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Abstract

Implementation of quantum information processing based on spatially localized electronic spins in stable molecular radicals is dis-
cussed. The necessary operating conditions for such molecules are formulated in self-assembled monolayer (SAM) systems. As a model
system we start with 1,3-diketone types of neutral radicals. Using first principles quantum chemical calculations we prove that these mol-
ecules have stable localized electron spin, which may represent a qubit in quantum information processing.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

It was suggested recently [1], that SAM systems [2–4]
could be used to create a macroscopic ensemble of quan-
tum entangled 3-spin groups as a first step in quantum
information processing [5–8]. The spins of such a group
could be connected by dipole–dipole interaction. Applica-
tion of a non-uniform external magnetic field would allow
selective excitation of every spin inside the group. The
proper sequence of resonant electromagnetic pulses would
then drive all spin groups into the 3-spin entangled state. In
the suggested proposal [1] the spins were associated with a
single unpaired electron spin of a neutral radical molecule
in the SAM. One of the key elements of this strategy is the
proper choice of molecules for experimental implementa-
tion of the proposal. Involved in this choice are four crite-
ria for the chemical structure of these molecules.

(1) A specific group or structural elements to provide
self-organization characteristics.
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(2) A specific group to provide attachment of the mole-
cules to a substrate.

(3) An unpaired, spatially localized electronic spin repre-
senting an elementary qubit.

(4) Strong non-compensated valence bonds, which are
responsible for the unpaired electron spin, to provide
the chemical stability of a qubit.

Modern quantum chemical methods provide powerful
tools for theoretical modeling and analysis of molecular
electronic structure and may be used to guide the synthetic
effort [9,10]. In particular, the small carbon-centered p-rad-
ical molecules (8–14 atoms) possessing a b-diketo structure
have been investigated in the scope of unrestricted Har-
tree–Fock (UHF) and unrestricted density functional the-
ory (UDFT) methods [11]. The authors [11] calculated
optimized geometry and hyperfine interactions in small
molecules without addressing their suitability for quantum
information processing.

In this Letter, we report the results of quantum-chemical
calculations of several specific radical molecules that
provide a simple starting point for a larger consideration
in a variety of simple small organic radical moieties of
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potential use in quantum computation. We use the UDFT
approach to analyze molecular electronic structure for
chemical stability and spatial spin localization. These sim-
ulations show that the suggested neutral radicals satisfy the
constraints listed above and may serve as a start for design-
ing molecules to be used in experiments targeting quantum
computation with SAM structures.

2. Computational methodology

Exact quantum mechanical treatment of a large molecu-
lar system is intractable. The electronic structure methods
routinely use Born–Oppenheimer approximation to decou-
ple electron and nuclear motions which is fully justified for
most cases [9,10]. Subsequently, one needs to solve the
Schrodinger equation for the electronic system only, where
nuclear positions enter as parameters. Quantum chemical
methods provide practical recipes for approximate solu-
tions for many-electron molecular systems [9,10]. In partic-
ular, the Hartree–Fock approximation maps the complex
many-body problem onto an effective one-electron problem
in which electron–electron repulsion is treated in an aver-
age (mean field) way and assumes the simplest antisymmet-
ric wavefunction for N-electron molecule, i.e. a single
Slater determinant

W ¼ hv1v2 � � � vN i ð1Þ
Here, vi(x) are the molecular orbitals (MO). Following
Roothaan’s procedure [12] they are expanded as linear
combinations of localized atomic basis functions uk(x):

vi ¼
X

k
ukðxÞCki ð2Þ

In the UHF approach x refers to both coordinate and spin
variables:

ukðxÞ ¼ /kð~rÞnðsÞ; where nðsÞ ¼ a or nðsÞ ¼ b ð3Þ
(a and b correspond to spin ‘up’ and ‘down’, respectively).

The HF secular eigenvalue equation is derived variation-
ally by minimizing the energy with respect to the choice of
MOs, i.e. coefficients Cki

FC ¼ SCE ð4Þ
where, C is the matrix of coefficients Cki, S is the overlap
matrix coming from non-orthogonality of atomic basis
functions uk(x), E is the eigenvector of the respective
MOs energies, and F is a Fock operator (an effective Ham-
iltonian for one electron system) which depends on the
electronic density matrix qij given by

qij ¼
Xoccupied

k
C kiC

þ
kj ð5Þ

where the sum is running over the occupied molecular orbi-
tals. Eq. (4) is non-linear and usually is solved iteratively
using self-consistent field procedure.

In spite of its simplicity, the HF approximation is not
very accurate because it does not include electronic correla-
tion effects [9,10]. DFT makes it possible to treat these cor-
relations by mapping complex many-electron problem into
an effective mean field problem with the same energy which
is the functional of the electronic density. As a result, in the
common DFT scheme one solves the same one electron
problem (Eqs. (1)–(5)) where the Fock operator is replaced
by Kohn–Sham operator h which is a functional of the
electronic density. In principle, this mapping is exact, but
the functional is unknown. Extensive research, however,
has formulated accurate functionals suitable for many
complex cases [13,14]. A detailed description of DFT,
self-consistent field (SCF) procedure, expressions for the
ground state SCF energy, and Fock and Kohn–Sham oper-
ators are readily available from quantum chemical text-
books [9,10,13,14].

To summarize, for a given molecule, our calculations
start from a trial geometry (Cartesian coordinates of the
nuclei). Using UHF or UDFT approach and SCF proce-
dure we obtain a molecular energy which depends on these
coordinates parametrically. A subsequent standard geome-
try optimization procedure [9,14] minimizes the energy
with respect to the nuclei positions. Special care was taken
to verify that the obtained optimal molecular structure is a
global minimum in the phase space of the nuclear (3n � 6,
n being the number of atoms) degrees of freedom.

Once the optimal geometry of the radical is calculated
we analyze its molecular electronic structure for spatial
electronic spin localization and chemical stability. The spin
density is defined as

X
i

Z
dsjvij

2 �
X

j

Z
dsjvjj

2 ð6Þ

where indices i and j run over molecular orbitals with a and
b spins, respectively. This spatially distributed density is
further condensed to individual atoms to associate a partic-
ular spin to each atom using electron population analysis.
We use a Mulliken-type of analysis. Other schemes, how-
ever, are possible [16].

To analyze the stability of the non-compensated valence
bonds responsible for the unpaired spin we finally calculate
the bond order (the overlapping population) between the
corresponding two atoms [9,17]:

A ¼ 2
X

i;j;r
nrCriCrjSij ð7Þ

Here, i and j run over the basis functions of the first and
second atoms, respectively, r counts all basis function orbi-
tals on these two atoms, nr is the rth diagonal element of
CC+ (the occupation number of rth basis function orbital),
and Sij is the overlap integral for atomic basis functions i

and j (Sij = 1 for i = j).
To obtain accurate results, two factors need to be

accounted for: (i) the quality of the density functional
and (ii) the quality of the molecular orbitals (extension of
the phase space for single-electron states). We choose the
unrestricted Becke’s 3 parameter exchange functional [17]
with non local Lee–Yang–Parr electron correlation [18]
(DFT UB3LYP model). Currently, the UB3LYP model is



146 A. Tamulis et al. / Chemical Physics Letters 436 (2007) 144–149
considered to be the most appropriate model to take into
consideration electron correlations in large open-shell neu-
tral radical molecules [19,20]. To obtain accurate optimal
molecular geometries, we use the 6-311G** basis set which
includes polarized atomic orbitals (the standard tables [21]
give the appropriate basis set description). To analyze the
spatial electronic spin localization and stability at a relaxed
molecule geometry, we subsequently use extended EPR-II
basis set (also tabulated in Ref. [21]). The EPR-II basis
set includes the re-optimized Huzinaga–Dunning double-
zeta [22,23] basis sets augmented with additional polariza-
tion functions and uncontracted in outer core-inner valence
region and provides a good accuracy for modeling various
molecular properties in organic radicals as shown by Bar-
one [24].

3. Analysis of electronic structure in neutral radical

molecules

We use the standard GAUSSIAN 98 program suite [15] for
all quantum-chemical calculations presented in this section,
and the Molden program for visualization purposes [25].

Fig. 1 shows the structure of a neutral radical molecule
with a b-diketone structure that can satisfy the conditions
formulated in the introduction. The net spin of the mole-
cule is normalized to one unit. The molecule consists of
50 atoms (carbon, hydrogen, and oxygen) which are
labeled according to Fig. 1. The group –(CH2)12– in the
mid-section of the molecule is designed to drive self-organi-
zation (constraint 1) as is well known from extensive liter-
Fig. 1. Geometry of optimized neutral radical molecule with b-diketone
structure.
ature reports [26]. The COOH group in the lower terminus
of the molecule in Fig. 1 can provide the necessary attach-
ment to the substrate (constraint 2) for cases of a variety of
inorganic oxide materials such as aluminum oxide [26,27].
The single unpaired electron spin appears because of
non-compensated valence bond in the b-diketone region
(atoms O(2), O(11), and the neighboring carbon atoms
near the top of the Fig. 1). This unit of the molecule fits
constraints 3 and 4.

We obtained optimal molecular geometry using the
UB3LYP/6-311G** method and subsequently calculated
atomic spin densities with the UB3LYP/EPR-II model
and Eq. (6). Table 1 shows the spatial distribution of the
spin densities for the atoms near the radical, as calculated
using a Mulliken-type electron population analysis [9].
One can see that the spin density is localized on the two
oxygen atoms O(2) and O(11) because each O atom pos-
sesses one non-compensated bond with the neighboring C
atom while quantum resonance of these two non-compen-
sated bonds leads to sharing one unpaired spin on the two
O atoms. The distance between O(2) and O(11) atoms is
0.22 nm. Thus, two oxygen atoms carry the effective elec-
tron spin S = 1/2.

Using Eq. (7), the overlap population for both the O(2)–
C(1) and O(11)–C(8) bonds was found to be approximately
0.57, which is close to the regular C–O bond order. As an
example, the value of A for O(46)–C(45) bond is 0.65.
Thus, the strong non-compensated valence bond in the b-
diketone structure provides the stability of the unpaired
spin in the neutral radical molecule.

To explore the effects of local group substitution we
substituted the H for a methyl (CH3) group at the carbon
between the two carbonyl (C@O) units while leaving the
unpaired spin in place, as shown in Fig. 2. The results do
not change essentially from those of the first molecule.
The unpaired spin is localized mostly on the oxygen atoms
O(2) and O(10). The corresponding spin densities are 0.49
and 0.42, the distance between those oxygen atoms is
0.215 nm. The overlap population for O(2)–C(1) and
O(10)–C(8) bonds is found approximately to be the same,
Table 1
Total atomic spin densities of first molecule as calculated by the UB3LYP/
EPR-II model and Eq. (6)

No. of atom Spin densities

1 C �0.039422
2 O 0.496910
3 C 0.054653
4 C 0.060413
5 H 0.004084
6 H �0.003086
7 H �0.003086
8 C �0.032485
9 H �0.003782
10 C 0.054497
11 O 0.410509
12 C 0.001611



Fig. 2. Geometry of a second optimized neutral radical molecule with b-diketone structure.
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A = 0.50. This value of A is slightly smaller than the corre-
sponding value of the first molecule.

We also find that not every neutral radical scan satisfy
the four conditions formulated earlier. For example,
Fig. 3 shows a structure that represents the neutral
Fig. 3. Geometry of optimized neu
TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) radical
molecule. For this molecule the unpaired spin is localized
mainly on nitrogen (N(6)) and oxygen (O(17)) atoms with
spin densities 0.46 and 0.51, respectively. The distance
between those atoms is 0.132 nm. Thus, the area of spin
tral TEMPO radical molecule.



Fig. 4. Geometry of an optimized neutral radical molecule containing five oxygen atoms near a phenyl fragment.

Table 2
Total atomic spin densities of a radical molecule containing five oxygen
atoms (Fig. 4) calculated by the UB3LYP/EPR-II model

No. of atom Spin densities

1 C 0.225298
2 C �0.122716
3 C 0.306939
4 C �0.121119
5 C 0.220468
6 C �0.037633
7 C �0.021294
8 O 0.008971
21 O 0.067679
22 C �0.004785
23 O 0.321491
25 C �0.004772
26 O 0.065633
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localization in this radical molecule is smaller than the cor-
responding area in the molecules possessing a b-diketone
structure. However, the overlap population for non-com-
pensated bonds is the following: A = 0.58 for N(6)–C(4),
A = 0.62 for N(6)–C(2), and A = 0.067 for N(6)–O(17).
The small value of A for N(6)–O(17) bond indicates the
low stability of the unpaired spin which violates the third
condition.

Finally, Fig. 4 shows a neutral radical molecule, con-
taining the �(CH2)11–CH3 ordering group and non-com-
pensated carbon–oxygen bonds. Our calculations reveal
the complicated ‘antiferromagnetic structure’ of the spin
density shown in Table 2. The spin is distributed over oxy-
gen O23 and atoms of phenyl ring C3,C5, C1,C4 with a
smaller portion in oxygens O26 and O21. Such spin density
hardly corresponds to the conception of a localized spin
and the third condition is clearly violated.

4. Conclusion

Neutral radical molecules are promising candidates for
quantum information processing using spin arrays made
from organic SAMs [2–4]. Their implementations require
adherence to four conditions: (1) A specific structure ele-
ment to drive self-organization of the SAM, (2) a specific
chemical group to provide attachment to the selected sub-
strate, (3) a localized unpaired electron spin and (4) a strong
non-compensated chemical bond, responsible for the
unpaired spin. Using quantum chemical methods based
on the density functional theory we have studied several
neutral radical molecules. Our analysis of the spatial local-
ization of the electron spin density and the bond orders
shows that the neutral radicals with the b-diketone structure
satisfy the requirements formulated in our work, whereas
other radicals (e.g., galvinoxyl radicals) may not be suitable
for quantum computations. However, additional analysis is
needed to explore the ability of the suitable molecules to
create stable and ordered SAMs [28]. Evaluation the density
of states of SAM vibrational spectra and possible impact of
electron–phonon interactions is a subject of further theoret-
ical studies. Furthermore, in order to stimulate experimen-
tal implementation of our idea and evaluate possible
regimes of quantum information processing, computation
of the components of magnetic g-tensor and dipole–dipole
interaction tensor for these radicals is required.
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