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ABSTRACT: Attachment of chemical substituents (such as polar moieties)
constitutes an efficient and convenient way to modify physical and chemical
properties of conjugated polymers and oligomers. Associated modifications in the
molecular electronic states can be comprehensively described by examining scattering
of excitons in the polymer’s backbone at the scattering center representing the
chemical substituent. Here, we implement effective tight-binding models as a tool to
examine the analytical properties of the exciton scattering matrices in semi-infinite
polymer chains with substitutions. We demonstrate that chemical interactions
between the substitution and attached polymer are adequately described by the
analytical properties of the scattering matrices. In particular, resonant and bound
electronic excitations are expressed via the positions of zeros and poles of the
scattering amplitude, analytically continued to complex values of exciton quasi-
momenta. We exemplify the formulated concepts by analyzing excited states in
conjugated phenylacetylenes substituted by perylene.

SECTION: Spectroscopy, Photochemistry, and Excited States

The concept of scattering has proven to play an important
role in the description of a variety of phenomena in

quantum mechanics, condensed matter and quantum field
theory, functional analysis, and chemistry. Scattering matrices/
operators contain detailed information on fundamental
interactions that control the system dynamics and are available
from experimental measurements. In high-energy physics, the
differential cross sections, directly related to scattering matrices,
are measured and further interpreted using quantum field
theory, with the ultimate goal of revealing the fundamental
interactions. In condensed matter theory, the scattering
matrices provide a useful tool of resumming the short-range
interaction effects, for example, in the superfluidity theory in
the low-density case, where a perturbation theory can be
formulated in terms of the particle−particle scattering matrix
that contains all necessary information on the particle−particle
interactions.1−3 The celebrated Fermi liquid theory allows
interpretation of complex dynamics of a strongly interacting
system to be interpreted in terms of quasi-particle spectra and
scattering matrices.4,5 Chemical reactions in the gas phase can
be conveniently formulated and interpreted as scattering
processes with the asymptotic states represented by the
reactants and products.6,7 In functional analysis, scattering
theory can be viewed as a tool of analyzing continuous spectra
of unbounded (often differential) operators, in particular, the
projection measures involved in spectral decompositions.8

Our recent work9−16 has demonstrated that the quasi-particle
picture, coined exciton scattering (ES) approach, provides

simple and clear insight into the excited-state electronic
structure in complex conjugated macromolecules.17−21 It allows
excited electronic states to be studied in terms of the exciton
spectra in infinite polymers and scattering matrices to be
associated with molecular vertices, that is, termini, joints, and
branching centers.22−28 The ES properties of molecular vertices
can be further described by tight-binding or equivalent lattice
models.29 This extends the ES concept to the case of imperfect
molecular geometries aimed at deriving the exciton−phonon
Hamiltonian, thus mapping the problem of incoherent energy
transfer in branched conjugated structures onto a much simpler
(although still complex) counterpart of incoherent motion of
Frenkel-type excitons.30,31 The scattering framework in the
conjugated molecular systems is different from typical cases
usually studied in quantum mechanics due to discrete rather
than continuous translational symmetry of the asymptotic
states. In particular, integer topological invariants, namely,
winding numbers/topological charges, can be associated with
the scattering centers.32 It is well-established in quantum
mechanics that analytical properties of scattering matrices,
more specifically their analytic continuations, provide detailed
and important information on the underlying potentials,
including bound and metastable states. Therefore, analytical
properties of ES on molecular vertices are expected to provide
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adequate information of how electronic properties of supra-
molecular conjugated structures are affected by local chemical
substituents.
In this Letter, we apply tight-binding models as a tool to

study analytical properties of scattering matrices, providing
insights into the excited-state electronic structure of molecular
substituents commonly present in conjugated systems. As an
example, Figure 1c displays the reflection phase of perylene

attached to a semi-infinite phenylacetylene (PA) chain (see
Figure 1a), retrieved from quantum chemistry calculations.15

Compared to that in an unsubstituted chain (ϕH), the plot
shows highly nontrivial dependence of the phase on the exciton
quasi-momentum k, including four resonant features that are
not easy to interpret. Here, we show how these features in the
reflection phase can be directly ascribed to resonant and bound
excited states brought by the substituent.
We start with introducing the simplest nearest-neighbor

hopping lattice model, where the linear segments of a branched
conjugated structure are represented by linear chains (graphs)
with the same on-site energy Ω̅0 and the same hopping
constant J1̅ between the nearest neighbors. A molecular vertex
is represented by a complete graph, that is, by a set of fully
interconnected sites, with arbitrary on-site energies and
hopping constants between any pair of sites allowed. The
chemical connection between a molecular vertex and the
attached linear segment is thus described by introducing the
hopping constants between the first lattice site (whose on-site
energy is also modified) of the linear segment and any lattice
site that belongs to the vertex (e.g., see Figure 1b). Here, we
consider the case of chemical substitution on the molecular
terminus only (e.g., perylene in Figure 1a); the general case of
an arbitrary degree molecular vertex will be analyzed elsewhere.

Because the lattice sites representing a vertex form a basis set
for the vertex tight-binding Hamiltonian, without loss of
generality, we can assume the latter to be diagonal. Therefore, a
molecular terminus is described by a set {ωα|α = 1, ..., n} of the
on-site energies, a vector J = (Jα|α = 1, ..., n) of the hopping
constants between the vertex sites and the first linear segment
site, and the modified on-site energy Ω1 of the latter, as shown
in Figure 1b. Measuring the energy in the unit of J1̅ and
choosing the zero energy level at the middle of the exciton
band, without loss of generality, we can set Ω̅0 = 0 and J1̅ = 1.
Within the described lattice model, the exciton wave function

on a semi-infinite chain is given by the sets Ψ = (Ψα|α = 1, ...,
n) and ψ = (ψj|j = 0, 1, ...) of its values on the terminus and the
chain, respectively. Introducing the multiplicative variable z =
eik that describes the quasi-momentum k, we represent the wave
function on the chain as a superposition of incoming and
outgoing waves

ψ = + =−z r z z j( ) 0, 1, ...j
j j

(1)

with r(z) is the quasi-momentum-dependent reflection
coefficient at j = 0. The eigenmode equation adopts a form
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Upon substituting eq 1 into eq 2, we can easily solve the
system of linear equations and obtain the following expressions
for the exciton spectrum

ω = + −z z z( ) 1
(3)
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both being represented by meromorphic functions of z in the
complex plane. This implies that r(z) can be also interpreted as
a meromorphic function on the projective space P1 or a
holomorphic function r:P1 → P1. These two interpretations
originate from viewing P1 as a compact complex analytical
manifold (of complex dimension 1), topologically equivalent to
a sphere P1 ≅ S2 with the complex structure induced from
complex plane  via stereographic projection  P1, that is,
P1 is obtained from  by adding the infinite point.
The reflection coefficient satisfies obvious relations

= * = *− −r z r z r z r z( ) ( ( )) ( ) ( ( ))1 1
(5)

that reflect unitarity of quantum mechanics combined with
time-reversal symmetry.
A direct inspection of eq 4 shows that the reflection

coefficient can be represented in a form r(z) = zP2n+1(z)/
Q2n+1(z), with P2n+1 and Q2n+1 being polynomials of degree (2n
+1), which means that r(z), as a meromorphic function in P1,
has 2(n+1) zeros and 2(n+1) poles or, equivalently, that the
map r:P1 → P1 has degree nA(r) = 2(n+1), hereafter referred
to as the analytical index. Due to the symmetry relations (eq 5),
the roots of Q2n+1 are inverse to the roots of P2n+1, with the
roots of each polynomial being either real or coming in
mutually complex conjugated pairs. This implies that the

Figure 1. (a) Perylene-terminated PA linear molecule. (b) The tight-
binding model describing the ES at the terminus. (c) The exciton
reflection phase of the terminus obtained from the ES approach (black
solid curve), which is approximated by the tight-binding model shown
in (b) (red dashed curve) and by the simplified model (blue dotted−
dashed curve), where three sharp resonances have been removed. The
reflection phase of the unmodified terminus ϕH is shown for
comparison.
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positions of the roots, of say P2n+1, fix r(z) up to a multiplicative
factor, the latter being fixed by the condition r(1) = −1 [note
that also r(−1) = −1] that follows from eq 4 [note that
generally eq 5 also implies r(1) = ±1 as well as r(−1) = ±1].
Therefore, r(z) can be represented in a form

∏ ∏=
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−= = +
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r z z
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z z

z z
( )
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1j

m
j
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n
j

j1 1

2 1

(6)

where {zj} and {wj} are the zeros of the polynomials P2n+1 and
Q2n+1, respectively, located inside of the circle |z| = 1, hereafter
referred to as the circle.
We now tie the analytic properties described above together

with the underlying chemistry in terms of bound states.
According to quantum mechanical scattering theory and eq 1,
the bound states in a semi-infinite chain correspond to the
poles of r(z) located inside of the circle, or equivalently the
zeros located outside, so that the energies of the bound states
are given by ω(wj), which implies that wj should be real for all j
= 1, ..., m. In our earlier work (unpublished result), we
introduced the topological index (winding number) nT(r),
associated with a vertex. A direct calculation yields
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Introducing the molecular vertex analytical and topological
charges QA = (nA − 2)/2 and QT = (nT − 2)/2, respectively, we
conclude that in a finite-length linear molecule with L repeat
units, represented by L sites within the nearest-neighbor lattice
model, the number of exciton states is given by

= + +N L Q QA
(1)

A
(2)

(8)

whereas the number of bound states associated with a vertex a
is given by m(a) = QA

(a) − QT
(a). In a molecule with the lengths of

linear segments considerably exceeding the localization lengths
of the bound states, we have the number of exciton states inside
of the exciton band

= + +N L Q Q0 T
(1)

T
(2)

(9)

This is true because the excitons with energies outside of the
exciton band are excellently approximated by just the bound
states. Note that eq 9 reflects one of the statements of the index
theorem for the case of linear molecules presented in our earlier
work,33 and eq 7 can be interpreted as a relation between the
analytical and topological properties of a molecular vertex; the
topological index is formed from (2(n + 1) − m) positive and
m negative contributions associated with the zeros and the
poles, respectively, of r(z), located inside of the circle.
The analytical index theorem (eq 8) can be also derived in

more general terms by noting that the ES equations for a linear
molecule can be written in a form

Γ̃ − = Γ̃ = −z z r z r z z( ) 1 0 ( ) ( ) ( ) L(1) (2) 2( 1) (10)

so that the number of its solutions is given by the analytical
index nA(Γ̃ − 1) (unpublished result). We further observe

Γ̃ − = Γ̃ = + + −n n n n L( 1) ( ) 2( 1)A A A
(1)

A
(2)

(11)

and note that there are two unphysical solutions with z = ±1,
whereas each exciton state is represented by a pair of
symmetry-related solutions with mutually inverse values of z.
This results in N = [nA(Γ̃ − 1)/2] − 1, which reproduces eq 8.

It is worth mentioning that shifting the reference point of
reflection by Δj results in a factor of z2Δj in r(z)32 and changes
of both nA and nT by 2Δj, which is followed by the change of
QA and QT by Δj; the latter is compensated for in eqs 8 and 9
by the corresponding change of L by −Δj. For convenience, we
define QA and QT using QA/T = (nA/T − 2 − 2Δj)/2, so that the
analytical and topological charges (integers) are the intrinsic
properties of molecular vertices and independent of the
reflection point, and the length L should not change with
respect to the choice of the reflection position.
In summary, within a nearest-neighbor hopping lattice

model, a molecular terminus is described by the reflection
coefficient r(z), characterized by its topological charge QT and
analytical charge QA ≥ QT, and represented by a meromorphic
function on P1 in a form given by eq 6. It is fully determined
by the positions of its (QA − QT) poles inside of the circle that
all lie on the real axis and (QA + QT + 2) zeros, referred to as
resonances, inside of the circle, which either belong to the real
axis or come in mutually complex conjugated pairs. Stated
equivalently, using a term “tight-binding model with nearest-
neighbor hopping” is equivalent to approximating the scattering
coefficient r(z) with a meromorphic function, defined in P1,
because there is a one-to-one correspondence between such
meromorphic functions (with the certain simple properties,
implied by fundamental quantum mechanical symmetries, and
explicitly described earlier in the text) and the sets of
parameters of tight-binding models of a certain class, namely,
referred to as nearest-neighbor hopping. Therefore, hereafter,
we will not make a distinction between the terms “tight-binding
model with nearest-neighbor hopping” and “scattering
coefficients represented by meromorphic functions in P1”.
Having said that, we would like to note that dealing with a
tight-binding model as a tool has certain advantages by
providing simple and intuitive physical insight, as well as
opening the way to efficiently account for exciton−phonon
interactions, as proposed in our earlier work.29

An interesting situation occurs when a pair (zj,zj*) of
resonances lies close to the circle. Introducing a natural
notation zj = (1 − δj)e

ikj with δj ≪ 1, we can represent the
contribution of the above pair of resonances to the reflection
coefficient (eq 4) in a form
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where we have applied the approximations (1 − δj)
−1 ≈ 1 + δj

and (1 − δj)
2 ≈ 1 (which is irrelevant to the phase factor;

therefore, that can be ignored). Except for the narrow regions
in the quasi-momentum space of width Δkj ≈ δj, around k =
±kj, we have rj ≈ 1, that is, it does not contribute to the
reflection coefficient, whereas in the above regions, r(z) shows
resonant behavior, where the scattering phase ϕ = −i ln r
acquires a contribution of 2π over a narrow region Δkj ≈ δj. In
a simplified scenario where Ω1 = 0, n = 1, and m = 0, one can
find that δ1 ≈ J1

2/2, which indicates that the sharp resonant
feature is attributed to the weak coupling between the terminal
site and the chain. These resonances, hereafter referred to as
phase kinks, correspond to the resonant states, that is, excited
states on the substituent, weakly coupled to the exciton band in
the polymer chain.
In the aforementioned tight-binding model, the m lattice

sites, representing the graph of the terminus, related to the
bound states simultaneously result in m poles of r(z) outside of
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the circle, that is, m zeros located inside of the circle. Taking
into account a “trivial” zero of r(z) at z = 0 and a zero on the
real axis close to z = 0, which is attributed to the small value of
Ω1, there are 2(n − m) zeros close to and inside of the circle
that come in mutually complex conjugated pairs that are
associated with the (n − m) resonant states within the exciton
band. Stated differently, the (QA − QT) bound states are
directly associated with the poles inside of the circle on the real
axis, whereas the resonant states correspond to the QT pairs of
complex conjugated zeros of r(z) located close to the circle.
To illustrate the above formalism, we calculate electronic

excitations in linear PA molecules with and without the
perylene substituent (Figure 1a) using a standard quantum
chemical (QC) methodology. The length of the PA molecules
varies from 5 to 35 repeat units with increments of 5 repeat
units. As we have shown before,10,16 any approach for excited-
state computation that can adequately describe exciton
properties (including the binding energy and the exciton
size) can be used as a reference QC method in the ES
approach. Here, the ground-state geometries have been
optimized at the semiempirical Austin Model 1 (AM1)
level33 using the Gaussian09 package.34 We then applied the
collective electronic oscillator (CEO) method,35−37 which is
based on the time-dependent Hartree−Fock (TDHF) theory
combined with the semiempirical INDO/S (intermediate
neglect of differential overlap parametrized for spectroscopy)
Hamiltonian,38 to compute the excitation energies, transition
dipoles, and transition density matrices. The lowest exciton
band has been singled out by inspecting the structures of
transition density matrices in real space.12 The exciton
spectrum k(ω) and the reflection phases of unmodified and
perylene-substituted termini have been extracted within the ES
approach.15 As shown in our previous studies, physically similar
results can be expected using other model QC techniques for
excited-state calculations such as time-dependent density
functional theory (TDDFT).16 The ES phase of perylene and
the excited-state data provide sufficient input for a correspond-
ing tight-binding model;29 the nearest-neighbor tight-binding
parameters in an infinite linear chain, Ω̅0 and J1̅, can be found
from the exciton spectrum k(ω) and eq 3.
We are now in a position to describe the excited-state

chemical properties of perylene attached to a PA chain in terms
of analytical properties of the reflection phase obtained with a
chosen model of QC. The molecular vertex that represents
perylene (Figure 1a) has the charges QA = 7 and QT = 4, which
yields QA − QT = 3 bound states and QT = 4 resonant states.
Using the model depicted in Figure 1b, we parametrized the
tight-binding graph that represents the perylene terminus by
fitting its reflection phase. Specifically, in the nearest-neighbor
model of the linear chain, extracted and tabulated quantities
include Ω̅0 = 3.492 eV, J1̅ = −0.288 eV, on-site energy Ω1 =
3.488 eV of the first site in the segment, and parameters of the
terminus given in Table 1. The actual scattering phase,
approximated by the above lattice model, can be viewed as
the addition of sharp resonant features (eq 12) on top of the
simplified model, in which the hopping constants Jα (α = 2, 3,

6) have been set to zero due to the weak couplings between the
corresponding states of the terminus and the chain (Figure 1b).
The structure of the resonances of r(z) is schematically

shown in Figure 2. We obtain three poles on the real axis

corresponding to the three bound states, as well as the three
zeros (in blue) associated with the poles; a “trivial” zero at z = 0
and another in the vicinity (both in green); and QT = 4 pairs of
resonances (in red) close to the circle that represent the 4
resonant states, shown as scattering phase kinks in Figure 1c. As
a result, the sharp resonances have been accurately reproduced
in terms of k (Figure 1c). In addition, energies of the bound
states in a semi-infinite chain located outside of the exciton
band can be easily found using eq 3. Although the nearest-
neighbor lattice models are less accurate in terms of the exciton
spectrum,29 the bound state energies have been qualitatively
well reproduced (Table 2).
Thus far, we have described the electronic excitations in the

perylene-attached PA chain (independent of the length of the
polymer) by characterizing the analytical and topological
properties of the corresponding ES matrix. The aforementioned
tight-binding model, which relies on the resonances between

Table 1. Tight-Binding Parameters (in eV) of Perylene Terminus in PA Molecules, Including the On-Site Energy ωα and
Hopping Constant Jα

α 1 2 3 4 5 6 7

ωα 2.716 3.448 3.551 3.713 3.951 4.063 4.209
Jα −0.281 −0.057 −0.047 −0.238 −0.152 −0.032 −0.029

Figure 2. Pole-zero plot of the reflection amplitude r(z) formulated in
eq 6. The perylene terminus is illustrated as an example with QA = 7
and QT = 3. The poles marked as “×” are attributed to the bound
states as well as the zeros (“o”) in blue, whereas the zeros are related
to the resonant states (in red) and unphysical solutions (in green).

Table 2. Bound State Energies (in eV) Relative to the
Nearby Exciton Band Edge Predicted by the Nearest-
Neighbor Tight-Binding Model and from QC
Computationsa

bound state 1 2 3

tight-binding model −0.312 0.028 0.143
quantum chemistry −0.263 0.035 0.175

aThe negative value indicates the state below the exciton band,
whereas positive values correspond to states above the band.
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the states of perylene and the exciton band of the semi-infinite
PA chain, is constructed by inspecting electronic excited states
in perylene-substituted PA molecules. Stated differently, the
tight-binding graph representing the perylene substitution
(Figure 1b) is determined by the numbers of bound and
resonant excitations that we observed in the substituted linear
molecules, without really performing QC analysis on the
molecule of perylene. Although the above tight-binding model
excellently characterizes electronic excitations in such sub-
stituted molecules, the QC calculations found only six
excitations (not seven) in perylene. Of these, only five of the
six states (states 1, 2, 3, 4, and 7 in Figure 3) are considered to
be relevant to the resonances in perylene-substituted PA
molecules (hereafter referred to as perylene-PL, L being the
length of the attached linear segment). This observation
indicates that the effect of perylene substitution on the
electronic excitations cannot be exactly interpreted as just
resonances between states of perylene and of the chain; the
analytical structure of the scattering coefficients can have
substantial differences compared to the one predicted based on
just resonances. Such modification of r(z) reflects the fact that
perylene is “chemically” bonded rather than merely “physically”
resonated with the linear segment.
Indeed, by careful examination of the transition density

matrices of bound and resonant states, it is found that all of
these excitations continuously extend into the first repeat unit
of the attached PA segment. In particular, states 5 and 6 are
highly localized on the first repeat unit of the chain rather than
on the perylene (see Figure 3) and do not match any excitation

in the isolated perylene. Comparing excitation structures
between resonant states in perylene-PA molecules and
phenylethynyl perylene (denoted by perylene-P1), we found
that seven out of eight states of perylene-P1 are attributed to
seven resonances in the perylene-PA molecules, whereas the
remaining state of perylene-P1 is just a standing wave that
resides on the triple bond of the PA, which disappears in
elongated linear chains. Regarding chemical substitution,
attaching perylene to a PA molecule creates a “larger room”
for electronic excitations on the first PA repeat unit.
Accordingly, the first repeat unit of the PA segment is more
like a part of the terminus rather than of the linear chain itself
in terms of electronic excitations. Regarding the tight-binding
model representation, such detailed analysis on excited-state
electronic structures is consequently followed by a different
tight-binding morphology, that is, the terminus being described
by eight lattice sites and one less site in the chain. Stated
equivalently, a more “chemically” exact tight-binding model of
the substituent could be built upon the substitution chemistry.
It is worth mentioning that altering the structure of the lattice
model, with respect to different choices of the terminus, will
not affect its outcome because the relevant tight-binding
parameters are adjusted by fitting the unique ES properties
regardless of what is to be included in the terminus.
In conclusion, we demonstrated that the analytical and

topological structure of the reflection coefficient r(z), which
can be conveniently analyzed using tight-binding (lattice)
models, provides complete characterization of effects of
terminal chemical substitutions in conjugated molecules on

Figure 3. Electronic excitations, related to bound and resonant states, given by the contour plots of the transition density matrices from the ground
state to excited states of the perylene-substituted linear PA molecule with 25 repeat units (denoted by perylene-P25), perylene, and phenylethynyl
perylene (perylene-P1). The axis labels represent indices of carbon atoms starting from perylene (1−20) and along the polymer chain. The inset of
each plot shows the electronic mode number, the excitation energy Ω, and the oscillator strength f.
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electronic excited-state structures. This approach can be applied
to any chemical substitution in conjugated polymers, which can
be treated as a molecular vertex and, thus, characterized by the
ES matrix within the ES approach. By inspecting the structure
of excited states, an effective tight-binding model has been
formulated to incorporate the coupling between molecular
substituent and the attached molecule. The tight-binding graph
representing the substituent provides an analytical expression
for the associated scattering matrix. By comparing the scattering
matrix of the tight-binding model with the ES counterpart, we
parametrize the tight-binding model and completely obtain the
analytical property of the ES. Conducting the analytic
continuation of the scattering amplitude to complex values of
the exciton quasi-momentum, the modifications of electronic
excitations are distinguished in terms of just positions of poles
and zeros of the scattering amplitude that provide sufficient
information on appearing bound and resonant states,
respectively. Furthermore, delicate descriptions of the inter-
action between the chemical substituent and conjugated
polymer have been attained by inspecting detailed excited-
state electronic structures. As a consequence, a corresponding
tight-binding model can be built in a way not only of
“phenomenological” exactness but also of “chemical” consis-
tency.
Starting from QC data, processed by the ES method as a

bridge, a chemical substitution on a conjugated polymer, in
terms of electronic excitations, can be straightforwardly
represented by a properly constructed tight-binding model. In
return, the analytical property of ES, which adequately
describes how electronic excitations in conjugated molecules
are affected by the chemical substitution, can be effectively
characterized. In other words, the chemical substitution effect
on electronic states is fully determined by the excited-state
properties of the substituent and the polymer, as well as their
couplings, which have been characterized as tight-binding
parameters and can provide quick and intuitive guidance for
applying chemical substitutions in molecular design of organic
semiconductors with desired optoelectronic properties. The
described interactions between the substituent and the polymer
chain play an important role in dynamical processes involving
exciton−phonon couplings, for example, incoherent energy
transfer and charge transport. Taking into account the
simplicity of tight-binding models and their nature resting on
the resonance between the substituent and the chain, the ES
analysis and tight-binding representations can be feasibly
applied to photoinduced dynamics in conjugated macro-
molecular systems.
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