reliable and quan-
titatively reproduce experimental data for wide
variety of molecular systems. Described in this
review CEO approach offers such capabilities.
This method combines different semiempirical
Hamiltonians (INDO/S [42,50], AM1 [30], PM3
[31], MNDO [32], MINDO/3 [33]) with the RPA
approximation for the many-electron wavefunc-
tion [37]. It has several computational advan-
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tages: instead of arbitrary truncation of molec-
ular orbitals, the fast Krylov space algorithms
(Lanczos, Davidson, and IDSMA) take into ac-
count all molecular orbital space included in the
TDHF approximation, making such calculations
straightforward to apply. Yet, the computational
cost per excited state is very low and usually
does not exceed that of the ground state. This
makes excited state structure calculations pos-
sible whenever SCF ground state computations
are available.

Numerical comparison of computed results
where possible against existing experimental
data shows that spectroscopic observables agree
well with experiment. The INDO/S semiempir-
ical parameterization show the best agreement
because INDO/S was primarily designed for this
purpose. However, this approximation is not ad-
equate for the ground state. On the other hand,
AM1, PM3, and MNDO results show reasonable
agreement with experiment and reproduce the
basic trends. Also, these semiempirical Hamil-
tonians are more reliable for molecular ground
state properties at the Hartree-Fock level since
they were parameterized for this purpose. The
computed excitation energies are very accurate
using any semiempirical model, and systemat-
ically improved when taking into account the
solvent environment. Transition dipoles calcu-
lated with semiempirical Hamiltonians parame-
terized for the ground state (AM1, PM3, and
MNDO) compare slightly more favorably with
experiment than INDO/S values. The dielec-
tric medium has very little effect on the tran-
sition dipole moments. Thus the simplest On-
sager spherical cavity model, where an effective
sphere radius is associated with the ”real” molec-
ular volume, performs fairly well in addressing
the dielectric medium effects for the linear ab-
sorption spectrum. The solvent environment has
a dramatic effect on the magnitudes of nonlinear
polarizabilities and has to be taken into account
to reproduce experimental results. Polarizabili-
ties computed with the INDO/S Hamiltonian pa-
rameterized for spectroscopic purposes show the

best comparison with experimental results (on
average 16% and 20% accuracy for the second
and the third order static polarizabilities, respec-
tively).

The CEO density matrix approach carries
less information but at considerably lower cost,
making it readily applicable to the interest-
ing crossover region between small molecules
and bulk. The electronic density matrix as-
sociated with nonlinear optical response may
be easily obtained by summing over the elec-
tronic oscillators coupled by relevant nonlinear
dipole. Limiting interference effects resulting in
the SOS approach in an almost complete cancel-
lation of large contributions to optical suscepti-
bilities [116,117,124,125], are built-in in the CEO
method from the start and each separate contri-
bution to the susceptibility scales properly [37].
In addition, the CEO results allow the analysis of
optical spectra in terms of charge distributions in
excited states and motions of electrons and holes
in real space. The two-dimensional real-space
analysis of the relative motion of electron-hole
pairs proved to be very useful in the interpre-
tation of optical properties in both conjugated
molecules [34,35,39,73,126] and molecular aggre-
gates [38,40,58,78,79,126]. A new type of chem-
ical intuition which focuses directly on the elec-
tronic charges and coherences and is not based on
properties of many-electron eigenstates emerges
naturally: In addition to the charge density [127],
the coherences make it possible to directly view
how different parts of the molecule are coupled
and how a perturbation at one point can affect
the electronic motion at other regions.

We conclude that an accurate computation of
excitation energies, transition dipoles, and non-
linear static polarizabilities is possible by com-
bining INDO/S, AM1, PM3, or MNDO semiem-
pirical parameterizations with the CEO tech-
nique for excited states. Careful choice of
the optimal geometry and inclusion of dielectric
medium effects significantly improve the quan-
titative comparison with the experimental data.
The latter ingredient is extremely important for
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computing nonlinear polarizabilities which may
be drastically enhanced by the solvent environ-
ment. The CEO method maps optical spectra di-
rectly to the motions of electrons and holes in real
space by generating the optically-driven reduced
single electron density matrix. This makes pos-
sible two-dimensional real-space analysis of rel-
ative motion of electron-hole pairs for any elec-
tronic transition. In turn, this is very useful for
the interpretation of optical properties in con-
jugated molecules and constitutes an important
advantage of the theoretical approach when com-
bined with any semiempirical Hamiltonian.
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