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Electronic Coherence and Collective Optical
Excitations of Conjugated Molecules

Shaul Mukamel ∗, Sergei Tretiak, Thomas Wagersreiter, and Vladimir Chernyak

Optical spectroscopy of conjugated molecules is described
by using collective electronic coordinates, which represent the
joint dynamics of electron-hole pairs. The approach relates
the optical signals directly to the dynamics of charges and
bond orders (electronic coherences) induced by the radiation
field, and uses only ground state information, thus totally
avoiding the explicit calculation of excited molecular states.
The resulting real-space picture is reminiscent of the normal
mode analysis of molecular vibrations and offers a unified
framework for the treatment of other types of systems includ-
ing semiconductor nanostructures and biological complexes.
Spatial coherence displayed in two-dimensional plots of the
five electronic normal modes which dominate the optical re-
sponse of Poly(p-phenylene vinylene) (PPV) oligomers with
up to 50 repeat units (398 carbon atoms) in the 1.5 to 8
eV frequency range suggests a saturation to bulk behavior at
about 5 repeat units.

Spectroscopy allows chemists and physicists to probe
of the dynamics of vibrations and electronic excitations
within molecules and solids. The theoretical models used
for interpreting molecular spectra versus those for ex-
tended solids are usually quite different, and certain sys-
tems, such as clusters and polymers, are not readily
treated by either of these limiting cases. We are espe-
sially interested in understanding the optical spectra of
large polymers, which are extended conjugated molecules
such as poly(p-phenylene vinylene) oligomers (Fig. 1)
that have interesting optical applications.

Electronic and optical properties of small conju-
gated chains can be interpreted molecularly in terms
of their global many-electron eigenstates obtained from
quantum-chemistry methods [1,2]. Large polymers can
also be treated by using semiconductor band theories
that focus on the dynamics of electron-hole pairs [3]. The
size-scaling of the optical response, and the transition be-
tween these two regimes has not been fully explored for
the lack of adequate theoretical methods. The eigen-
states, which carry considerably more information than
necessary for the calculation of spectra, are hard to get
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FIG. 1. Geometry and atom labeling of PPV oligomers.

Bond angles are 120o, except α(r6,7, r7,8) = 128o, and the
distances are: r1,2 = r2,3 = r3,4 = r4,5 = r5,6 = r6,1 = 1.39Å,
r6,7 = 1.44Å, r7,8 = 1.33Å.

for large molecules with strong electron correlations (as
occurs in conjugated chains). Band theories, however,
neglect electronic correlation effects, and because they
are formulated in momentum (k) space they do not lend
themselves very easily to real-space chemical intuition.

The collective-electronic oscillator (CEO) representa-
tion [4,5] provides a hybrid formulation that bridges
the gap between the chemical and semiconductor points
of view. This model uses an electron-hole picture in
real-space, overcomes many of the difficulties associated
with the former approaches, and provides a physically-
intuitive link between electronic structure and optical
properties, that is, they are related directly to the mo-
tions of charges and electronic coherences, thus avoiding
the need to calculate the global (many-electron) eigen-
states, which is computationally demanding and in fact
overdetermines the problem. The electronic oscillators,
unlike the electronic orbitals, directly represent spectro-
scopic observables [4–6]. Despite the quantum nature of
electronic motions, the collective oscillators are classical
[7,8], which connects well with chemical intuition. Typi-
cally only a few oscillators dominate the response, which
greatly simplifies the theoretical description. A real space
picture of linear absorption which pinpoints the origin of
each optical transition is obtained by two-dimensional
display of the electronic mode matrices. Our results al-
low the interpretation of the most interesting crossover
region toward the bulk.

The CEO Approach

The oscillator picture that we use here is more familiar
in the analysis of vibrational spectroscopy [9], in which
the coherent motion of various atoms with well-defined
amplitude and phase relations are represented by collec-
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tive nuclear coordinates; the normal modes. The normal
modes provide a natural coordinate system and allow an
alternative classical real-space interpretation of infrared
or Raman spectra [10], instead of a description in terms of
transitions among specific vibrational states. The normal
modes of nuclear vibrations are simply superpositions of
the 3N nuclear displacements. Extending this concept to
electronic motions is not straightforward, however, be-
cause spectroscopic observables are highly averaged, and
following the complete many-electron dynamics is nei-
ther feasible nor desirable. For this reason, the oscillator
picture is normally not used for electronic spectroscopy.

In this article we show how a CEO picture can be rig-
orously established for optical excitations of conjugated
molecules. We demonstrate how a natural set of elec-
tronic coordinates can be constructed using the reduced
single-electron density matrix [4,5,11], and how it offers
tremendous conceptual as well as computational advan-
tages. Consider a conjugated molecule described by a
basis set {φn} of N atomic orbitals. (For simplicity we
use in the calculations presented below the Pariser-Parr-
Pople (PPP) Hamiltonian where each carbon atom has
a single π orbital [6,12]. N then coincides with the num-
ber of carbon atoms.) The system can then be described
by the Fermi operators c+n (cn) representing the creation
(annihilation) of an electron on φn. The complete many-
electron wave function representing the system’s ground
state will be denoted ψg(x), x being the complete set
of electronic coordinates. The reduced single-electron
ground state density matrix is then defined as the ex-
pectation value [13]

ρ̄nm ≡< ψg|c+n cm|ψg >, (1)

(Spin indices have been omitted for brevity.) The phys-
ical significance of ρ̄ has been recognized since the early
days of quantum chemistry [14]. We first note that ρ̄
is an N x N matrix. The density matrix carries consid-
erably less information than the complete many-electron
wave function, and is, therefore, much easier to calculate.
However, this information is sufficient for calculating all
optical properties and develop an intuitive physical pic-
ture of the optical response. (ψg(x) allows us to calculate
the expectation values of products of arbitrary numbers
of cn at c+n whereas ρ̄ only gives the binary products,
which represent operators depending on a single elec-
tron, hence its name). ρ̄ is thus the quantum analog
of the single particle distribution in classical statistical
mechanics [15]. The ground state density matrix ρ̄nm

may be obtained by using standard quantum chemistry
packages. Its diagonal elements (n = m) represent the
charge at the m’th atom, whereas the off-diagonal ele-
ments (n 6= m) reflect the strength of chemical bond-
ing between each pairs of atoms and are known as the
bond-orders. Bond-order is thus associated with a phase
relation ( electronic-coherence) between orbitals. The
eigenvectors of ρ̄ known as the natural orbitals provide
a convenient basis set for performing configuration in-

teraction (CI) calculations and for interpreting chemical
reactivity [16,17].

When the molecule is driven by an external electric
field (such as provided by a photon in a spectroscopic
measurement), its wave function (and consequently, the
reduced density matrix) become time-dependent. We
then write ρ(t) = ρ̄+δρ(t). The matrix elements δρnm(t)
represent the changes induced in the density matrix by
the electric field. δρnn(t) is the net charge induced on
the n-th atom, whereas δρnm(t) n 6= m is a dynamical
bond-order representing the joint amplitude of finding an
electron on atom m and a hole on atom n.

Quantum chemistry techniques which calculate prop-
erties such as polarizabilities by using the many-body
wave functions rapidly become more expensive with
molecular size, and are therefore limited to small
molecules. Furthermore, in most practical chemical ap-
plications we need much less information than carried
by the complete eigenstates. This makes it hard to de-
velop a simple intuitive understanding of various trends.
A time-dependent procedure for calculating δρ(t) directly
can be obtained as follows: We start with the Heisenberg
equation of motion for c+n cm. This equation will not be
closed, because higher order products will show up when
the time derivative is calculated. Writing equations of
motion for these higher products will yield increasingly
higher products. This is the famous hierarchy of many-
body (classical and quantum) dynamics. To overcome
this difficulty we need a truncation procedure. The sim-
plest assumes that the many-body wave function is given
by a single Slater determinant at all times, and yields
the time dependent Hartree-Fock (TDHF) equations of
motion [18]:

δρ̇ = Aδρ+Bδρδρ− E(t)µδρ. (2)

The coefficients in these equations are readily available
and depend on the original Hamiltonian and on ρ̄ (which
is the essential input in the present approach). In Fig.2
we display ρ̄ of a linear 30-atom polyacetylene chain as
well as the induced density matrix δρ(ω) (the Fourier
transform of δρ(t)) to first order in an external field, for
three frequencies corresponding to the lowest peaks in
the optical absorption. ρ̄ is almost diagonal; only nearest
neighbors have significant off-diagonal elements. This re-
sult is in agreement with our elementary picture of chem-
ical bonding. Optical excitations, however, induce elec-
tronic coherences between atoms that are much farther
apart, as is clearly seen in Fig. 2, B, C, and D.

Equation (2) allows us to calculate the time-dependent
density matrix (and optical excitations) directly from ρ̄.
By understanding the mechanism for the creation of the
coherence, we can develop a new type of chemical intu-
ition and relate the optical response directly to the mo-
tions of charges and bond orders. This is an attractive
alternative to the conventional description of spectra in
terms of transitions among eigenstates. Both pictures
are correct, and for historical reasons, chemical intuition
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FIG. 2. Contour plots of density matrices of a 30 carbon atom polyacetylene chain: (A) ground state density matrix ρ̄; (B),
(C), and (D) frequency-dependent density matrices δρ(ω) at ω =2.5, 3.5, and 4.7 eV (496, 354 and 264 nm) corresponding to
the lowest three dominant peaks in the absorption spectrum. The axes represents the individual carbon atoms, and the color
code is shown in Fig.4.

is traditionally based on eigenstates. However, we argue
that the real-space picture is much more natural, intu-
itive and easier to implement once the proper terminol-
ogy is developed. To illustrate this point, let us consider
the variation of optical properties such as the electronic
band gap and its oscillator strength or the magnitude of
the off-resonant polarizability with molecular size. These
properties strongly depend on size for short chains and
level off at about 20 to 30 double bonds, where they at-
tain the bulk values [19]. It is impossible to visualize
this coherence size by examining the molecular orbitals.
These orbitals are completely delocalized, change gradu-
ally and continuously with chain length, and contain no
signatures of this coherence size. In contrast, by look-
ing at the induced density matrix we immediately note
the coherence size associated with its off-diagonal section.
This coherence size which measures how far apart differ-
ent atoms communicate, controls the scaling of optical
properties with size, as will be demonstrated below.

At this point, we return to the analogy with classi-
cal molecular vibrations. The displacements of nuclear
positions from their equilibrium values satisfy nonlinear

equations of motion resulting from the anharmonic force
fields. Infrared and Raman spectra are usually inter-
preted using normal modes obtained by diagonalizing the
linear (harmonic) part of these equations of motion. Nor-
mal modes are natural collective coordinates for atomic
displacements. Nonlinear (anharmonic) effects can be
treated as perturbations. In complete analogy, δρnm(t)
represent the displacements of the electronic density ma-
trix elements from their equilibrium (ground state) values
ρ̄nm. The nonlinear TDHF equations are the electronic
counterpart of the classical Newtons’ equations of motion
of nuclear displacements. By diagonalizing the linearized
TDHF equations, we obtain a set of collective electronic
normal modes. The induced density matrix can then be
expanded as a superposition of these collective modes
in the same way that an atomic nuclear displacement is
a superposition of the vibrational normal modes. Each
normal mode (electronic oscillator) with frequency Ων is
described by a coordinateQν and momentum Pν . Qν and
Pν are also N ×N matrices [5]. These N2/4 coordinates
and momenta allow us to represent the time-dependent
density matrix in the form [4]:
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δρ(t) =
N2/4∑

ν=1

aν(t)Qν + bν(t)Pν (3)

The optical polarization is related to the charge dis-
tribution and may be expressed in terms of the diagonal
elements of δρ(t). The polarization along the z-axis is
given by:

< P(t) >=
∑

eznδρnn(t) (4)

where zn is the z coordinate of the n’th atom, and e is
the electronic charge.

In the CEO method [4,5], the N2 matrix elements of
δρ(t) are obtained by solving the closed nonlinear TDHF
equations of motion [4]. These equations map the cal-
culation of the optical response onto the dynamics of
coupled electronic oscillators, (analogous to calculating
molecular vibrations), thus avoiding the tedious calcula-
tion of the global (many-electron) wave functions. In-
frared and Raman spectra are greatly simplified by se-
lection rules which allow us to include only a few modes
in the calculation. The same is true for the electronic
normal modes: Only a few dominant modes typically de-
termine the spectra, thus greatly simplifying the physical
picture and reducing the computational effort.

Two-Dimensional Real-Space
Analysis of Optical Responses

We investigated the electronic excitations of PPV
oligomers (Fig. 1) [6,20–27] and analyzed their scaling
with size. Recent interest in PPV is connected with its
possible use as a photoconductor [28,29], candidate for
electroluminescent devices, or optical switches.

The π molecular orbitals of PPV have been classified
as either localized (l) or delocalized (d) [28,26]. The for-
mer have an electron density on carbon atoms 1,2,4, and
5 (Fig.1), while the latter are delocalized over all carbon
atoms. The experimental absorption spectrum of PPV
thin film [21] shown in Fig.3A (dashed line) is typical for
other PPV-derivatives [28,21,25]. It has a fundamental
(d → d?) band at 2.5 eV [496 nm] (I), two weak peaks
at 3.7 eV [335 nm] (d → d?) (II) and 4.8 eV [258 nm]
(l → d? and d→ l?) (III), and a strong (l → l?) band at
6.0 eV [207 nm] (IV). Peak II originates from electron cor-
relations [28,26] and is missed by HF calculations. The
calculated spectrum of PPV(10) shown in Fig.3A (solid
line) closely resembles the experimental spectrum and
has similar features at 2.83 (I), 3.3 (II), 4.5 (III), and
5.6 eV (IV) [438, 376, 276, and 221 nm]. In addition, it
shows a fifth band centered at 7.0 eV [177 nm] (V). The
oscillator strengths fν of PPV(10) are shown in Fig.3A.

By displaying the dominant oscillators in the site repre-
sentation, we obtain a new picture that relates the optical
properties directly to motions of charges in the system,
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FIG. 3. (A) Absorption spectrum of PPV(10) (the imag-
inary part of α Eq.(1)). Dashed line: experimental absorp-
tion of a PPV thin film [21]. Solid line: absorption line-
shape of PPV(10) obtained with 12 effective modes calcula-
tion with linewidth Γν = 0.1eV ; The sticks represent oscilla-
tor strengths fν , ν = 1, N2/4 of PPV(10) obtained by the full
TDHF. (B) The frequency – dependent participation ratio of
the induced density matrix.

without ever introducing electronic eigenstates. The ex-
tent of spatial coherence then provides a view of the un-
derlying coherence sizes. A two-dimensional plot of ρ̄ of
PPV(10) is shown in Fig.4A. The coordinate axes repre-
sent repeat units along the chain and the absolute values
of matrix elements are depicted by different colors. Sim-
ilar to Fig. 2, ρ̄ is dominated by the diagonal and near-
diagonal elements, reflecting the bonds between nearest
neighbors. Figure 4B shows a single unit of Fig. 4A on an
expanded scale using the atom labeling given in Fig.1. It
reflects bond strength distribution over the benzene ring
(1-6 elements), strong double bond (7-8), and weaker sin-
gle bond (6-7) of the vinylene group. This bonding pat-
tern is to be expected from the molecular structure.

We next turn to examine the coordinates Qν and mo-
menta Pν of the dominant electronic oscillators. Vibra-
tional normal modes represent coherent displacements
of various atoms, and these electronic modes represent
the displacements of the electronic density matrix with
respect to ρ̄. The diagonal elements reflect induced
charges on various atoms, whereas the off-diagonal el-
ements represent dynamical fluctuations of interatomic
chemical bonding [4–6]. Our calculations show that the
absorption is dominated by five oscillators denoted I-V.
The coordinate and momentum eigenvectors of the os-
cillator responsible for the lowest absorption peak (I) of
PPV(10) are shown in Fig. 4, C and D. The same quan-
tities for the second oscillator corresponding to peak (II)
are shown in Fig. 4, F and G. Despite the different struc-
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FIG. 4. Contour plots of density matrices. (A) ρ̄ of PPV(10); (B) magnified region of (A) representing the single unit of
polymer chain and the color maps; (C) momentum, and (D) coordinate of PPV(10), and (E) coordinate of PPV(20) of the
lowest absorption peak (I); (F), (G), (H) are the same quantities as in C to E but for the second absorption peak (II). The
axis labels represent the repeat units, except in (B) where the axes represents the individual carbon atoms as numbered in
Fig.1.
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FIG. 5. Contour plots of density matrices. (A) Momentum, and (B) coordinate in the real space, and (C) coordinate in the
molecular orbital representation of the peak (III) of PPV(10). (D) Momentum, and (E) coordinate of PPV(10) for the fourth
absorption peak (IV), and (F) magnified area of (E) representing the single unit of polymer chain. (G, H, and I) the same
quantities as in B to F but for the fifth absorption peak (V). The axis of (A), (B), (D), (E), (G), and (H) are labeled to
the repeat units of polymer chain. The axis of (C) denote the molecular orbitals. Labeling using the number of carbon atoms
according to Fig.1 is used for panels (F) and (I)
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ture of these electronic modes, the delocalization pattern
of the off-diagonal elements representing electronic co-
herence between different atoms is similar. Both modes
are delocalized and can be viewed as d→ d? transitions.
Qν and Pν clearly show that the weak coherences be-
tween the phenylene ring of the i-th repeat unit, and the
vinylene group of the i + 1-st repeat unit are enhanced
by optical excitation. In addition, a weak dynamical co-
herence develops between the i-th and the i + 2-nd re-
peat units. These figures illustrate that finite size effects
are limited to the terminating repeat units and that the
momenta are more delocalized than the coordinates for
a single unit. The coherence size, that is the ’width’ of
the momentum density matrix along the coordinate axes,
where the coherences decrease to 10% of their maximum
values) is 5 repeat units. The same modes for a longer
chain [(PPV(20))] displayed in Fig. 4, E and H are virtu-
ally identical to those of PPV(10). Therefore, 10 repeat
units already resembles the infinite chain as far as the
optical spectrum is concerned.

The coordinate and momentum of the third peak (III)
of PPV(10) are shown in Fig. 5, A and B. This mode
is delocalized with a coherence-size similar to modes (I)
and (II), however, its structure along the oligomer chain
is very different: Bonding is weak at the center and strong
towards the edges. The electronic modes are most suit-
able for investigating charge transfer processes and pho-
toconductivity [28,29]. The strong local optical dipoles
along the chain can affect charge transfer and electron
hopping. Oscillator III, which has the strongest optical
coherences induced at the chain ends (see Fig. 5, A and
4, B), should play an important role in effects involving
charge separation.

The coordinates and momenta of the high frequency
peaks (IV) and (V) of PPV(10) (Fig. 5, D, E, G, and H)
are completely localized on a single repeat unit. This be-
havior is drastically different from polyacetylene, where
the electronic coherence-size increases monotonically for
the higher frequency modes (see Fig. 2) [5]. The co-
ordinates of these modes for a single PPV unit on an
expanded scale are shown in Fig. 5, F and I. For the
fourth peak (IV) the optically induced coherences only
involve the phenylene ring carbon atoms 1,2,4, and 5
(Fig. 1), in agreement with the results obtained in [28,26].
The oscillator responsible for peak (IV) represents several
nearly-degenerate localized oscillators (see Fig. 3A). The
high-frequency peak (V) predicted by our calculations
lies beyond the experimentally studied frequency range.
It corresponds to localized and weakly delocalized tran-
sitions involving the vinylene group atoms 7 and 8, and
the phenylene ring atoms 3 and 6. A weak coherence be-
tween the vinylene groups of neighboring repeat units is
observed as well.

Even though the CEO approach is eigenstate-free, it
is instructive to establish its connection to the more
traditional eigenstate representation. The ν’th oscilla-
tor represents the optical transition between the ground
state ψg and the ν’th excited state ψν . The matrices

representing the coordinate Qν and momentum Pν are
given by (Qν)mn = 〈ψν |c+mcn|ψg〉 + 〈ψg|c+mcn|ψν〉, and
(Pν)mn = 〈ψν |c+mcn|ψg〉− 〈ψg|c+mcn|ψν〉. Qν and Pν thus
carry considerably reduced information about the global
eigenstates |ψν〉. A different perspective on these modes
is obtained by expanding them in the molecular orbital
representation using a basis set of pairs molecular or-
bitals. Let us denote the creation (annihilation) operator
for i’th molecular orbital c+i (ci). We then have

Qν =
N2/4∑

i,j

αν
i,j(c

+
i cj + c+j ci), (5)

where i runs over initially unoccupied orbitals (particles)
whereas j denotes occupied orbitals (holes) (see Fig.6A).
These coefficients, normalized as

∑
i,j |αν

i,j | = 1, repre-
sent the contribution of the j → i transition to the ν’th
oscillator. Note that the indices n, m used earlier repre-
sent localized atomic orbitals whereas i, j denote delocal-
ized molecular orbitals. To illustrate how various molec-
ular orbitals contribute to our five dominant electronic
modes, we have introduced the following two quantities

Rν(j) =
∑

i

[αν
i,j ]

2, P ν =
1∑

i,j [α
ν
i,j ]2

, (6)

where i, j = 1, . . . , N/2, and ν = I, II, . . . , V . Rν(j) rep-
resents the total contribution of the j’th molecular orbital
to all orbital pairs appearing in the ν’th oscillator. Rν(j)
for the five dominant oscillators in PPV(10) are displayed
in Fig.6B. RI(j) is relatively localized in the vicinity of
the HOMO-LUMO transition (between the highest occu-
pied and lowest unoccupied orbitals), whereas additional
pairs of orbitals contribute to the higher modes. The
inverse participation ratio P ν measures the number of
orbital pairs that contribute significantly to the ν’th os-
cillator. In the absence of electronic correlations, each
oscillator represents a single transition between an occu-
pied and an unoccupied orbitals (in the quantum chem-
istry terminology) or a single particle-hole pair (in the
semiconductor terminology) and P ν = 1. In this case,
the oscillator and molecular orbital pair descriptions co-
incide. In a correlated electronic structure, each mode
becomes a linear combination (that is, a wavepacket)
of orbital pairs as represented by Eq. (5), and P ν in-
creases. P ν is thus a useful measure of electronic corre-
lations. The values of P ν given in Fig.6B show that the
higher oscillators are more collective and contain gradu-
ally increasing number of electron-hole pair states. The
oscillators III and V corresponding to d → l? transi-
tions have the most collective character. Such strongly
correlated excitations require an extensive configuration-
interaction calculations in an eigenstates approach. Here
they appear naturally through the modes. The CEO is
most attractive when P ν is large because in a very effi-
cient way it lumps the important effects of correlations
directly into the observables. The collective nature of op-
tical excitations at different frequencies can be analyzed
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FIG. 6. (A) Origin of the collective electronic oscillators.
Each transition between an occupaid and an unoccupied or-
bital represents an electron-hole oscillator. In a molecule with
Ne occupied (electron) and Nh unoccupied (hole) orbitals we
have altogether Ne×Nh oscillators. For a system with a filled
valence and empty conduction band described by a “minimal
basis set” Ne = Nh = N/2 and the number of oscillators
is N2/4. The collective oscillators Qν can be represented as
superpositions of the electron-hole oscillators (see Eq. (6)).
The participation ratio P ν measures the effective number of
electron-hole pairs contributing to a given collective oscilla-
tor. (B) The molecular orbital contributions and the inverse
participation ratios of orbital pairs corresponding to the five
dominant modes of PPV(10) absorption.

by expanding the induced density matrix in molecular or-
bitals δρ(ω) =

∑N2/4
i,j αi,j(ω)(c+i cj + c+j ci). we can then

define a frequency – dependent participation ratio P (ω)
by replacing αν

i,j with αi,j(ω) in Eq.(6). (A normaliza-
tion

∑
i,j |αi,j(ω)| = 1 is assumed). P (ω) displayed in

Fig.2B is a weighted average of the participation ratios
P ν of the contributing electronic oscillators.

We have used the molecular orbital representation to
analyze the nature of mode III. In Fig. 4C we display
its coordinate in the molecular orbital representation.
The Figure clearly shows that only few molecular orbitals
close to HOMO-LUMO contribute to this transition. The
strongest orbitals can be identified as either delocalized
or localized and mode III corresponds to l → d? and
d → l? transitions. Our calculations further show that
the frequencies of modes I, II, III are red-shifted and
gradually saturate with increasing chain length, whereas
the frequencies of modes IV and V are not affected by
size. These findings are consistent with the delocalized
and localized nature of the two groups of modes respec-
tively as displayed in Figs.4 and 5.

Discussion and other Applications

The main reason for the success of the CEO represen-
tation can be rationalized as follows: An optical excita-
tion moves an electron from some occupied to unoccupied
orbitals, thereby creating an electron-hole pair. The nat-
ural description of the optical response should therefore
be based on following the simultaneous and coupled dy-
namics of this pair; the two indices of the density matrix
carry precisely this information. Molecular eigenstates,
however, use a single-particle basis set. Correlations are
incorporated through an extensive CI calculation. By
working in a space of higher dimensionality (the pair)
we capture the essential physics of the system, and even
the simplest (TDHF) factorization yields an adequate de-
scription. In a single-particle basis, a much more exten-
sive numerical effort is needed. A real space analysis
of linear absorption which pinpoints the origin of each
optical transition is obtained by displaying the electronic
mode matrices graphically. The fact that only a few oscil-
lators typically dominate the response greatly simplifies
the theoretical description. The weak anharmonicities
which justify the harmonic picture may be attributed to
the large delocalization size. In atoms on the other hand
collective excitations have been found to converge to local
modes rather than to normal modes [30]. In semiconduc-
tors, the electron-hole pairs are loosely bound and form
Wannier excitons [3]. In molecular aggregates, each pair
is tightly bound and can be considered as a single par-
ticle (Frenkel exciton) [31,32]. Conjugated polymers are
intermediate between these two extremes, and the collec-
tive oscillators in conjugated polymers can be viewed as
charge-transfer excitons. The CEO thus offers a unified
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description of different materials and allows a direct com-
parison of their optical properties [33]. Also, one can go
beyond the PPP Hamiltonian and the TDHF approxima-
tion and include additional variables and use a different
ansatz for the wave function [34]. Technically the calcu-
lation of optical properties using summation over states
is also unified and universal. However, very different ap-
proximate schemes and terminologies are usually used
in the calculation of the eigenstates of various systems;
This prohibits a clear comparison and obscures the origin
of differences. The electronic oscillator picture applies
to all materials by simply changing parameters (such as
the electron hole mass, the Coulomb interaction, and the
hopping matrix elements) [35].

We next review the computational advantages of the
electronic oscillator approach. The sum-only states
method becomes rapidly more complex with molecular
size. Both calculating the eigenstates and performing
the necessary summations over them are intractable for
large systems. Knowing the complete set of eigenstates
allows the calculation of any optical response including
to strong fields. This is therefore an ”all or nothing” ap-
proach. The oscillator approach, carries less information
but for considerably less effort. Computational time of
CI calculations scales as N6; The CEO procedure scales
only as N2. Our results allow the interpretation of the
most interesting crossover region towards the bulk.

The significance of the oscillator picture is even more
pronounced when nonlinear optical properties are calcu-
lated [4,5]. Interference effects in the sum-over-states ap-
proach result in an almost complete cancellation of large
positive and negative contributions to optical susceptibil-
ities [36,37], which limits the accuracy and makes approx-
imate calculations dangerous (since innocent approxima-
tions may lead to huge errors). One consequence of this
is that individual terms do not have the correct scaling
with size. The latter is only obtained once all of the terms
are carefully combined. In the oscillator picture these
cancellations are built in from the start and each sep-
arate contribution to the susceptibility scales properly.
The present discussion focuses on the resonant response.
However, the real–space approach has been shown to pro-
vide an adequate description of the scaling and saturation
of off-resonant linear and nonlinear polarizabilities [4,5].

We further note that by treating the electronic degrees
of freedom as oscillators we can couple them more nat-
urally to nuclear degrees of freedom, which constitute
another set of oscillators. The incorporation of nuclear
notions thus becomes much more straightforward com-
pared with the eigenstate representation, and lends itself
more easily to semiclassical approximations.

The oscillator approach allows us to develop a natu-
ral framework for the interpretation and the design of
molecules with specific properties. Instead of asking
which of the many-electron states are most relevant, we
can explore how do different regions of the molecule cou-
ple and affect each other. We can translate δρ(t) into
nonlocal response function αnm(t), which shows how does

the interaction with a field at point n affect the polariza-
tion at point m [38]. The total polarizability is given by
summing this quantity over n and m α(t) =

∑
nm αnm(t).

The nonlocal character of the response is intimately con-
nected with the electronic coherence of the induced den-
sity matrix. One can then address directly the effects of
donor-acceptor substitutions and geometry.

Electronic motions may now be probed directly on
the femtosecond timescale and the nanometer length-
scale using nonlinear spectroscopic techniques. This has
been recently demonstrated in semiconductor quantum
wells [39], single molecule spectroscopy [40–42], and Ry-
dberg atoms [43]. The CEO approach should allow
us to analyze the temporal and spatial microscopic dy-
namics underlying energy and electron transfer processes
in substituted conjugated molecules by using real-space
wavepackets representing the single-electron density ma-
trix. A physical picture for coherent versus incoher-
ent electron transfer processes can then be developed in
terms of off-diagonal or diagonal pathways respectively,
of the electronic density matrix.

The CEO is conceptually similar to density functional
theory which aims at calculating the ground state with an
energy functional that only depends on the charge den-
sity that is, the diagonal elements of the density matrix
in a localized basis [44]. The CEO is a natural extension
of density functional theory to include the electronic co-
herences contained in off-diagonal elements. These carry
the key information about electronic excitations and al-
low the calculation of spectra using only ground-state
information.
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3198 (1991).
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