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Abstract

Julolidinemalononitrile, p-nitroaniline, and julolidinyl-n-N,N 0-diethylthiobarbituric acid are studied with ground

and excited state molecular dynamics simulations in conjunction with the collective electronic oscillator formalism and

Onsager�s cavity model. Ground and excited state geometries are calculated in the gas phase and four solvents. The

results are interpreted in the context of a two-state valence bond model for charge-transfer transitions of conjugated

organic molecules, and are compared to recent resonant Raman experimental results. The calculated geometries are

qualitatively consistent with both the two-state model and experiment. In addition, calculated transition density ma-

trices are presented to visualize the changes in charge distribution accompanying photoexcitation.

� 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

�Push–pull� organic molecules are characterized
by the p-conjugated linkage of an electron donat-

ing and an electron accepting group. Because

many push–pull chromophores exhibit large non-

linear optical responses, they are potentially useful

for photonic and optoelectronic applications [1,2].

In addition to being easier to process than the
inorganic crystals currently utilized, these mole-

cules offer the advantage of property modulation

through structural modification.

The ground and lowest energy excited electronic
states of push–pull molecules are often described

in terms of molecular resonance forms. Neutral

and zwitterionic basis states are represented by

corresponding resonance forms, as shown in

Fig. 1. The ground and charge-transfer (CT)

excited states are defined as linear combinations of

these two basis states [3–5]. For the systems con-

sidered in this work, the ground and CT states are
predominantly composed of the neutral and zwit-

terionic states, respectively. Electron–phonon

coupling is described by a bond length alternation

(BLA) coordinate representing the linear depen-

dence of conjugated bond order on basis state

composition.

The optical properties of push–pull chromo-

phores exhibit a strong dependence on solvation
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[3–9]. According to the two-state model, the

zwitterionic character of the ground state should

increase as solvent polarity increases, making the

basis state compositions of both eigenstates more

alike. Thus, as the environment becomes more
polar, the energy difference between the two states

decreases, and the geometries become more

similar.

Previous theoretical work on related systems

has been consistent with two-state trends. Cammi

et al. [10] applied the polarizable continuum model

to series of linear push–pull molecules, calculating

ground state geometries both in vacuo and in
water. They found the BLA coordinate changed

coherently with both the strength of the electron

donor/acceptor substituents and the inclusion of a

solvent. Gao and Alhambra [9] obtained similar

results for the some of the same molecules con-

sidered in [6] using a hybrid quantum mechanical

and molecular mechanics methodology. Recent

work on the betaine-30 dye molecule [11,12] has

focused on electronic effects related to the tor-

sional coordinate between its p conjugated rings,

and the importance of this contribution as a

function of media polarity; the general conclusion
was that the potential along the torsional coordi-

nate has a much larger curvature in the isolated

molecule than in solution. Farztdinov et al. [13]

used semiempirical methods to explore the excited

state potential energy surface of p-nitroaniline as a

function of solvent. However, their focus was on

torsional coordinates rather than the conjugated

bond lengths.
Recently, the resonance Raman technique was

applied to p-nitroaniline (PNA) [14], julolidine-

malononitrile (JM) [15], and julolidinyl-n-N,

N 0-diethylthiobarbituric acid (JTB) [16]. These

analyses derive the dimensionless displacements

between the ground and excited state potential

surfaces for all the active vibrational modes by

 

 

Fig. 1. Resonance forms and atomic indices of PNA, JM, and JTB.
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simultaneously fitting the absorption spectrum

and Raman excitation profiles with an empirical

model defined by a common set of parameters [17].

Qualitative agreement between experimental re-

sults and the two-state model was found. For

nonstrongly hydrogen-bonding solvents, transition
energies and reorganization energies exhibit the

expected solvent dependence: as solvent polarity

increases, the absorption bands shift to lower en-

ergies and the internal reorganization energies

decrease. However, the solvent sensitivity of the

ground state is much smaller than that of the ex-

cited state, particularly in the case of PNA. Spe-

cifically, the solvent dependence of the ground
state vibrational frequencies is minute compared

with the vibrational reorganization energies ac-

companying electronic excitation.

The technique of resonance Raman intensity

analysis does not allow direct determination of

absolute geometry changes in the CT state relative

to the ground state, since the intensities depend

only on the magnitudes and not the signs of the
dimensionless mode displacements [17]. Determi-

nation of respective signs requires the selection of

the most probable sign combination of the di-

mensionless displacements among the 2N possibil-

ities (N is the number of Raman active normal

modes) and is practical only for small molecules,

and/or requires high quality data on a large set of

isotopic derivatives. In this work, we use a novel
excited state molecular dynamics (MD) approach

to calculate both ground and excited electronic

state equilibrium geometries of JM, PNA, and

JTB. The simulations are performed by combining

the Austin Model 1 (AM1) semiempirical Hamil-

tonian with the collective electronic oscillator

(CEO) method. Solvent effects are incorporated

using the Onsager formulation of the self consis-
tent reaction field (SCRF). Computational results

for excited state nuclear dynamics are analyzed in

terms of electronic charge motion using transition

densities, and are interpreted using the BLA

picture.

Section 2 briefly describes the computational

method. We discuss the computed excited state

structures of PNA, JM, and JTB in Section 3.1,
solvatochromic effects are presented in Section 3.2,

the results of MD simulations for PNA and JM

are discussed in Sections 3.3 and 3.4, respectively,

and the results are considered in the context of the

two-state valence bond model in IIIE. Our con-

clusions are finally summarized in Section 4.

2. Computational methods

We begin by outlining our computational

strategy and then give some general details of the

techniques used. Using the GAUSSIANAUSSIAN 98 package

[18], the DFT (B3LYP/6-311G**) approach and

AM1 semiempirical method were employed to

perform a ground state geometry optimization and
normal mode analysis on each molecule. These

calculations provided reference ground state ge-

ometries and energies of the isolated molecules (in

vacuo). Excited state transition energies of the

molecules were then calculated in vacuo and in

solution with the CEO procedure [19,20] using the

INDO/S [21] and AM1 [22] semiempirical Hamil-

tonians and the Onsager reaction field [19,23,24]
(if solvent corrections were requested). The nec-

essary Hamiltonian matrix elements were gener-

ated with the ZINDO (INDO/S) [21] and

MOPAC-93 (AM1) [25] codes. In order to provide

a high level ab initio reference point, electronic

transitions of the isolated molecules were also

calculated at the TDDFT (B3LYP/6-311G**) le-

vel. For the smaller molecules, PNA and JM, we
used an MD algorithm to calculate equilibrium

ground and excited state geometries in vacuo and

in solution; the excited state MD [26] utilized the

CEO procedure [19,20] and an AM1 Hamiltonian,

whereas the ground state potential energy surface

was defined solely in terms of the AM1 Hamilto-

nian. Finally, theoretical geometry changes and

transition densities were analyzed in the context of
experimental results and a two-state valence bond

model.

The CEO approach has been described in detail

elsewhere [19]. This method is based on the time-

dependent Hartree–Fock approximation for

many-electron problems and solves an equation of

motion for the reduced single electron density

matrix [27]

qmnðtÞ ¼ WðtÞjcþmcnjWðtÞ
� �

; ð2:1Þ
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where WðtÞ is the many-electron wavefunction

(time-dependent single Slater determinant driven

by an external field), cþm (cn) are creation (annihi-

lation) operators, and the indices m, n refer to

known basis functions (e.g., atomic orbitals (AOs)
in site representation). The computational bottle-

neck of this approach is the diagonalization of the

two-particle Liouville operator L

Lnm ¼ Xmnv: ð2:2Þ

Here the eigenfrequencies Xm are electronic tran-

sition frequencies between the ground state jgi and
an excited state jmi. The transition density matri-

ces, or electronic modes (nm), obtained from Eq.

(2.2) can be represented as

ðnmÞmn ¼ hmjcþmcnjgi; ð2:3Þ

and reflect the changes in an electronic density for

a given transition [19,20]. The eigenvalue problem

(Eq. (2.2)) could be solved very efficiently using

fast Krylov space algorithms (e.g., Lanczos or
Davidson). Even though these calculations take all

occupied and virtual orbitals into account (full

active space), the computation of an excited state

manifold is not much more numerically demand-

ing than computation of the Hartree–Fock

ground-state wavefunction.

A two-dimensional real-space analysis of cal-

culated transition densities (nm) is useful for
tracking electronic density variation due to pho-

toexcitation and interpreting optical properties.

The diagonal elements ðnmÞnn represent the net

charge induced in the nth AO by the external field.

The off-diagonal elements ðnmÞmn with m 6¼ n rep-

resent the joint probability amplitude of finding an

electron and a hole located at the mth and nth

AOs, respectively. Thus, the electronic normal
modes provide a real-space picture of electronic

transitions by showing accompanying motions of

optically induced charges and electronic coher-

ences [19,20].

Excited state MD simulations [26] solve the

classical equation of motion for the nuclear de-

grees of freedom

Ma
o2qa

ot2
þ b

oqa

ot
¼ FaðqÞ ¼ 
 oEðqÞ

oqa

; ð2:4Þ

along the trajectory on the excited state molecular

potential surface using a numerical velocity Verlet

finite difference algorithm [28]. Here qa and Ma

represent the coordinate and mass of one of the

3K-6 vibrational normal modes (K being the
number of atoms) and EðqÞ ¼ EkðqÞ þ EeðqÞ is

the excited state energy, Ek being the nuclear

kinetic energy. We calculate the potential energy as

Ee ¼ EgðqÞ þ XmðqÞ, where Eg is the reference

ground state energy and Xm is an electronic transi-

tion energy. The forces Fa on the right-hand side of

Eq. (2.4) are computed numerically (as opposed to

the analytical derivative technique) with the
quantum chemical CEO procedure combined with

the AM1 semiempirical method. This allows us to

treat both ground and excited states within the

same Hamiltonian model.

The computations follow excited state molecu-

lar dynamics in the isolated molecule with van-

ishing damping (b ¼ 0) or motion in a viscous

liquid where the damping is nonzero (b 6¼ 0). The
latter leads to the excited state optimal geometry.

The same procedure with Xm ¼ 0 results in the

ground state optimal geometry. We utilized the

Davidson algorithm for solving the eigenproblem

Eq. (2.2) which allows fast computation of excited

state energies and efficient excited state MD along

all nuclear degrees of freedom in fairly large mo-

lecular systems. The MD simulations were initi-
ated from the AM1 ground state equilibrium

geometry of the isolated molecules, and were al-

lowed to run for a sufficient length of time for

equilibration to occur. Simulations of JM ran for a

length of 1 ps in 1 fs steps, whereas simulations for

PNA required 1.5 ps in 1 fs steps.

Solvent effects were incorporated using On-

sager�s solvent cavity model [19,23,24]. This model
assumes the solute to be placed inside a spherical

cavity surrounded by a dielectric medium, which is

characterized solely by its dielectric constant. The

Fock operator F 0
mn of the isolated molecule is then

modified by adding interaction energy between the

solute and solvent, resulting in [24]

Fmn ¼ F 0
mn 


e 
 1

2e þ 1

lg � lmn

a30
; ð2:5Þ

where e is the dielectric constant and lg is the

ground state dipole moment (the expectation value
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of the dipole operator lmn). The dielectric con-

stants of cyclohexane, dichloromethane, and ace-

tonitrile are 2.0, 9.1, and 37.5, respectively [29].

The radii of the solute cavities were determined

using the GAUSSIANAUSSIAN 98 package [18] which cal-
culates the molecular volume inside a density

contour of 0.001 electrons/bohr3 using Monte

Carlo integration and associates that with an ef-

fective sphere radius. The reaction field, based on

the spherical cavity approach, gives an essential

description of the solute–solvent interaction en-

ergy when specific interactions such as hydrogen-

bonding are not important.
Finally, to compare the computed excited state

geometries with experimental results, the dimen-

sionless normal mode displacements were con-

verted into explicit geometry changes using the

ground state normal modes from a DFT (B3LYP/

6-311G**) calculation as [14]

di ¼ 5:8065
XN

j¼1
Qjið-jmjÞ
1=2Dj; ð2:6Þ

where j is an index for the normal mode (the

summation over j is restricted to the N Raman

active normal modes), i is a coordinate index, Qji

is a matrix containing normal mode coefficients
(in internal coordinates), Dj is the empirically

determined dimensionless displacement of mode

j, mj is the reduced mass of mode j in a.m.u., -j

is the vibrational frequency of mode j in cm
1,

and N is the number of Raman active normal

modes. Only the magnitudes, and not the signs,

of Dj are obtained from resonance Raman in-

tensity analysis, leaving 2N possible excited state
geometries. However, the number of geometries

can be reduced by eliminating geometries that

are not consistent with predetermined con-

straints.

3. Results and Discussion

3.1. Excited states of the isolated molecules

Table 1 contains excitation energies and oscil-

lator strengths of the five lowest energy transitions
of PNA, JM, and JTB. The first row labels the

method used to calculate the excitation energy,

and the second row describes the technique uti-

lized to optimize the ground state geometry; these

are vertical excitations. In all cases, the CT tran-

sition is assigned to the lowest energy strongly

allowed transition, and transition density matrices
confirm these choices. These calculations were

done to compare CEO excitation energies to a

presumably more accurate method; it is especially

important to check the performance of the CEO

(AM1) because this method is used in the excited

state MD simulations. The high level TDDFT

calculations are the most rigorous, whereas the

CEO calculations done with the INDO/S Hamil-
tonian, which is parameterized specifically for

spectroscopic purposes, are expected to be accu-

rate as well.

The CT transition energies, oscillator strengths,

and relative state ordering of PNA are highly de-

pendent on the method used to calculate them.

The CT transition is easily identified using the

TDDFT and CEO (INDO/S) methods. However,
the two lowest energy transitions calculated with

the CEO (AM1) method have nearly identical os-

cillator strengths, making the assignment of the

CT state ambiguous at this geometry. This is a

potential problem for the excited state MD.

However, the important question is whether or not

this ambiguity persists at the CT state equilibrium

geometry; we found it does not. Of the three
chromophores, the experimental gas phase CT

transition energy has been reported for PNA only;

Farztdinov et al. [13] report an absorption maxi-

mum of 4.24 eV at an unspecified temperature. We

observe good agreement between experiment and

calculated CT state energy for PNA using the

TDDFT (accuracy 0.17 eV) and the CEO (INDO/

S) (accuracy 0.13 eV) methods. The CEO (AM1)
approach underestimates the CT transition energy

by 0.7 eV.

Better agreement among the methods was

found for JM and JTB. Most importantly,

identification of the CT transition is unambigu-

ous for these molecules. In the case of JM, the

CT state is the lowest energy state according

to all three methods, whereas the CT state of
JTB is calculated as the second lowest energy

state.
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3.2. Solvatochromism

Table 2 presents transition energies and solva-

tochromic shifts (relative to cyclohexane) of each

molecule calculated using the CEO (AM1) proce-
dure, and an AM1 reference ground state. The

calculated absorption and fluorescence energies of

PNA and JM correspond to nuclear geometries

that are in equilibrium with the solvent continuum,

whereas the absorption energy of JTB is calculated

at the B3LYP/6-311G** geometry in vacuo. In the

cases of PNA and JM, solvation effects on the

ground and excited state structures are modeled

using the MD algorithm described in Section 2.

At the ground state equilibrium geometry of
PNA, the CT transition is readily identifiable as

the second lowest energy transition in cyclohexane

and dichloromethane, whereas it is the absolute

lowest in energy in acetonitrile; the oscillator

strength of the CT transition is greater than 20

Table 1

Calculated excitation energies and oscillator strengths of PNA, JM, and JTB

Method TDDFT B3LYP/6-311G** CEO (INDO/S) CEO (AM1)

Geometry B3LYP/6-311G** B3LYP/6-311G** AM1

Transition energy

oscillator strength

PNA

1 3.8741 3.4729 3.5196a

0.0000 0.0000 0.1197

2 4.0708a 3.6778 3.5219a

0.3132 0.0001 0.1008

3 4.4162 4.1145a 3.7027

0.0001 0.3627 0.0005

4 4.6033 4.2372 3.9244

0.0005 0.1800 0.0000

5 5.1347 5.2355 4.8919

0.0575 0.2798 0.0056

JM

1 3.2917a 3.0696a 2.9621a

0.7712 0.7552 0.4555

2 4.0197 3.7803 3.2599

0.0000 0.0097 0.0149

3 4.4695 4.3939 3.9723

0.0818 0.0355 0.1810

4 4.8017 4.5561 4.3302

0.1366 0.3339 0.0074

5 5.0280 4.8989 4.5288

0.0002 0.0006 0.2195

JTB

1 2.5532 2.7045 2.5909

0.0001 0.0001 0.0007

2 2.9814a 2.9926a 2.8001a

1.1181 0.8422 0.5340

3 3.5350 3.5045 3.2698

0.0201 0.0012 0.0089

4 3.7317 3.7907 3.7120

0.0018 0.0029 0.2151

5 3.7830 3.7938 3.7946

0.0038 0.0022 0.0215

aCT transition.
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times that of any other of the five lowest energy

transitions. The solvent dependence of the relative

state ordering is consistent with the two-state idea

relating the extent of energy gap reduction to
solvent polarity. At the excited state equilibrium

geometry, the CT state is the lowest in energy in all

solvents. While the absolute transition energy is

relatively well calculated in cyclohexane, the sol-

vatochromic shifts are severely underestimated in

dichloromethane and acetonitrile.

The CT state of JM is calculated as the lowest

energy state in all solvents at both the ground and
excited state geometries. In contrast to PNA, in

JM the solvatochromic shifts are overestimated at

the ground state equilibrium geometry. The pres-

ence of aliphatic groups in JM may limit solvent

accessibility and inhibit solvation effects on the

experimental transition energies, although the

calculated solvation energies are also reduced be-
cause of the larger cavity radius (Eq. (2.5)).

In JTB, the calculated CT state is the second

lowest in energy in cyclohexane, whereas it is the

lowest energy state in the two more polar solvents.

As in PNA, the solvent dependence of the state

ordering is consistent with the two-state picture.

The calculated solvatochromic shifts of JTB are in

better agreement with the experimental measure-
ments than in either of the other two molecules.

However, the shifts of JTB are calculated at an

identical geometry in all solvents, whereas the

Table 2

Solvent dependent transition energies and solvatochromic shifts (eV)

Solventa Calculated absorption Exp.b absorption Calculated fluorescence Exp. fluorescencec

Transition energy/eV

solvatochromic shift/eV

PNA

Isolated molecule 3.5196 4.24d 3.3441

Cyclohexane 3.4215 3.8505 3.2779 –

0.0000 0.0000 0.0000

Dichloromethane 3.2488 3.4156 3.1192 –

0.1727 0.4349 0.1587

Acetonitrile 3.1726 2.817 2.5339 –

0.2489 0.598 0.7440

JM

Isolated molecule 2.9622 2.6502

Cyclohexane 2.8362 2.8437 2.5675 2.6402

0.0000 0.0000 0.0000 0.0000

Dichloromethane 2.5841 2.7071 2.4081 2.5300

0.2521 0.1366 0.1594 0.1101

Acetonitrile 2.4810 2.7190 2.3529 2.4747

0.3552 0.1247 0.2146 0.1655

JTBe

Isolated molecule 2.8001

Cyclohexane 2.7351 2.5149 – –

0.0000 0.0000

Dichloromethane 2.6140 2.3752 – –

0.1211 0.1397

Acetonitrile 2.5676 2.3797 – –

0.1675 0.1352

aThe cavity radii were 3.97, 4.92, and 5.55 �AA for PNA, JM, and JTB, respectively.
bAbsorption spectra for PNA, JM, and JTB are given in [14–16], respectively.
cRef. [30].
dRef. [13].
e The calculated absorption energies of JTB correspond to the B3LYP/6-311G** geometry in the isolated molecule; the molecule is

not equilibrated with the solvent continuum.
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shifts of PNA and JM are calculated at solvated

equilibrium geometries, making a direct compari-

son between these calculations less meaningful.

Currently our MD code follows the dynamics of

only the lowest excited state. Even though excited

state MD of JTB is computationally feasible, we
were not able to calculate the CT state geometry of

JTB in vacuo or in the less polar solvents where the

CT state is second lowest in energy. In addition,

empirical analysis of the experimental data via Eq.

(2.6) is not feasible for such large molecule.

Therefore, we limit our subsequent discussion to

the MD results for PNA and JM.

3.3. Ground and excited state potential energy

surfaces of PNA

The calculated ground state equilibrium values

and excited state changes of selected internal co-
ordinates of PNA are shown in Tables 3 and 4,

respectively. With one exception, the conjugated

bond lengths of PNA are consistent with the no-

tion that the zwitterionic character of the ground

state increases in polar media. The calculated bond

length changes also suggest that the excited state

possesses greater zwitterionic basis state character

than the ground state. The exception to this trend

Table 3

Calculated equilibrium ground state values for selected internal coordinates of PNA

Coordinatea Isolated molecule Cyclohexane Dichloromethane Acetonitrile

R(1, 2) 1.378 1.3641 1.3542 1.3501

R(2, 3) 1.421 1.4255 1.4319 1.4348

R(2, 4) 1.421 1.4255 1.4319 1.4348

R(3, 5) 1.384 1.381 1.3765 1.3745

R(4, 6) 1.384 1.381 1.3765 1.3745

R(7, 8) 1.478 1.471 1.4596 1.4542

R(8, 9) 1.204 1.206 1.2104 1.2124

R(8, 10) 1.204 1.206 1.210 1.212

A(10, 8, 9) 121.75 120.92 119.60 119.067

A(11, 1, 12) 117.00 119.20 118.44 118.10

NH2 wag 15.20 0.30 0.05 0.03

NO2 twist 0.57 0.00 0.00 0.00

a Bond lengths are in �AA and angles are in degrees.

Table 4

Geometry changes for selected internal coordinates of PNA

Coordinatea Isolated molecule

Calculated

Cyclohexane Dichloromethane Acetonitrile

Calculated Expt.b Calculated Expt.b Calculated Expt.b

R(1, 2) )0.012 )0.005 )0.006 )0.005 )0.010 )0.019 )0.003
R(2, 3) 0.017 0.016 0.002 0.018 )0.004 0.022 )0.005
R(2, 4) 0.032 0.027 0.002 0.018 )0.004 0.022 )0.005
R(3, 5) )0.007 )0.007 )0.029 )0.009 )0.028 )0.010 )0.021
R(4, 6) )0.019 )0.016 )0.028 )0.009 )0.028 )0.010 )0.021
R(7, 8) )0.020 )0.022 )0.054 )0.022 )0.052 0.020 )0.041
R(8, 9) 0.006 0.008 0.040 0.012 0.031 0.020 0.026

R(8, 10) 0.006 0.008 0.040 0.012 0.031 0.020 0.026

A(10, 8, 9) )0.33 )0.36 )6.06 )0.41 )5.95 )1.55 )4.85
A(11, 1, 12) 0.88 )0.28 2.43 )0.55 )1.35 )1.64 1.34

NH2 wag )3.61 )0.21 – )0.03 – 0.98 –

NO2 twist )0.28 0.05 – 0.22 – 24.05 – -

a Bond lengths are in �AA and angles are in degrees.
bRef. [14].
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occurs for the C–NO2 bond in acetonitrile; the

BLA model predicts this bond length should de-

crease upon excitation, while an increase is calcu-

lated. An increase in the C–NO2 bond length was

also calculated by Farztdinov et al. [13] using the

COSMO solvation model and the SAM1 semi-
empirical Hamiltonian. The possibility that this

unexpected result was due to the presence of two

local minima along the C–NO2 bond coordinate

was investigated by running the simulations from a

variety of initial C–NO2 bond lengths. However,

the simulations all converged to the same excited

state geometry. The experimental coordinate

changes in Table 4 are derived in [14]. In general,
the experimental changes are much greater than

those of the MD, which is not surprising consid-

ering that the MD also underestimates the solva-

tochromic shifts.

An NH2 wag angle was defined as (180

Dð11; 1; 2; 12ÞÞ=2, where D denotes the dihedral

angle. The wag angle corresponds to the hybrid-

ization of the nitrogen atom; this angle should be

35� (0�) for a pure sp3 (sp2) hybridization of ni-

trogen; sp3 and sp2 characters are associated with

the neutral and zwitterionic basis states, respec-

tively. In agreement with two-state predictions, the

amino wag angle decreases from the ground to

excited state in vacuo, and decreases in increas-
ingly polar media in the ground state. The reso-

nance Raman experiments [14] were unable to

detect this mode due to laser scattering in the

spectral region below 500 cm
1.

A NO2 twist angle was defined as [Dð10; 8;
7; 6Þ 
 180þ Dð10; 8; 7; 9Þ]. This angle describes

the torsion angle of the NO2 group relative to the

plane of the ring. While the NO2 group is essen-
tially in the plane of the ring in all media in the

ground state, a significant increase in the excited

state twist angle is calculated in acetonitrile. Al-

though this result contradicts the idea that the

double bond character of the C–N bond should

increase in the excited state, hindering rotation, it

consistent with theoretical modeling by Farztdinov

et al. [13] which reported a global minimum at 90�

 

 

 

 

  

      

    

 

Fig. 2. Transition density matrices of PNA (absolute values of matrix elements, scaled to a maximum value of 1.0). See Fig. 1 for

atomic indices.
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in water. Again, the resonance Raman experiments

on PNA [14] could not detect such a low frequency

mode (<100 cm
1).

To investigate how these geometrical changes

are connected with the underlying photoinduced

dynamics of electronic charges, we further use a
two-dimensional real-space analysis of transition

densities, representing the electronic transition

between the ground state and an electronically

excited state. Transition density matrices of PNA

in vacuo and in acetonitrile, calculated at both the

ground and excited state equilibrium geometries,

are shown in Fig. 2. Each plot depicts probabilities

of an electron moving from one molecular position
(horizontal axis) to another (vertical axis) upon

electronic excitation. For these CT transitions, the

largest elements of the transition density matrix

are expected to lie in the upper diagonal, repre-

senting electrons moving from a lower-numbered

atom (closer to the donor group) to a higher-

numbered atom (closer to the acceptor group).

Our primary interest is in the off-diagonal elements

which are related to the probability amplitudes for

a given CT event [19]. Since the signs of these

matrix elements are not physically meaningful, we

plot the absolute values of the transition density

matrix elements using the contraction described in

[19]. Therefore a diagonal element represents only
the magnitude and not the sign of the charge in-

duced on the atom by optical excitation. The color

scale given in Figs. 2 and 3 associates a specific

color to the range of magnitudes of matrix ele-

ments with the largest element set to 1.0 (blue

color).

At the ground state geometry in vacuo, an off-

diagonal maximum is located at q21, which corre-
sponds to an electron transfer from N1 to C2. The

green area in the upper diagonal of the plot indi-

cates unidirectional electron transfer from the

donor to acceptor group. However, inspection of

the qm7 (m ¼ 2, 5, 6) and q2n (n ¼ 3, 4, 7) elements

shows strong intramolecular charge transfer in the

opposite direction, (in particular, from C2 to C7),

which reflects rearranging the bond orders toward

   

      

    

 

Fig. 3. Same as Fig. 2, for JM.
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the zwitterionic state (Fig. 1). These CT patterns

are slightly enhanced at the excited state geometry.

At the ground state geometry, intramolecular

charge transfer is stronger in acetonitrile than in

the isolated molecule, particularly the elements qm7

(n ¼ 8–10) which indicate electron transfer from
C7 to N8, O9 and O10. In contrast, a significant

reduction in the coherence magnitudes occurs at

the excited state geometry in acetonitrile; this is

especially evident in the qmn (n ¼ 1–4), whereas

transfer from C7 to (N8, O9, and O10) increases.

This represents less CT from the donor group to

anywhere else and stronger CT within the acceptor

group. The increase in the NO2 twist angle is the
coordinate change primarily responsible for this

result. Increasing the NO2 twist angle interrupts

the bond conjugation and reduces the CT char-

acter of the transition.

3.4. Ground and excited state potential energy

surfaces of JM

The calculated ground state equilibrium values

and excited state changes of selected internal co-

ordinates of JM are shown in Tables 5 and 6, re-

spectively. The solvent dependences of both the

ground and excited state coordinate changes are

qualitatively consistent with two-state predictions.

Specifically, as solvent polarity increases, the

ground state geometries display a more zwitterion-

like structure and the magnitudes of the excited

state coordinate changes decrease. The expected

state dependence of the conjugated bond lengths is

easily deduced by inspection of the resonance

forms in Fig. 1.
In addition, an amino wag angle and single

bond and double bond twist angles were defined

for JM as (180
 D(2, 1, 8, 3))/2, D(12, 13, 14, 15),
and D(13, 14, 15, 17), respectively. As in PNA, the

amino wag angle is strongly correlated to the hy-

bridization of the amino nitrogen; a decrease in

this angle signifies the evolution from sp3 to sp2

hybridization, sp2 hybridization being associated
with the zwitterionic basis state. At the ground

state geometry, this angle changes coherently with

solvent polarity in the expected two-state direc-

tion. The single bond and double bond twist angles

also display the expected two-state solvent

dependence at the ground state geometry: with

increasing solvent polarity and increasing zwitter-

ionic character, the C13–C14 bond order increases
and the twist angle decreases, while the C14–C15

bond order decreases and the twist angle increases

slightly. In addition, in all solvents the single bond

twist angle decreases and the double bond twist

angle increases in the excited state relative to the

ground state, indicating a greater degree of

zwitterionic character in the excited state.

Table 5

Calculated equilibrium ground state values for selected internal coordinates of JM

Coordinatea Isolated molecule Cyclohexane Dichloromethane Acetonitrile

R(1, 8) 1.391 1.383 1.368 1.363

R(8, 9) 1.423 1.428 1.436 1.440

R(8, 10) 1.424 1.426 1.433 1.437

R(9, 11) 1.388 1.386 1.380 1.377

R(10, 12) 1.391 1.389 1.384 1.381

R(11, 13) 1.405 1.408 1.416 1.420

R(12, 13) 1.401 1.402 1.407 1.410

R(13, 14) 1.444 1.440 1.427 1.420

R(14, 15) 1.355 1.357 1.364 1.370

R(15, 16) 1.426 1.426 1.424 1.423

R(15, 17) 1.422 1.420 1.418 1.416

R(16, 18) 1.163 1.164 1.165 1.166

R(17, 19) 1.164 1.164 1.165 1.166

C2–N1–C3 wag 13.18 9.57 4.11 2.05

C13–C14 twist 30.8 26.5 15.9 11.6

C14@C15 twist 2.5 2.8 3.5 3.6

a Bond lengths are in �AA and angles are in degrees.
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In order to evaluate the magnitudes of the cal-

culated coordinate changes, the experimental

normal mode displacements of JM [15] were pro-

jected onto a basis of B3LYP/6-311G** normal

modes. The MD results were used to constrain the
directions of the conjugated bond length changes

and thus eliminate most of the 131,072 possible

geometries (see Section 2). Using these constraints,

and neglecting geometries with negligible changes

in carbon–carbon bond lengths, all but four ex-

cited state geometries were eliminated in acetoni-

trile solvent. Table 6 contains the resulting ranges

for selected coordinates. In general, agreement
between the experimental projection and the MD

simulations is much better for JM than for PNA.

The relative performance of the MD may be linked

to the differences in solvent accessibility between

the two molecules. In the case of JM, the aliphatic

substituents shield the donor and the acceptor is

not as likely to interact strongly with the solvent.

In other words, specific interactions are more im-
portant for PNA, making the solvent continuum

model less appropriate for PNA than for JM.

Finally, we have examined the density matrices

corresponding to the CT transition. The transition

density matrices of JM at its ground and excited

state equilibrium geometries both in vacuo and in

acetonitrile are shown in Fig. 3. The appearance of

the matrices is similar at both geometries, although

the differences between media are most pro-

nounced at the CT state geometry. The maximum
at q81 is a signature of the electron transfer from

N1 to C8, analogous to the maximum at q21 in

PNA, and the green area in the upper diagonal of

the plot reflects unidirectional electron transfer

from the donor end of the molecule toward the

acceptor end. There are some other large elements

below the diagonal as well, indicative of charge

transfer in the opposite direction from that ex-
pected for a donor–acceptor CT transition. These

reflect charge redistribution between benzene ring

and polyenic linker (e.g., q8;13 and q8;15). We also

note that carbons C2–C7, which are not part of the

conjugated p system, do not participate in the

optical transition. The conformationally impor-

tant twist coordinates are reduced in acetonitrile

which leads to an increase in the conjugation
across the molecule, as opposed to what we ob-

serve in PNA. In particular, the increased planar-

ity in solution promotes stronger charge transfer,

at least in the vicinity of the polyenic linker.

Prominent maxima are observed at both q14;13 and

Table 6

Geometry changes for selected internal coordinates of JM

Coordinatea Isolated molecule Cyclohexane Methylene chloride Acetonitrile Experimental rangesb in

acetonitrile

R(1, 8) )0.019 )0.016 )0.010 )0.007 )0.011 )0.010
R(8, 9) 0.023 0.022 0.019 0.016 0.003 0.006

R(8, 10) 0.019 0.018 0.016 0.014 0.0003 0.001

R(9, 11) )0.018 )0.016 )0.011 )0.008 )0.004 )0.002
R(10, 12) )0.016 )0.015 )0.011 )0.007 )0.018 )0.017
R(11, 13) 0.027 0.026 0.021 0.017 0.002 0.005

R(12, 13) 0.026 0.025 0.021 0.018 0.014 0.016

R(13, 14) )0.036 )0.033 )0.023 )0.015 )0.014 )0.006
R(14, 15) 0.032 0.033 0.033 0.031 0.019 0.020

R(15, 16) )0.009 )0.010 )0.011 )0.010 )0.0093 )0.0088
R(15, 17) )0.012 )0.012 )0.012 )0.010 )0.015 )0.014
R(16, 18) 0.003 0.003 0.004 0.005 0.005 0.006

R(17, 19) 0.004 0.004 0.004 0.004 0.005 0.006

C2–N1–C3 wag )9.03 )6.48 )1.15 )0.39 c c

C13–C14 twist )14.6 )12.3 )5.1 )1.6 c c

C14@C15 twist 8.9 8.1 6.3 5.5 c c

a Bond lengths are in �AA and angles are in degrees.
b The two columns constitute the most negative (left) and positive (right) coordinate changes among the four possible geometries.
cMode was too low in frequency to be observed.
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q14;15 in acetonitrile compared to that in vacuo at

the ground state geometry, indicating a large

charge redistribution between carbon 14 and both

carbons 13 and 15 upon optical excitation. This

redistribution reflects greater zwitterionic charac-

ter in the excited state, i.e., increase of double
(single) bond character for C13–C14 (C14–C15)

bonds. This trend is also observed at the excited

state geometry in acetonitrile and is less pro-

nounced in vacuo. Overall, the coupling of elec-

tronic states to the nuclear configuration is

relatively complicated and no single coordinate of

Tables 5 and 6 is sufficient to rationalize the

changes in transition densities upon solvation.

3.5. The two-state BLA picture of electron–phonon

coupling

Qualitative agreement with predictions of the

two-state BLA model is found both computa-

tionally and experimentally, meaning that molec-

ular structures become more zwitterionic in

character as solvent polarity increases. However,

the propriety of the BLA picture to chromophores

with aromatic linker groups is unclear, at least in a

quantitative sense. The BLA coordinate represents
an evolution of bond order as a linear function of

electronic state composition [3]. According to the

formulation of Thompson et al. [5], the ground

state of a push–pull chromophore is given as a

linear combination of neutral (WN) and zwitter-

ionic (WZ) basis states

Wg ¼ f 1=2
eq WZ þ ð1
 feqÞWN; ð2:7Þ

where feq is the fraction of the zwitterionic basis

state in the ground state at equilibrium. The BLA

coordinate is a linear function of feq, and because

the basis states are assumed to be orthogonal the

ground state dipole (lg) is also a linear function of

feq [8,9,31], or

lg ¼ feqlZ þ ð1
 feqÞlN: ð2:8Þ

Using the ground state dipoles obtained directly

from the MD simulations, and estimates of the

basis state dipoles (lZ and lN), assumed to be the

same in all solvents, feq�s of PNA were calculated

(Table 7). Although our calculations predict a

fairly strong dependence of the dipole moment

upon solvent polarity, experimental measurements
suggest the dipole moment is not so solvent-sen-

sitive; the dipole moment has been measured at

6.3, 6.29, and 6.2 D in the gas phase [32], benzene

[33], and acetonitrile [7], respectively. The dipole

moment of the zwitterionic basis state (30 D) state

was calculated by assuming that full positive and

negative charges are separated by a distance de-

fined by the amino nitrogen and the midpoint
between the two oxygen atoms, and the dipole of

the neutral basis state (2.36 D) was determined by

summing the dipoles of aniline and nitrobenzene,

calculated in the gas phase by AM1.

Plotting the conjugated bond lengths of PNA as

a function of feq yields decent linear fits. With the

exception of the N1–C2 bond, linear fits of all plots

have correlation coefficients greater than 0.99.
While this result strongly coincides with the BLA

formulation of electron–phonon coupling [3], the

slopes of these plots are inconsistent with empirical

observations. Experimental frequencies of nominal

bond stretching modes of PNA change by less than

1% between these solvents, suggesting the bond

lengths differ by no more than 0.3% [14]. We

subsequently performed ground state normal
mode analyses on PNA in solution using the

B3LYP/6-311G** method and Onsager�s model in
several solvents [18]. Consistent with the results of

our simulations, the calculated frequencies, which

were linearly correlated to the basis state compo-

sition, were more solvent sensitive than those

of the experiment. The calculations overestimated

the experimental frequency differences between

Table 7

Electronic state compositions and ground state dipole moments (Debye)

Molecule In vacuo Cyclohexane Dichloromethane Acetonitrile

lg feq lg feq lg feq lg feq

PNA 7.295 0.18 8.350 0.22 10.060 0.28 10.680 0.33

JM 7.223 0.13 8.441 0.16 10.450 0.22 11.220 0.24
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cyclohexane and acetonitrile by roughly a factor of

two. It is not easy to rationalize the lack of solvent

sensitivity the ground state geometry of PNA

exhibits; both simple and sophisticated theories

contradict experimental measurements. The failure

of our model may be related to the use of a solvent
continuum; explicit inclusion of solvent molecules

should improve the description.

A similar analysis of the ground state composi-

tion was performed for JM. The dipole of the

zwitterionic basis state (37.9 D) was calculated by

assuming that full positive and negative charges

were located on the amino nitrogen atom and the

midpoint between the malononitrile nitrogen at-
oms. The dipole of the neutral basis state (2.76 D)

was defined by the sum of the AM1 dipoles of two

molecules, a molecule formed by replacing the

amino nitrogen of JM with C–H and a molecule

constructed by replacing the nitrile groups of JM

with hydrogen atoms. The ground state dipoles and

the corresponding feq�s are presented in Table 7.

The MD ground state simulations are also
consistent with the two-state BLA picture. The

linear dependence of the conjugated bond lengths

of Table 5 on the basis state composition is

strong; only plots of the nitrile bonds as a func-

tion of feq had correlation coefficients less than

0.965. The variability of the number of modes

observed experimentally between the solvents

negates the possibility of a straightforward
comparison of projected excited state geometries

with the simulated solvent dependence of the

coordinates [15].

4. Conclusions

We have conducted molecular dynamics simu-
lations of the ground and CT states of PNA and

JM in vacuo and in solution using the semiem-

pirical CEO (AM1) method for excited state

calculations. The computational results are quali-

tatively consistent with the predictions of a simple

two-state valence bond model and experimental

results. Namely, the equilibrium geometry of the

CT excited state has greater zwitterionic character
compared to that of the ground state which results

in corresponding changes of the bond-length al-

ternation parameter. With one exception, all con-

jugated bond lengths change in the direction

predicted by the two-state model, but the magni-

tudes of these coordinate changes are not in good

agreement with empirical parameters derived from

resonance Raman intensity analysis, particularly
for PNA.

To study the effect of solvent polarity we used

the Onsager reaction field, which is the simplest

model for solvent corrections. Although calcu-

lated solvatochromic shifts are qualitatively cor-

rect, they are overestimated for PNA and

underestimated for JM. In general, molecular

structures become more (less) zwitterionic in
character at the ground (CT excited) state equi-

librium geometries as solvent polarity increases.

Using the dipole moment to estimate basis state

composition, good agreement with the simple two-

state predictions is found with our relatively

sophisticated model. However, both the simple

two-state model and our computations drastically

overestimate solvent effects on ground state nu-
clear geometries compared to those derived from

experimental measurements. Our results suggest

that the spherical cavity model is useful only for

predicting qualitative trends involving solvents

with significantly different polarities. More accu-

rate COSMO [34] or polarizable continuum

models [10], which correctly account for fast and

slow components of dielectric response, and
explicit solvent dynamic simulations are necessary

to reproduce quantitative trends.

We find that conformational degrees of freedom

such as twists are significantly affected by solvent.

In PNA there is hardly any solvent dependence of

the ground state conformation, while the excited

state twists significantly in the highly polar solvent

acetonitrile, contrary to two-state model predic-
tions. In JM both ground and excited states be-

come increasingly planar as the surrounding

dielectric constant is increased. These conforma-

tional changes have a drastic effect on the

electronic communication between donor and ac-

ceptor groups by promoting or reducing conjuga-

tion across the molecule. The impact of these

conformations on intramolecular charge transfer
can be well monitored by analysis of the corre-

sponding transition densities.
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Even though all trends are reproduced qualita-

tively, the combination of the CEO approach with

the AM1 semiempirical model does not produce

quantitatively correct excited state energies, par-

ticularly for PNA. The INDO/S model works

better for the PNA excited state energies, but this
model does not work for the ground state. A good

description of both ground and excited states

within the same Hamiltonian model is essential for

conducting excited state MD simulations. We

further observe that the difference between the

vertical excitation energies computed using INDO/

S and AM1 models is reduced for larger molecules

(along the PNA, JM, JTB series) and is even
smaller for larger molecular systems [35]. This

trend can be explained by recalling that INDO/S

has artificially decoupled p and r terms in order to

reproduce correctly the spectra of small molecules.

For larger molecular systems beyond the strongly

confined exciton regime [19] this decoupling be-

comes less important and INDO/S and AM1 re-

sults become similar. This makes the CEO (AM1)
approach particularly promising for studying ex-

cited state potential surfaces in extended molecular

systems.
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