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ABSTRACT: The exciton scattering (ES) method allows efficient calculations of
spectroscopic observables in large low-dimensional conjugated molecular systems. To
compute the transition dipoles between the ground and excited electronic states, we
should extract the ES dipole parameters from quantum chemistry calculations in simple
molecular fragments. In this manuscript, we show how to retrieve these parameters from
any reference quantum chemistry model that uses an arbitrary nonorthogonal and
possibly overcomplete atomic orbital basis set. Our approach relies on the natural atomic
orbital (NAO) representation, in which the basis functions are orthonormal and the atom-
like character is preserved. We apply the ES approach, combined with the NAO analysis
to optical spectra of branched phenylacetylene oligomers. Absorption spectra predicted by
the ES method demonstrate close agreement with the results of direct quantum chemistry
calculations, when the Time-Dependent Density Functional Theory (TD-DFT) being
used as a reference. This testifies applicability of a variety of quantum-chemical
techniques, where the NAO population analysis can be conducted, for the ES framework.

SECTION: Spectroscopy, Photochemistry, and Excited States

We recently developed the exciton scattering (ES)
approach1−6 for effective description of excited-state

electronic structures in conjugated molecular networks
featuring delocalized π-electronic system. The ES model is a
multiscale method allowing us to compute accurately excited
states of the entire structure from the results of quantum
chemistry applied only to small molecular fragments. As a
result, the absorption spectra can be accurately calculated with
insignificant computational cost even for very large mole-
cules.6−8 The methodology is based on the quasiparticle nature
of the electronic excitations in conjugated systems, which has
been suggested by the fact that in the conjugated system the
electron−hole binding energies are comparable to the optical
gap,9 which results in the exciton size to be on the nanometer
length scale, by the electron−hole pair (exciton) interpretation
of the optical response and scaling properties10,11 as well as by
the importance of exciton “center-of-mass” motion that has
been recognized in interpreting the experimental data, obtained
via the electron energy loss spectroscopy.12,13

In general, a branched conjugated molecule consists of linear
segments connected by specific molecular branching centers
(vertices).14−23 Within the ES approach, electronic excitations
in branched conjugated structures are viewed as states of
quantum quasiparticles (excitons), which are represented by
standing waves residing on the quasi-1D graph with edges and
nodes corresponding to molecular linear segments and vertices,
respectively. Even in large conjugated systems there is only a
limited number of building block types: repeat units comprising
linear segments and a few types of vertices. The concept of

building blocks in the ES picture allows for the characterization
of exciton properties associated with any type of a building
block, which makes the ES approach a multiscale modeling
method; its key components are the scattering parameters.2,3

For example, the exciton dispersion ω(k) determines the
propagation of a particular exciton type along linear segments
(and is a property of a repeat unit and the exciton mode
quantum number), whereas the exciton behavior at the vertices
is characterized by the corresponding scattering matrices Γ(ω).
Consequently, finding the excitation energies ω and the exciton
wave functions ψ(x) (characterizing the “center of mass”
motion of the bound electron−hole pair) is analogous to
solving a “particle in a box” problem, with the only
complication that the 1D “boxes”, represented by the linear
segments are connected at the vertices, and the actual boundary
conditions are represented by the scattering matrices rather
than some phenomenological arguments, and are frequency-
dependent. This results in a set of ω-dependent homogeneous
(without the right-hand-side) linear wave equations, referred to
as the ES equations. All ES parameters can be obtained using
traditional “reference” quantum-chemical excited states calcu-
lations in relatively simple molecular fragments associated with
the building blocks of the original superstructure.2,4,8 For
example, the exciton spectrum k(ω) has been extracted as well
as the reflection amplitude at the molecular termini, for
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example, in molecular systems of phenylacetylene (PA), ladder-
poly-para-phenylene (LPPP), and donor−acceptor mole-
cules.4,2 Furthermore, the scattering matrices of symmetric
double, triple, and quadruple joints have been retrieved by
utilizing their geometrical symmetries.8 For the cases described
above, the exciton dispersion and scattering matrices (which
allow calculations of excited state transition energies in the
supermolecular structures) can be readily obtained from
precomputed excitation energies of small molecular fragments
using reference semiempirical or ab initio technique. Here more
detailed excited-state information available via quantum-
chemical computation (such as the transition density matrices
and/or the excited-state wave functions in the aforementioned
molecular fragments) is not necessary.
Notably, computation of molecular optical spectra requires

knowledge of the oscillator strengths associated with the optical
transitions (equivalently the corresponding transition dipole
moments). These quantities can also be calculated within the
ES approach using the local excitation amplitudes, associated
with repeat units and different molecular vertices, as an input.
The energy-dependent ES transition dipole and charge
parameters have been introduced to characterize the depend-
ence of the transition dipoles and charges of individual building
blocks on the local values of the exciton wave function ψ(x)
and the dual exciton wave function ψ̃(x) = div ψ(x)/k,
respectively. Consequently, the total transition dipole of an
excited state can be found by combining the contributions
originating from all building blocks, that is, repeat units of the
linear segments and molecular vertices.3,6 As opposed to
exciton spectra and scattering matrices, retrieving the dipole
and charge parameters from quantum-chemical calculations
does require the wave function information on the excited
states in the molecular fragments, expressed in terms of the
localized atomic orbital (AO) space, such as the transition
density matrices, when the time-dependent Hartree−Fock
(TDHF) or time-dependent density functional theory (TD-
DFT) reference quantum-chemical techniques are employed
for the excited-state computations. We previously extracted the
ES dipole parameters in PA molecules6,7 using the semi-
empirical collective electronic oscillator (CEO) method, which
uses the TDHF approach combined with the INDO/S
(intermediate neglect of differential overlap/spectroscopy)
semiempirical Hamiltonian.11 In the semiempirical theory, the
AO basis is minimal and assumed to be orthogonal so that one
can directly calculate the transition dipoles and transition
charges of any part of the molecule from the corresponding
transition density matrix and the dipole operator matrix.24

In contrast, accurate first-principle methods such as TD-DFT
or wave-function-based approaches frequently use extensive
finite basis sets of AOs represented by superpositions of
Gaussians.25−29 Such basis sets are generally nonorthogonal
and frequently overcomplete. It is well-established that
nonorthogonality of the AO basis leads to non-Hermitian
terms in the Hamiltonian, which prevents accurate evaluation of
physical quantities containing many-particle interactions.30−32

In particular, it is expected that the original AO basis will be
inadequate representation for extracting the ES dipole
parameters. Consequently, a number of various transformations
have been developed to correct the deficiencies described
above, which became standard tools (e.g., used for various
population analysis) in common quantum-chemical packages.
In this study, we examine several representations to evaluate
their quantitative performance for the ES approach.

The simplest Löwdin orthogonalization procedure, |ϕi
(L)⟩ =

|χi⟩S
−1/2, is commonly used to transform the AO basis |χi⟩ to

the orthogonal basis |ϕi
(L)⟩, where Sij=⟨χi|χj⟩ is the correspond-

ing overlap matrix.30−34 However, the angular-symmetry of
AOs in the original AO basis is not preserved under the Löwdin
orthonormalization, which makes it problematic to evaluate
transition dipoles for molecular components. More compre-
hensive natural bond orbital (NBO) method refers to a
sequence of natural population analysis based on natural atomic
orbital (NAO), natural hybrid orbital (NHO), NBO, and other
representations. The NBO approach is well-known for
accurately depicting the “natural Lewis structure” picture of
the electronic wave function,32,35 and NBOs have been viewed
as a “chemist’s basis set” for the compact expressions of atomic
and bond properties.32,36

For example, the natural atomic population analysis is based
on the formulation of a complete orthonormal basis set of
NAOs from an arbitrary atom-centered orbital basis set.37 Here
the basis set of pre-NAOs |ϕ̃i⟩ is first obtained as eigenvectors
of the one-center symmetry-averaged blocks of the density
matrix, thus preserving the exact free-atom angular momentum
symmetries and rotational invariance in pre-NAOs.37 The pre-
NAOs are intra-atomic orthogonal ⟨ϕ̃i

A|ϕ̃j
A⟩ = δij (A denotes the

atom); however, the orbital overlaps between different atomic
centers are still nontrivial. Next, the orthonormal set of NAOs
|φi⟩ is derived by removing interatomic overlap from pre-NAOs
by using the occupancy-weighted symmetry orthogonalization
(OWSO) procedure32 so that the natural atom-like feature of
pre-NAOs is most preserved in the NAOs.32,37 Consequently,
the strict intra- and interatomic orthonormality of NAOs, ⟨ϕ̃i

A|
ϕ̃j
B⟩ = δijδAB, satisfies the mathematical requirement of a

Hermitian Hamiltonian (e.g., Fock or Kohn−Sham oper-
ator).30−32,36

Compared with the conventional Löwdin orthogonaliza-
tion,33 the NAOs inherit the atom-like character of angular
momentum symmetries within the molecular environment.36,37

Note that Löwdin orthogonalization is a special case of OWSO
precedure where all orbitals are equally weighted and T =
S−1/2.32 The NAO representation in the limit of periodic
structures resembles the Wannier orbitals of solid-state physics
localized on the lattice points. The NAO analysis can be used to
evaluate physical properties related to electronic structures
(e.g., population) on the level of AO.36 Consequently, it is
expected to be helpful for the ES method.
To extract the ES dipole parameters, we need to perform the

NAO analysis of the quantum-chemical computation of the
underlying molecular fragments to obtain the matrix T that
transforms the AO basis set into the NAO basis set. The dipole
matrix μ̂ and transition density matrix ξν for an excited state |ν⟩
in the AO space can be expressed in the NAO space as

μ μ ξ ξ̂ = ̂ =ν ν
† †T T T T,(NAO) (AO) (NAO) (AO)

(1)

respectively. Because of the orthonormality and atomic angular
symmetry in the NAO space, the transition density matrix ξν

N of
any molecular component N (e.g., the repeat unit) can be
singled out as the corresponding diagonal block in the
transition density matrix ξν

(NAO) of the full fragment.
Subsequently, the transition charge of a building block N is
found as

ξ=ν νq Tr( )N N
(2)
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instead of the ambiguous Mulliken population analysis qν
N =

Tr(ξνS) in the AO space.
In the ES methodology, we define the transition dipole

moment of a building block with respect to its internal
coordinate system chosen identically for all building blocks of
this type. Therefore, the dipole matrix of a building block can
be extracted from a simple molecule sharing the same
coordinate system with the addressed building block in the
NAO representation. In practice, for example, the matrices of a
PA repeat unit can be obtained from the NAO representation
of diphenlyacetylene molecule, whereas those of molecular
termini can be retrieved from the NAO of a phenyl ring. As a
result, one can calculate the transition dipole moment of a
molecular building block N from

μ μ ξ= ̂ν νTr( )N N N
(3)

Finally, the total transition dipole moment of the molecule is
approximated as

∑μ μ= +ν ν νq r
N

N N N

(4)

where rN is the position of the building block N in the
molecule. Therefore, the procedure of extracting the ES dipole
parameters and the use of these parameters to calculate optical
spectra formulated previously for semiempirical methods6,7 is
fully transferable to the present case.
In the following we illustrate how the aforementioned dipole

parameters can be retrieved from the quantum-chemical
computations in conjugated molecules of moderate sizes
using an example of branched phenylacetylenes. For all
reference excited-state calculations we use TD-DFT approach
with a hybrid exchange-correlation functional CAM-B3LYP38,39

and 6-31G basis set. Molecular geometries used have been
optimized at the same CAM-B3LYP/6-31G level. The range-
corrected CAM-B3LYP model properly describes electronic
excitations in π-conjugated polymers as tightly bound
excitons.40,41 All simulations have been conducted with the
Gaussian 09 computational package42 including the NBO
module.43 We quantitatively benchmark the performance of the
original AO, Löwdin orthonormalized (LAO) (using T =
S−1/2), and NAO representations by extracting the dipole
parameters using each representation for the underlying
molecular building blocks. The accuracy of these tabulated
parameter sets is then evaluated by calculating the state
transition dipole moments/oscillator strengths for several
molecules using the ES technique to be compared with the
direct TD-DFT calculations.
We start with linear PA molecules shown in Figure 1

containing two types of building block: repeat unit and

molecular terminus. The dipole matrices (μ̂x, μ̂y, and μ̂z) of the
repeat unit and the terminus have been extracted from the
corresponding dipole matrices of diphenylacetylene and phenyl
ring, respectively. The energy-dependent ES parameters (the
exciton spectrum k(ω) and the reflection amplitude at the

molecular termini) have been obtained for our reference
quantum-chemistry CAM-B3LYP/6-31G using procedure out-
lined in refs 2 and 4. In addition, transition density matrices of
several lowest excited states in the linear molecule P-15 have
been reorganized and divided into blocks related to repeat units
and termini. The transition charges and dipoles of individual
building blocks were then calculated from eqs 2 and 3. The
transition dipole μ(x) and charge q(x) of a repeat unit for the
lowest excited state in P-15 are shown in Figure 2 (x axis is

directed along the molecular backbone corresponding to the
most significant transition dipole component for all lowest
electronic states). In addition, Figure 2 displays the exciton
wave function ψ(x) and its dual counterpart ψ̃(x) (which is
defined as the first derivative of the wave function with respect
to kx), whose profiles coincide with the transition dipole and
charge distributions, respectively.
Figure 2 clearly illustrates a significant difference between

extracted dipole parameters for various representations. The
accuracy of the transition dipole calculations in terms of
molecular building blocks can be verified by comparing the
result of applying eq 4 to the output of the direct quantum
chemistry, that is, transition charges and dipoles of individual
building blocks computed in various representations. Table 1
shows the results for the lowest five excitations in the P-15
molecule. Only the transition charges and dipoles of building
blocks retrieved using the NAO basis are able to quantitatively
reproduce the molecular transition dipoles. Similar to what has
been observed in semiempirical approaches,6,7 the deviation of
the transition dipole, calculated using the contributions from
the building blocks, in NAOs, is attributed to neglecting the
geometrical difference between the repeat units along the chain.
Two other representations (the original AO basis and Löwdin
orthogonal basis LAO) result in the incorrect transition dipole
estimates for individual building blocks due to the non-

Figure 1. Molecular structure of linear phenylacetylene (PA) oligomer
with L repeat units denoted as P-L.

Figure 2. Transition dipoles (top) and charges (bottom) of the repeat
units of the first excited state in the linear molecule P-15, calculated in
AO, Löwdin orthonormalized (LAO), NAO representations. The
related exciton wave function ψ(x) and its dual counterpart ψ̃(x)
(black curves) are calculated and defined only at the integer positions
x of the repeat units.
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orthogonality of the AOs and the absence of free-atom features
in LAOs, respectively.
To evaluate the performance of the NAO basis for the ES

model, following refs 6 and 7 we further tabulated the
frequency-dependent transition charge and dipole ES param-
eters of the PA repeat unit as the ratios q(x)/ψ̃(x) and μ(x)/
ψ(x), respectively, far from the molecular end. Taking into
account transition charge and dipole deviations from the ES
results in nearby repeat units, we also found the ES dipole
parameters of terminus T as qT/ψ̃T and μT/ψT.

6,7 Using these
ES dipole parameters extracted from the NAO analysis, the
molecular transition dipoles of any linear PA oligomer can be
calculated accurately with negligible computational cost (e.g.,
the last column of Table 1 shows the ES results for the lowest
five excited states in the P-15 oligomer). For selected molecules
with the lengths ranging from 5 to 30 repeat units, the
deviations in the transition dipole magnitudes for optically
allowed states (e.g., states 1, 3, and 5 in Table 1) obtained with
the ES model compared with that of the brightest state in direct
quantum-chemical computation are found to be small (<5%)
for all cases. Such accurate estimates are attributed to the
orthonormality and well-preserved atom-like orbital features in
the underlying NAO basis.
To perform calculations for more complicated molecular

structures, we further consider meta- (M), ortho- (O), and
symmetric triple (Y) molecular vertices shown in Figure 3.

Because of the spatial overlap of the repeat units attached to a
branching center (region marked with “(−)” in Figure 3), the
ES dipole parameters of these molecular joints have been
extracted in a different way. Because in the NAO basis the
transition charge can be calculated for individual atoms, one can
find the effective transition charge of a joint by subtracting the
contribution of the overlap region “(−)” from that of the vertex
part “(+)”. Transition dipole parameters of planar vertices are
2D vectors that can be projected on two principle axes x and y
shown in Figure 3. Following the aforementioned method, the

transition charges and dipoles of the linear chains and termini
can then be accurately retrieved using the NAO basis for any
molecule with the characterized backbone. Therefore, in simple
symmetric molecules with the addressed joint in the center, the
transition dipole of the joint can be estimated as the difference
between the total transition dipole of the molecule and the
contribution of all repeat units and termini. Finally, the ES
dipole parameters of a vertex can be readily retrieved by
comparing the effective transition charge and the dipole to the
excitation amplitudes (exciton wave function and its dual
counterpart) at the vertex.6,7

Finally, to evaluate performance of the ES dipole para-
metrizations based on the NAO basis for complex molecules
that include linear segments and symmetric vertices (M, O, and
Y), we performed calculations for several branched PA
molecules shown in the top panel in Figure 4. The comparison

of the absorption spectra obtained using the ES approach with
the ones using direct reference quantum chemistry is illustrated
in Figure 4. For such medium-sized molecular systems, the
computational cost of the ES modeling is negligible, whereas
the TD-DFT numerical cost is already significant. Overall, we
observe a very good accuracy of the ES model with the
deviations of the oscillator strengths between the ES and the
reference quantum-chemical method for optically allowed states
to be <10% in all cases for the molecules considered. One
notable difference for the oscillator strength is observed for the
resonant state of 11-O-11 molecule (4.469 eV), which was not
accounted for in the ES approach.
In conclusion, accurate ES modeling of optical spectra in

large conjugated molecular systems can be performed using
dipole parametrization obtained from ab initio quantum-
chemical computations with extended nonorthogonal AO
basis sets via the NAO transformation. We have shown that
neither the original AO nor standard Löwdin orthogonal
representation is suitable for this purpose. In contrast,
attributed to the orthonormalized, highly condensed, and
atom-like basis orbitals, the NAO representation allows for

Table 1. Transition Dipole Moments of the First Five
Excited States in the P-15 Oligomera

mode TD-DFT AO LAO NAO ES

1 13.3791 7.6111 8.2390 13.3988 12.9758
2 0.0001 0.0004 0.0001 0.0001 0.0000
3 3.8484 3.3452 2.5540 3.8778 3.8054
4 0.0001 0.0060 0.0000 0.0001 0.0000
5 2.0875 2.8871 1.5259 2.1202 2.0736

aThese quantities obtained from the AO, LAO, and NAO basis sets
(using their respective transition charges and dipoles of individual
building blocks) are shown together with the results of direct TDDFT
calculations compared with the ES model, whose parameters have
been extracted using the NAO representation.

Figure 3. Molecular vertices of branched PA molecules. From left to
right: meta-conjugated (M), ortho-conjugated (O), and symmetric
triple (Y) joints. The overlap region attributed to the attached repeat
units is marked with “(−)”, whereas the nonoverlapping part of nearby
repeat units is marked with “(+)”.

Figure 4. Comparison of the absorption spectra (oscillator strength vs
transition frequencies) calculated using the ES approach and direct
reference quantum-chemical technique for the selected molecules
shown in the top panel.
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accurate estimates of the transition charges and dipoles for any
molecular part, which guarantees correct extraction of the ES
dipole parameters related to the building blocks. Using such
extracted parameters, the ES calculations can accurately
reproduce the results of the reference quantum chemistry
technique. Good agreement for the calculated absorption
spectra between the ES approach based on the NAO basis and
the direct quantum-chemical computations is found to be
similar to the results observed for semiempirical parametriza-
tions,6,7 where the orthogonality and atom-like orbital character
is enforced in the Hamiltonian by construction. The NAO
analysis is routinely available in many standard quantum-
chemical packages via the NBO program.43 Therefore, the ES
approach designed for multiscale modeling of electronic
excitations and spectroscopy of large conjugated molecules,
can be readily applied as an extension to the currently available
ab initio quantum-chemical methods.
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