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ABSTRACT: The nonadiabatic excited-state molecular dynamics (NA-ESMD)
method and excited-state instantaneous normal modes (ES-INMs) analyses have
been applied to describe the state-specific vibrations that participate in the
unidirectional energy transfer between the coupled chromophores in a branched
dendrimeric molecule. Our molecule is composed of two-, three-, and four-ring
linear poly(phenyleneethynylene) (PPE) units linked through meta-substitutions.
After an initial laser excitation, an ultrafast sequential S3 → S2 → S1 electronic energy
transfer from the shortest to longest segment takes place. During each Sn → Sn−1 (n
= 3, 2) transition, ES-INM(Sn) and ES-INM(Sn−1) analyses have been performed on
Sn and Sn−1 states, respectively. Our results reveal a unique vibrational mode
localized on the Sn state that significantly matches with the corresponding
nonadiabatic coupling vector dn,(n−1). This mode also corresponds to the highest
frequency ES-INM(Sn) and it is seen mainly during the electronic transitions.
Furthermore, its absence as a unique ES-INM(Sn−1) reveals that state-specific vibrations play the main role in the efficiency of the
unidirectional Sn → Sn−1 electronic and vibrational energy funneling in light-harvesting dendrimers.

I. INTRODUCTION

Dendrimers are highly branched conjugated macromolecules
that act as efficient light-absorbing antennas. Their structures
mimic those found in nature possessing numerous peripheral
groups with branched repeat units and a core, similar to a tree.
These unique architectures create highly efficient energy
funnels; energy absorbed at the periphery undergoes ultrafast
unidirectional transport through the dendritic branches toward
the core. High precision in the topology, flexibility, and
solubility properties of dendrimers can be achieved due to
advances in their controlled synthesis.1−6 The detailed
understanding of the electronic and vibrational energy
funneling throughout dendritic macromolecules constitutes a
major challenge for their potential applications as scaffolds for
light-harvesting devices.
Among the large variety of dendritic macromolecules, those

composed of poly(phenyleneethynylene) (PPE) units have
received special theoretical and experimental interest due to
their highly efficient unidirectional energy-transfer proper-
ties.7−13 These properties have been extensively probed by
Moore et al.7,8,14,15 on the perylene-terminated dendrimer
called the nanostar. The branched repeat units of the nanostar
are built from linear PPE segments of different lengths linked
by meta-substitutions at the branching phenylene nodes. The
length of branched nodes decrease from the periphery to the
core (four-, three-, and two-ring linear PPE units) creating an
intramolecular energy gradient. When the peripheral two-ring

chromophores are initially excited, the energy is transferred
nonradiatively down the branches to the core with nearly 100%
efficiency.8−12 The meta-branching localizes excitons within
each linear PPE fragment hindering any further delocalization
of electrons across the dendrimer framework.8,16 Experimental
evidence for this excitonic localization is observed by steady-
state spectroscopy.8 Therefore, the dendrimer molecule can be
effectively represented as an ensemble of weakly coupled linear
PPE chromophore units. Furthermore, the excitons in the
nanostar are localized on each PPE unit, and its absorption
spectrum can be predicted from the sum of the individual
chromophore spectra.7,10,14,17

The fluorescence quantum yield of the nanostar, measured
from steady-state and time-resolved fluorescence studies,
reaches values near unity.10,14 Therefore, ground-state recovery
through an intramolecular nonradiative process is negligible.
The fluorescence from the perylene chromophore (with
fluorescence lifetime ∼2.3 ns) of the dendrimer undoubtedly
indicates that intramolecular nonradiative singlet−singlet
energy-transfer processes are involved. The ultrafast energy
transfer inside PPE dendrimers has been experimentally shown
at the time resolution of picoseconds10 and femtoseconds,18−20

revealing a stepwise energy transfer from the shorter
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chromophore PE units to the longer PE chains. These
experiments indicate that intermediate steps in the energy
transfer take place on a subpicosecond time scale. Furthermore,
the existence of different pathways for the energy migration
makes these macromolecules a compelling target for quantum
control schemes.20

To simulate a dendrimer’s excited-state structure and optical
properties, such as absorption spectra, the Frenkel exciton
Hamiltonian model21−24 has been successfully applied,
revealing a complex interplay of electronic couplings across
the molecular network.25,26 Furthermore, the dendrimer
molecule can be understood as an ensemble of linear
chromophore units with a weak charge transfer between
them. As a result, the excitons in the nanostar are localized on
each PPE segment8 and its overall absorption spectrum can be
interpreted as the sum of these individual contributions.10,14

Atomistic calculations of the ultrafast electronic and vibrational
energy transfer in a dendritic molecule, however, requires the
simulation of the dynamics of the polyatomic molecule on the
multidimensional potential energy landscape involving several
coupled electronic excited states. In our previous work, we have
developed a nonadiabatic excited-state molecular dynamics
(NA-ESMD)27 framework suitable for dealing with photo-
induced dynamics in large molecular systems consisting of
hundreds of atoms on time scales of tens of picoseconds. The
method uses actual excited-state potential energy surfaces,
gradients, and nonadiabatic couplings calculated accounting for
many-body effects in the excited state (i.e., configuration
interaction singles (CIS) or time-dependent Hartree−Fock
(TDHF) approximation). This method has been successfully
applied to demonstrate the highly efficient ultrafast energy
transfer between the linear PPE building blocks of the
nanostar.73,74 Simulations at low temperature have revealed
that the system undergoes strong coupling between electronic
excited states in a sequential order, and the couplings involve
only one pair of states at a time. An intramolecular vibrational
energy redistribution, in which the ethynylene C−C triple
bonds play a critical role, has been shown to be concomitant
with the electronic energy transfer.
In this work, we explore the role of molecular vibrations on

electronic energy transfer between the individual coupled
chromophore units in a branched dendritic molecule. The
model molecular system is composed of two-, three-, and four-
ring linear poly(phenyleneethynylene) (PPE) units linked
through meta-substitutions. Our aim is to identify the nature
of the state-specific vibrations related to electronic coupling and
intramolecular energy transfer. Vibrational motions of
polyatomic molecules can be elucidated using equilibrium
normal modes (ENM) analysis.28−31 The ENMs are computed
from the diagonalization of the mass-weighted Hessian matrix
at the local minimum of the potential. Therefore, the
application of this methodology to study nonequilibrium
dynamics of photoinduced processes presenting ultrafast energy
transfer among several coupled electronic states may not be
appropriate. Vibrational anharmonicities and couplings even-
tually make it quite difficult to keep the identity of each
individual ENM. An alternative way to undertake this problem
is to use instantaneous normal modes (INMs),32−34 which are
obtained by diagonalizing the mass-weighted Hessian matrix at
each instantaneous configuration (geometry) of the molecule.
After introduction of adequate coordinate displacements, the
INMs provide an instantaneous decoupled description of the

vibrational motions of the molecule at the corresponding time-
dependent configuration.35

Though the INMs were originally developed to study short-
time dynamics properties of liquids,36−41 this concept has been
widely extended to deal with vibrational dynamics of
polyatomic molecules.42−45 Consequently, we use the NA-
ESMD framework in combination with ES-INM analyses
performed on each individual electronic excited state involved
in the process.
One advantage of analyzing the nuclear motion in terms of

the INMs coordinates is that the leading short time
contributions to the evolution of the potential energy can be
described as the sum of individual decoupled contributions.32

At any instantaneous molecular geometry, the configurational
space can be divided into orthogonal (INM) directions.46 The
complexity of the potential energy surface of the molecule
introduces anharmonicities that induce coupling between the
INMs. This leads to a limitation in the validity of the INMs to
the vicinity of the configuration from which they have been
obtained. Consequently, the INMs should not be interpreted as
real harmonic nuclear motions but as instant vibrational
coordinates through which the nonequilibrium molecular
dynamics can be analyzed. Previous theoretical and exper-
imental studies validate the use of INMs to analyze non-
equilibrium vibrational relaxation processes.42,47−50 In this
paper, we consider the INMs as a basis set of dynamical
variables that can be used to describe the nuclear motion to
help us understand the photoinduced dynamics. The INMs
conveniently represent the complex potential energy hyper-
surfaces of the molecule in terms of effective reaction
coordinates characterizing nuclear motions involved in the
photoinduced intramolecular energy-transfer process.
The paper is organized as follows. In section II we briefly

review the NA-ESMD method and ES-INM analysis. In section
III we present and discuss our computational results on the
electronic and vibrational features examined particularly in
regions of strong nonadiabatic couplings, revealing the chemical
principles for the efficient funneling through the model
dendritic molecule. Conclusions are given in section IV.

II. METHODS
A. NA-ESMD Framework. Our NA-ESMD approach27,51,52

has been developed to simulate photoinduced dynamics in
organic conjugated molecules involving multiple coupled
electronic excited states. The code is particularly optimized to
study intramolecular energy-transfer processes in large
polyatomic conjugated molecules. The method uses direct53

or on the f ly analytical calculations of CIS energies,54−56

gradients27,57,58 and nonadiabatic couplings,27,59−61 as calcu-
lated with the collective electron oscillator (CEO) meth-
od,54,26,62,63 coupled to semiempirical Hamiltonian (here we
use the AM164 model). The NA-ESMD method achieves a
good compromise between accuracy and computational
efficiency. A detailed discussion about the NA-ESMD
implementation, advantages, and testing parameters can be
found elsewhere.27,68

The molecular dynamics with quantum transitions65−67

(MDQT) method developed by Tully et al. is implemented
in NA-ESMD to provide an efficient description of the
nonadiabatic dynamics reflected in the time evolution of the
populations of the different electronic excited states involved in
the process. Within our theoretical MDQT framework, we
consider the simultaneous propagation of an electronic wave
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function quantum mechanically while the nuclei move
classically on a potential energy surface, which is defined by a
single AM1/CIS electronic state at a given time. The time
dependent electronic wave function ψ(r,R,t) is expanded in the
basis of adiabatic CIS basis functions ϕα(r;R(t)) as

∑ψ ϕ=
α

α αt c t tr R r R( , , ) ( ) ( ; ( ))
(1)

where cα(t) are the time-dependent CIS expansion coefficients
and r and R are the electronic and nuclear coordinates,
respectively. Substitution of eq 1 into the time-dependent
Schrödinger equation yields

∑ℏ
∂

∂
= − ℏ ̇ ·α

α α
β α

β αβ
≠

c t
t

c t E c t tR di
( )

( ) i ( ) ( )
(2)

where Eα is the αth eigenvalue of the CIS matrix calculated at
time t, Ṙ = ∂R/∂t are nuclear velocities, and dαβ =
⟨ϕα(r;R(t))|∇Rϕβ(r;R(t))⟩ is the nonadiabatic coupling vector.
The integration of eq 2 along the trajectory computes the
amplitude of each quantum mechanical state as a function of
time. The relative changes of the cα(t) coefficients dictate
transitions from one electronic surface to another for the
classical nuclear motion. These values are governed by the
strength of time-dependent nonadiabatic couplings Ṙ·dαβ. The
probabilities of hopping from one state to another are dictated
by the value of the nonadiabatic couplings, in accordance with
the MDQT approach.
Within the MDQT approach, a large number of independent

trajectories is required to achieve the desired convergence of
the results. In a recent article68 we have analyzed in detail the
impact that the number of trajectories and various other
parameters have on the simulations.
At this point, it is important to discuss the convenience of

our NA-ESMD implementation to deal with state-specific
vibrations that lead to electronic couplings. At nuclear
configurations where the time evolution of the electronic
wave function ψ(r,R,t) is dominated by one particular
electronic state ϕα(r;R(t)) without interacting with the other
states (Ṙ·dαβ ≈ 0), the nuclear dynamics is dictated solely by
the forces on that state. The amplitude of more than one state
becomes relevant when departure from adiabaticity takes place,
and distinct possible paths for the nuclear dynamics emerge.
For cases in which the classical dynamics depends strongly on
the quantum path, an average mixing treatment of the nuclear
forces will not reproduce the true dynamics correctly. Surface
hopping methods, like MDQT, have been developed to deal
with these branching processes.69−71 Within these methods, the
wave function responsible for determining the forces on the
classical particles is never a mixed state, and trajectories always
evolve on a single potential electronic energy surface at a given
time. Therefore, good classical/quantum motion correlation is
retained. With this aspect in mind, it becomes crucial to identify
the role that nuclear differential motions on the different
excited-state potential energy surfaces can have on photo-
induced processes.
B. Excited-State Instantaneous Normal Modes (ES-

INM) Analysis. The INM approach describes the intra-
molecular vibrations at a given time as a set of well-defined and
independent harmonic oscillators.32−34 Within our NA-ESMD
framework, the INM analysis is performed as follows. A set of
mass-weighted Cartesian space-f ixed coordinates, corresponding
to the configuration R0 of the molecule at a given time t0, is

translated and rotated to a body-f ixed reference frame with the
origin at the center of mass and axes corresponding to the
principal axes of inertia. Within this Cartesian frame, the
potential energy Eα for the N nuclei moving classically on the
single α- electronic state is expanded up to second order as

∑

∑ ∑

= − Δ

+ Δ Δ

α α α
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=
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0
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0
(3)

where ΔRt
i ≡ Rt

i − R0
i is the displacement of the atom i = 1, ...,

N with Cartesian coordinates Ri ≡ (Xi, Yi, Zi). The coefficients
of the linear and quadratic terms are the elements of the force
3N vector Fα and the (3N × 3N) mass-weighted Hessian matrix
Hα, both evaluated on the αth electronic state

= −∂ ∂ |α αF E RR( ) /i i
R0 0 (4)

= −∂ ∂ ∂ |α αH E R RR( ) /ij i j
R0

2
0 (5)

The gradients (forces) are calculated analytically in the NA-
ESMD,27 whereas the second derivatives (the Hessian matrix)
are computed numerically from finite differences of the
gradients. Upon diagonalization of Hα, the set of ES-INM(Sα)
vectors {Qα

i }i=1,3N are defined by the corresponding eigenvector
matrix Lα, which allows them to be expressed as a linear
combination of Cartesian displacements,

∑= Δα α
=

t lQ R( )i

j

N
ji

t
j

1

3

(6)

Because the eigenvectors described in Lα are orthogonal, we
can also express the Cartesian displacements ΔRj(t) in terms of
the INMs,

∑Δ = α α
=

l tR Q ( )t
j

i

N
ji i

1

3

(7)

By substitution of this expression into eq 3, we can write the
potential energy Eα in terms of the INMs as

∑ λ= + +α α α α α
=

E E t aR R Q( ) ( )
1
2

( ( ) )
i

N
i i i

0
0

0
1

3
2

(8)

where λα
i (i = 1, ..., 3N) are the eigenvalues of Hα related to the

vibrational frequencies να
i = (λα

i )1/2/2π, and aα
i are the

coordinate shifts that account for the force term in eq 3 and
are given by

∑
λ

= −α
α

α α
=

a F lR
1

( )i
i

j

N
j ji

1

3

0
(9)

and Eα
0(R0) is the shift-corrected equilibrium potential,

∑ λ= −α α α α
=

E E aR R( ) ( )
1
2

( )
i

N
i i0

0 0
1

3
2

(10)

In this way, the potential energy Eα at the instantaneous
configuration R0 of the molecule can be decoupled in terms of
the shifted normal coordinates Qα

i (t) + aα
i . It is important to

stress that the introduction of these displacements on the
normal coordinates do not affect their momenta. Therefore,
both sets of modes provide equivalent kinetic energy values. In
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the present work, we do not attempt to express the potential
energy in terms of the individual normal mode contributions.
Instead we aim to analyze the instant decoupled directions
provided by the set of ES-INM(Sα) vectors {Qα

i }i=1,3N. Because
these directions are independent of the displacements, our
discussion is presented in term of the original {Qα

i }i=1,3N.
C. Molecular Dynamics Simulations. The model

molecule studied in this work is shown in Figure 1a. It is

composed of two-, three-, and four-ring linear poly-
(phenyleneethynylene) (PPE) units linked through meta-
positions, representing the branching phenylene building blocks
of the nanostar.
The initial nuclei positions and momenta for the NA-ESMD

simulations were taken from a ground-state AM1 equilibrated
MD trajectory run at 300 K for 500 ps and using a classical time
step Δt = 0.5 fs. Instead of choosing a predefined initial excited
state for the excitation, we employ a method to mimic a
Gaussian laser pulse. The initial excited state was chosen
according to a Franck−Condon window defined as

= − − Ωα α
−T Er Rg ( , ) exp[ ( (fs ) ) ]2

laser
1 2

(11)

where Elaser is the energy of a laser centered at 348 nm
corresponding to the high-frequency peak in the theoretical
absorption spectrum (Figure 1b) resulting from contributions
of states Sn (n ≥ 3). The laser line shape is assumed to be a
Gaussian f(t) = exp(−t2/2T2), T2 = 42.5 fs, which corresponds
to a Gaussian fwhm (full width at half-maximum) = 100 fs.
Thus, the initial excited state is selected according to the
relative values of the gα(r,R) weighted by the oscillator
strengths of each state α.
For all simulations, the Langevin equation at constant room

temperature,72 with a friction coefficient γ = 2.0 ps−1, was
used.72,73 The 10 lowest-energy AM1/CIS excited states and
their corresponding time-dependent nonadiabatic couplings
were included in the simulations. This level of theory has been
previously validated for PPE dendrimers by comparison with
time-dependent density functional theory (TDDFT) and

experimental results.73,74 Four hundred NA-ESMD trajectories
were propagated for 150 fs at 300 K. The nuclei are propagated
with the velocity Verlet integration method75 with a classical
time step Δt = 0.1 fs, and the quantum amplitudes (eq 2) are
propagated with a time step δt = Δt/4 using the code designed
by Hull, Enright, and Jackson76,77 that uses the Runge−Kutta−
Verner fifth- and sixth-order method. Details on the NA-ESMD
implementation and simulations can be found elsewhere.27,68

III. RESULTS AND DISCUSSION
The absorption spectrum of the branched dendritic molecule in
Figure 1a was calculated using an equilibrated ground-state
conformational sampling at 300 K, and it is shown in Figure 1b.
The contributions of the different excited states are depicted by
different colors. In agreement with our previous simulations
done at 10 K,73 the analysis of the state transition densities
indicates that S1 is localized mainly on the four-unit linear
segment, whereas S2 is localized mainly on the three-ring unit.
Our previous results at 10 K have shown that S4 was a state
with high oscillator strength localized on the two-ring unit,
whereas S3 was an optically forbidden state localized on the
four-ring unit. Nevertheless, our present results reveal that
thermal perturbations at 300 K can interchange the energy
ordering of these states. Therefore, the state that absorbs at 348
nm and having transition density localized on the two-ring unit
can be attributed to either S3 or S4 depending on the molecule
conformation at the moment of the laser excitation. As was
pointed out previously,73 these states undergo trivial unavoided
crossings in the beginning of dynamics. As a result, S3 remains
localized on the two-ring unit and almost no S4 → S2
transitions are observed in our simulations.
Figure 2 shows the time-dependence of the populations on

each electronic excited state after photoexcitation, averaged

over 400 trajectories. For the sake of simplicity, only the four
lowest excited states are shown. As has been pointed out in
section II.C, the probability for starting from a given electronic
state is obtained according to the relative values of the gα(r,R)
weighted by the oscillator strengths of each state α. The
resulting final ratio was 19% (S2), 35% (S3), 24% (S4), 9%
(S5), 6% (S6), 3% (S7), 2% (S8), 1% (S9), 1% (S10). In the
first ∼50 fs of the simulations, the states Sn (n ≥ 5) transfer
their populations to the lowest excited states.

Figure 1. (a) Model dendritic molecule studied in this work involves
two-, three-, and four-ring linear poly(phenyleneethynylene) units
linked by meta-substitution. (b) Simulated absorption spectrum at 300
K (solid line) including contributions of all excited states considered in
our NA-ESMD simulations.

Figure 2. Population on each electronic state as a function of time
obtained from the fraction of trajectories in each state.
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Populations of states S3 and S4 decay, whereas S2 acts as an
intermediate state characterized by an initial increase in
population followed by a subsequent population loss but at a
slower rate. As a result, a highly efficient buildup of the
population of the lower S1 state is observed as a consequence of
a S4/S3 → S2 → S1 sequential mechanism.
We now focus on the analysis of vibrations during

nonadiabatic transitions between the states. For this purpose,
ES-INM analysis has been performed on both the Sn and Sn−1
(n = 3, 2) states (i.e., ES-INM(Sn) and ES-INM(Sn−1),
respectively) at the time of effective Sn → Sn−1 transitions.
We define an effective transition, or hop, as an effective Sn →
Sn−1 transition if no backhopping occurs during the rest of the
trajectory. These ES-INM(Sn) and ES-INM(Sn−1) basis sets
have been used to project the nonadiabatic coupling vector
dn,(n−1) evaluated at the moment of hop.
The direction of the nonadiabatic coupling vector dn,(n−1)

evaluated at the moment of hop has an important physical
meaning. As shown in the pioneering works of Pechukas,78 a
stationary phase evaluation of the path integral representation
of the nuclear motion while the electronic quantum state with
time-dependent Hamiltonian Hel(t) undergoes a transition
from state α at time t′ to state β at time t″ leads to the
semiclassical expression of the force Fαβ for the most important
“classical-like” path given as79,81

ψ ψ
ψ ψ

= −
⟨ |∂ ∂ | ̅ ⟩

⟨ | ̅ ⟩αβ
⎧⎨⎩

⎫⎬⎭F t
t H t t

t t
R

r R R r R
r R r R

( ( )) Re
( , , ) / ( ) ( , , )

( , , ) ( , , )
el

(12)

where ψ(r,R,t) and ψ̅(r,R,t) are mixed electronic state wave
functions representing the solutions of the time-dependent
Schrödinger equation with Hamiltonian Hel(t). Here ψ(r,R,t) is
the wave function initially in basis state ϕα(r;R(t′)) at time t′
and evolving to time t, and ψ̅(r,R,t) is the corresponding wave
function initially in basis state ϕβ(r;R(t″)) at time t″ and
evolving backward in time to t. Substituting the expressions of
ψ(r,R,t) and ψ̅(r,R,t) according to eq 1 and, for the sake of
simplicity, considering only the two α and β states, it can be
shown that Fαβ(R(t)) can be expressed as

= * + *

− * − *
αβ α α α β β β

α β β β α α αβ

F t c t c t F t c t c t F t

c t c t E c t c t E

R R R

d

( ( )) ( ) ( ) ( ( )) ( ) ( ) ( ( ))

( ( ) ( ) ( ) ( ) ) (13)

where the following off-diagonal Hellman−Feynman expression
has been used

ϕ ϕ

ϕ ϕ

∂⟨ | | ⟩

∂
=

= ⟨ |∂ ∂ | ⟩ − −

α β

α β β α αβ

t H t

t

t H t t E E

r R r R

R

r R R r R d

( ; ( )) ( ; ( ))

( )
0

( ; ( )) / ( ) ( ; ( )) ( )

el

el

(14)

Equation 13 illustrates the different contributions to the nuclear
forces. The first two terms are simply the population weighted
average forces over the adiabatic α and β states. The first term
evolves from unity at t′ to zero at t″ and the second term
concomitantly evolves from zero to unity. The last term
indicates the direction of the nonadiabatic coupling vector dαβ
and represents the nonadiabatic contribution to the nuclear
forces. Nevertheless, eqs 12 and 13 must be solved iteratively
due to the inconvenient temporal nonlocality of Fαβ(R(t)); i.e.,
the force on the trajectory at time t depends on the forward and
backward propagated wave functions, which can only be

determined if the full trajectory is known. As was previously
demonstrated by Coker and Xiao80 using time-dependent
perturbation theory, the dynamically nonlocal eq 12 of classical
nuclear motion in the presence of quantum electronic
transitions can be localized in time to give an impulsive force,
which acts when trajectories hop between electronic surfaces.
The action of this force is in the direction of the nonadiabatic
coupling vector dαβ, justifying the adjustment of nuclear
momenta in this direction to conserve energy during hops.81

In the present case, we are interested in identifying nuclear
vibrations that participate in the nonadiabatic contribution to
the nuclear forces during the ultrafast through-bond sequential
transfer via S4/S3 → S2 → S1 mechanism of electronic energy
transfer between the PPE units. Therefore, we have projected
the nonadiabatic coupling vector dn,(n−1) on the basis set of both
ES-INM(Sn) and ES-INM(Sn−1) evaluated at the moment of
efficient Sn → Sn−1 hops (tn,(n−1)

hop ) as

∑

∑

=

=

− −
=

−

− −

− −
=

−

− − − −

t a t t

t b t t

d Q

d Q
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n n n n
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,( 1) ,( 1)
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1

3 6

,( 1)
hop

,( 1)
hop

,( 1) ,( 1)
hop

1

3 6

( 1) ,( 1)
hop

( 1) ,( 1)
hop

(15)

Figure 3 depicts the histograms of the maximum an
max(tn,(n−1)

hop )
and b(n−1)

max (tn,(n−1)
hop ) values among the set of coefficients

{an
j (tn,(n−1)

hop )}j=1,3N−6 and {b(n−1)
j (tn,(n−1)

hop )}j=1,3N−6 during effective
S3 → S2 hops (Figure 3a), and S2 → S1 hops (Figure 3b). As
can be seen in Figure 3a,b, an

max(tn,(n−1)
hop ) reaches the overlap

values ≈1 in both transitions, indicating that the direction of
dn(n−1) perfectly matches with the direction given by only one
ES-INM(Sn), i.e.

≈− − −t td Q( ) ( )n n n n n n n( 1) ,( 1)
hop max

,( 1)
hop

(16)

Therefore, eq 16 indicates that, at the moment of strong
interaction between the excited electronic Sn and S(n−1) states
(n = 3, 2), the energy between states flows in the direction of
one of the instantaneous nuclear vibrations on the “upper” Sn

Figure 3. Histograms of the maximum overlaps between the
nonadiabatic coupling vector d3,2 and an excited-state instantaneous
normal mode (ES-INM) calculated on (a) the S3 state and (b) the S2
state, both during effective S3 → S2 hops, and overlaps between d2,1
and an ES-INM calculated on (c) the S2 state and (d) the S1 state,
during effective S2 → S1 hops.
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state. That is, the existence of this Qn
max(tn,(n−1)

hop ) can be
interpreted as a crucial factor for the efficiency of the electronic
energy-transfer processes. Interestingly, this mode corresponds
to the highest frequency ES-INM(Sn). On the contrary,
significantly lower values of b(n−1)

max (tn,(n−1)
hop ), shown in Figure

3c,d, indicate that, after the Sn → S(n−1) transfer, the energy
received by the “lower” S(n−1) state is spread out in the direction
of multiple vibrations. This effectively leads to dissipation of
vibrational energy and a reduced efficiency of the backward
S(n−1) → Sn transfers.
According to a sequential Sn+1 → Sn → Sn−1 mechanism,

73

our findings shown in Figure 3 can be summarized as follows. If
the Sn+1 and Sn states are coupled, a state-specific vibration on
the Sn+1 state, given by the Q(n+1)

max (t(n+1),n
hop ) mode, appears to

create an efficient Sn+1 → Sn pathway, whereas there are no
analogous vibrations on the Sn state. Therefore, nuclear
differential motions on the two potential energy surfaces are
responsible for the highly efficient Sn+1 → Sn population
transfer compared to the corresponding slow backward Sn →
Sn+1 transfer. On the other hand, once the system leaves the
region of conformational space associated with the high values
of d(n+1),n to reach regions with high dn,(n−1) values, the state-
specific vibration Qn

max(tn,(n−1)
hop ), now on the Sn state, enhances

the Sn → Sn−1 transfer but no Sn−1 vibrations have been found
to match with the backward Sn−1 → Sn direction.
We next analyze the evolution properties of both Q3

max(t3,2
hop)

and Q2
max(t2,1

hop) corresponding to the nonadiabatic coupling
vectors d3,2(t3,2

hop) and d2,1(t2,1
hop), respectively. Figure 4 displays

the evolution of corresponding overlaps during the [t3,2
hop − 2 fs:

t3,2
hop + 2 fs] and [t2,1

hop − 2 fs: t2,1
hop + 2 fs] time intervals. First, the

identities of the d3,2(t3,2
hop) and d2,1(t2,1

hop) vectors were tracked as
they change in time by evaluating the overlaps d3,2(t3,2

hop)·d3,2(t−
t3,2
hop) and d2,1(t2,1

hop)·d2,1(t−t2,1hop), respectively. In both cases, the
loss of identity of the dn,(n−1)(n = 3, 2) vector is faster when the
nuclei are moving on the Sn−1 state than on Sn. This behavior is
consistent with the idea that the nuclear motions on the

“upper” Sn potential energy surface keep the system in regions
of conformational space with high values of dn,(n−1) (i.e., closer
to its average maximum value at tn,(n−1)

hop ) whereas vibrational
motions on the “lower” Sn−1 state do not. In addition, the faster
decay of these overlaps for the S3−S2 couplings compared to
those of S2−S1 indicates that changes in the corresponding
electronic populations are more localized in the former case
than in the latter. Figure 4 also shows the time dependence of
the overlaps d3,2(t3,2

hop)·Q3
max(t−t3,2hop) and d2,1(t2,1

hop)·Q2
max(t−t2,1hop).

In both cases, the average maximum values are achieved at the
moment of the hop. Nevertheless, as the identity of these INMs
evolve in time, they may mix with the other coordinates and,
therefore, Qn

max(tn,(n−1)
hop ) (n = 3, 2), as defined at the moment of

efficient Sn → Sn−1 hops (tn,(n−1)
hop ), exhibit very short lifetimes.82

These features are related to ultrafast geometry distortions
introduced by the nuclear motion on the “lower” Sn−1 potential
energy surface immediately after the hop. Furthermore, the
participation values83,84 corresponding to the projections of
d3,2(t3,2

hop) and d2,1(t2,1
hop) on the entire basis set of the ES-

INM(S3) and ES-INM(S2), respectively, i.e.

∑= =
=

−
−

−
t a t nP ( ) ( ( ( )) ) ( 3, 2)n

j

N

n
j

d
1

3 6
4 1

n n,( 1)

(17)reach values of Pdn,(n−1)
n (t) ≈ 5 in only 2 fs after both S3 → S2

and S2 → S1 transitions. That is, the energy, initially funneled
through the Q3

max(t3,2
hop) and Q2

max(t2,1
hop) vectors, is rapidly

scattered to at least 5 different modes.
In Figure 5a,b we present Q3

max(t3,2
hop) and Q2

max(t2,1
hop) for

typical trajectories at the time of the effective S3 → S2 and S2 →

S1 transitions, respectively. Singular value decomposition
(SVD) has been performed over both sets of Q3

max(t3,2
hop) and

Q2
max(t2,1

hop) for all the trajectories. The eigenvectors of the first
singular values have shown an average overlap of 0.8 ± 0.15 and
0.87 ± 0.16 with the originals Q3

max(t3,2
hop) and Q2

max(t2,1
hop),

respectively, indicating the high similarity between them. The

Figure 4. Time dependence of (a) the overlap between the
nonadiabatic coupling vectors d3,2(t3,2

hop) and d3,2(t−t3,2hop) (brown) and
the overlap between d3,2(t3,2

hop) and Q3
max(t−t3,2hop) (black). (b) Overlap

between nonadiabatic coupling vectors d2,1(t2,1
hop) and d2,1(t−t2,1hop)

(brown) and the overlap between d2,1(t2,1
hop) and Q2

max(t−t2,1hop) (black).
Results are averaged over all the trajectories.

Figure 5. (a) 252th ES-INM(S3), i.e., Q3
max(t3,2

hop). (b) 252th ES-
INM(S2), i.e, Q2

max(t2,1
hop).
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atomic displacements of the Q3
max(t3,2

hop) modes are mostly
distributed between the two-ring (∼50%) and the three-ring
(∼40%) linear PPE units. As shown in Figure 5a, these modes
represent a concerted motion of stretchings in the direction of
the ethynylene bonds and the highest frequency A1g vibrational
normal modes of phenyl rings (collective C−H stretch at 3385
cm−1 in benzene, ground state). Similarly, as shown in Figure
5b, the atomic displacements of the Q2

max(t2,1
hop) modes are

mostly distributed between the three-ring (∼52%) and the
four-ring (∼45%) linear PPE units.
As has been pointed out, our analysis of the spatial extent of

the state transition densities (Sn−S0) shows localizations of S3,
S2, and S1 states on the two-ring, three-ring, and four-ring units,
respectively. Therefore, the existence of the highest frequency
modes, Q3

max(t3,2
hop) and Q2

max(t2,1
hop), with atomic displacements

distributed between the two-ring and three-ring, and between
the three-ring and four-ring units, respectively, is consistent
with their roles as pathways through which the efficient energy
funneling takes place.
Both Q3

max(t3,2
hop) and Q2

max(t2,1
hop) can also be projected on the

basis of equilibrium normal modes calculated on the electronic
ground state (ENM-S0), to evaluate the existence of these
modes in the ground state. The participation numbers
corresponding to these projections are 4.6 and 3.8, respectively.
Therefore, neither the Q3

max(t3,2
hop) mode nor the Q2

max(t2,1
hop)

mode has equivalent counterparts in the ground state. These
results reinforce the notion that state-specific normal modes are
associated with nonadiabatic coupling of excited states during
the intramolecular energy-transfer process.
Finally, the intramolecular electronic energy redistribution

that accompanies the changes in the vibrational motions can be
followed by analyzing the time evolution of the nth-electronic
transition density ρg−n(t) (g and n label ground and nth excited
state, respectively) computed according to the CEO
procedure.25,85 Figure 6 shows the time dependence of both

ρg−3(t) and ρg−2(t) evaluated as the atomic overlaps with the
nonadiabatic coupling vectors d3,2(t3,2

hop) and d2,1(t2,1
hop) during

the [t3,2
hop − 2 fs: t3,2

hop + 2 fs] and [t2,1
hop − 2 fs: t2,1

hop + 2 fs] time
intervals, respectively. As has been shown for Qn

max(tn,(n ‑ 1)
hop ) (n =

3, 2) modes, the average maximum values are achieved at the
moment of the hop. Also changes in ρg−n(t) are faster when the
nuclei are moving on the Sn−1 state than on Sn. That is, the
behavior of ρg−n(t) follows that of the Qn

max(tn,(n−1)
hop ) (n = 3, 2)

modes. Although ρg−3(t) is delocalized between the two-ring
and the three-ring linear PPE units during the S3 → S2 transfers,
ρg−2(t) is delocalized between the three-ring and the four-ring
linear PPE units during the S2 → S1 transfers. These features
indicate the mixture of the electronic states during the transfers.

IV. CONCLUSIONS
We have combined the nonadiabatic excited-state molecular
dynamics (NA-ESMD) approach and excited-state instanta-
neous normal modes (ES-INM) analysis to describe the state-
specific vibrational modes that lead to the highly efficient and
unidirectional energy transfer between the individual coupled
chromophore units in the branched dendritic molecule. Our
model molecular system consists of two-, three-, and four-ring
linear poly(phenyleneethynylene) (PPE) units linked through
meta-positions.
Our analysis of vibrations during the nonadiabatic transitions

Sn → S(n−1) (n = 3, 2) shows that the nonadiabatic contribution
to the forces, given in the direction of the nonadiabatic
coupling vector dn(n−1), perfectly matches with the direction
given by the highest frequency instantaneous vibrational mode
on the “upper” Sn state. We show that the direction of the
nonadiabatic coupling vector, which can be interpreted as the
direction of the driving force propagating the instantaneous
molecular configurations throughout regions of strong
coupling, actually acts along this unique instantaneous normal
mode direction. This provides a simple physical rationale for
adjusting nuclear velocities along the direction of the
nonadiabatic coupling vector following hops between electronic
states prescribed by the MDQT algorithm. This highest
frequency INM of the “upper” Sn state does not have a
counterpart among the INMs on the “lower” S(n−1) state.
Hence, upon the nonadiabatic transition,the excess electronic
energy is being dissipated among the multiple INMs of the
“lower” S(n−1) state reducing the efficiency of backward S(n−1)
→ Sn transfers. Therefore, our results can be interpreted as a
crucial feature of the efficient energy funneling observed in
light-harvesting dendrimers.
The analysis of the INMs that participate in the nonadiabatic

transitions indicates that their lifetimes are mainly restricted to
times close to the electronic transitions. In all cases, these
modes represent a concerted motion of stretchings in the
direction of the ethynylene bonds along with the participation
of high frequency C−H vibrations of phenyl rings.
Furthermore, taking into account the localization of the S3,
S2, and S1 state transition densities on the two-ring, three-ring,
and four-ring units, respectively, the distribution of the atomic
displacement involved in each of these modes reveals their roles
as “bridges” through which the efficient energy funneling takes
place.
According to the sequential Sn+1 → Sn → Sn−1 mechanism,

we can conclude that unique state-specific vibrations on the
Sn+1 and Sn states contribute to create the efficient funneling at
the intermediate Sn+1 → Sn and Sn → Sn−1 steps, respectively.
Therefore, our results suggest studies of the unidirectional

Figure 6. Time dependence of (a) the overlap between the
nonadiabatic coupling vectors d3,2(t3,2

hop) and the electronic transition
density of S3, ρ

g−3(t−t3,2hop). (b) Overlap between nonadiabatic coupling
vectors d2,1(t2,1

hop) and the electronic transition density of S2, ρ
g−2(t−

t2,1
hop). Results are averaged over all the trajectories.
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energy transfer using hybrid quantum/classical simulations in
which only the state-specific vibrational modes directly involved
in the process are treated quantum mechanically.
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(11) Frećhet, J. M. J. Science 1994, 263, 1710−1715.
(12) Rana, D.; Gangopadhyay, G. Chem. Phys. Lett. 2001, 334, 314−
324.
(13) Swallen, S. F.; Zhu, Z.; Moore, J. S.; Kopelman, R. J. Phys. Chem.
B 2000, 104, 3988−3995.
(14) Devadoss, C.; Bharathi, P.; Moore, J. S. J. Am. Chem. Soc. 1996,
118, 9635−9644.
(15) Xu, Z.; Kahr, M.; Walker, K. L.; Wilkins, C. L.; Moore, J. S. J.
Am. Chem. Soc. 1994, 116, 4537−4550.
(16) Wu, C; Malinin, S. V.; Tretiak, S.; Chernyak, V. Y. Nat. Phys.
2006, 2, 631−638.
(17) Palma, J. L.; Atas, E.; Hardison, L.; Marder, T. B.; Collings, J. C.;
Beeby, A.; Melinger, J. S.; Krause, J. L.; Kleiman, V. D.; Roitberg, A. E
J. Phys. Chem. C 2010, 114, 20702−20712.
(18) Atas, E.; Peng, Z.; Kleiman, V. D. J. Phys. Chem. B 2005, 109,
13553−13560.

(19) Kleiman, V. D.; Melinger, J. S.; McMorrow, D. J. Phys. Chem. B
2001, 105, 5595−5598.
(20) Kuroda, D. G.; Sing, C. P.; Peng, Z.; Kleiman, V. D. Science
2009, 326, 263−267.
(21) Davydov, A. S. Theory of Molecular Excitons; Plenum: New York,
1971.
(22) (a) Rashba E. I., Sturge, M. D., Eds. Excitons; North Holland:
Amsterdam, 1982. (b) Broude, V. B.; Rashba, E. I.; Sheka, E. F.
Spectroscopy of Molecular Excitons; Springer: Berlin, 1985.
(23) Poliakov, E. Y.; Chernyak, V.; Tretiak, S.; Mukamel, S. J. Chem.
Phys. 1999, 110, 8161−8175.
(24) Minami, T.; Tretiak, S.; Cherniak, V.; Mukamel, S. J. Lumin.
2000, 87−89, 115−118.
(25) Tretiak, S.; Chernyak, V.; Mukamel, S. J. Am. Chem. Soc. 1997,
119, 11408−11419.
(26) Mukamel, S.; Tretiak, S.; Wagersreiter, T.; Chernyak, V. Science
1997, 277, 781−787.
(27) Nelson, T.; Fernandez-Alberti, S.; Chernyak, V.; Roitberg, A. E.;
Tretiak, S. J. Phys. Chem. B 2011, 115, 5402−5414, in the “Shaul
Mukamel Festschrift”.
(28) Nishikawa, T.; Go, N. Struct. Funct. Genet. 1987, 2, 308−329.
(29) Brooks, B. R.; Karplus, M. Proc. Natl. Acad. Sci. U. S. A 1983, 80,
6571−6575.
(30) McCammon, J. A.; Harvey, S. C. Dynamics of Proteins and
Nucleic Acids; Cambridge University Press: Cambridge, U.K., 1987.
(31) Brooks, B. R.; Karplus, M.; Pettitt, B. M. Adv. Chem. Phys. 1988,
71, 1−259.
(32) Buchner, M.; Ladanyi, B.; Stratt, R. M. J. Chem. Phys. 1992, 97,
8522−8535.
(33) Keyes, T. J. Phys. Chem. A 1997, 101, 2921−2930.
(34) Stratt, R. M. The molecular mechanism behind the vibrational
population relaxation of small molecules in liquids. In Ultrafast infrared
and Raman spectroscopy; Fayer, M. D., Ed.; Marcel Dekker Inc.:
Amsterdam, 2001; pp 149−190.
(35) Moore, P.; Tokmakoff, A.; Keyes, T.; Fayer, M. D. J. Chem. Phys.
1995, 103, 3325−3334.
(36) Goodyear, G; Stratt, R. M. J. Chem. Phys. 1997, 107, 3098−
3120.
(37) David, E. F.; Stratt, R. M. J. Chem. Phys. 1998, 109, 1375−1390.
(38) Garberoglio, G.; Vallauri, R. Physica A 2002, 314, 492−500.
(39) Kramer, N.; Buchner, M.; Dorfmuller, T. J. Chem. Phys. 1998,
109, 1912−1919.
(40) Moore, P. B.; Ji, X. D.; Ahlborn, H.; Space, B. Chem. Phys. Lett.
1998, 296, 259−265.
(41) Deng, Y. Q.; Ladanyi, B. M.; Stratt, R. M. J. Chem. Phys. 2002,
117, 10752−10767.
(42) Nguyen, P. H.; Stock, G. J. Chem. Phys. 2003, 119, 11350−
11358.
(43) Sagnella, D. E.; Straub, J. E. Biophys. J. 1999, 77, 70−84.
(44) Bu, L; Straub, J. E. Biophys. J. 2003, 85, 1429−1439.
(45) Schulz, R.; Krishnana, M.; Daidone, I.; Smith, J. C. Biophys. J.
2009, 96, 476−484.
(46) Cho, M.; Fleming, G. R.; Saito, S.; Ohmine, I.; Stratt, R. M. J.
Chem. Phys. 1994, 100, 6672−6683.
(47) Nguyen, P. H.; Park, S.; Stock, G. J. Chem. Phys. 2010, 132,
025102−025111.
(48) Park, S.; Nguyen, P. H.; Stock, G. J. Chem. Phys. 2009, 131,
184503−184513.
(49) Bastida, A.; Soler, M. A.; Zuñiga, J.; Requena, A.; Kalstein, A.;
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