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Abstract

Studying non-adiabatic effects in molecular dynamics simulations and modeling their optical signatures in linear and non-linear spec-
troscopies calls for electronic structure calculations in a situation when the ground state is degenerate or almost degenerate. Such degen-
eracy causes serious problems in invoking single Slater determinant Hartree–Fock (HF) and density functional theory (DFT) methods.
To resolve this problem, we develop a generalization of time-dependent (dynamical) variational approach which accounts for the degen-
erate or almost degenerate ground state structure. Specifically, we propose a ground state ansatz for the subspace of generalized elec-
tronic configurations spanned on the degenerate grounds state multi-electron wavefunctions. Further employing the invariant form of
Hamilton dynamics we arrive with the classical equations of motion describing the time-evolution of this subspace in the vicinity of
the stationary point. The developed approach can be used for accurate calculations of molecular excited states and electronic spectra
in the degenerate case.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Non-adiabatic dynamics in the vicinity of unavoided
level crossings is a key mechanism in a variety of ultrafast
photo-chemical and photo-physical processes among them
are photo-isomerization reactions [1–6], and non-radiative
energy relaxation in biological macromolecules [7–16].
Gaining an insight into these processes requires large scale
non-adiabatic molecular dynamics simulations. Identifica-
tion of specific dynamical features, and comparison with
experiment can be done through simulations of the multi-
ple-scale linear and non-linear optical and infrared (IR)
responses [17–22]. On the other hand, optical manipulation
of the photo-excited vibrational wavepackets in the vicinity
of the level crossings can increase the efficiency of photo-
reactions underlying a problem of coherent optical control
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[23–27]. These issues motivate extensive studies of non-adi-
abatic dynamics which are focused on vibrational wavepac-
kets quantum or semiclassical dynamics, which propagate
through the region of the level crossings [28–30]. However,
adequate parameterization of the potential energy surfaces
in the level crossing region and determination of the non-
adiabatic couplings require first principle techniques for
calculating the electronic structure in the vicinity of the
level crossing [1,9,11,14]. The optical response simulations
in the same region further call for challenging dynamical,
i.e. time-dependent, electronic structure calculations
[5,6,30–33].

Typically, in organic molecular materials the occupied
electronic orbitals are well separated by an energy gap from
the virtual orbitals, and optical excitation causes transi-
tions between these two manifolds as illustrated in
Fig. 1A. In the region of the level crossing several orbitals
from these manifolds approach each other producing
degenerate mid-gap levels shown in Fig. 1B, and as a result
the ground multi-electron state becomes degenerate. This is
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Fig. 1. Electronic orbitals structure due to: (A) Nuclei configurations
away from the level crossings (non-degenerate ground state) region where
the manifold of occupied (filled) orbitals is separated by an energy gap Eg

from the manifold of virtual (unfilled) electronic orbitals. (B) Nuclei
configurations in the vicinity of the level crossing (n-fold degenerate
ground state) where a manifold of mid-gap (almost) degenerate orbitals
appears.
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a typical situation in a number of bio molecules such as
rhodopsin [2,3,26], DNA base pairs [9,11], and fluorescent
proteins [3,4] where different reaction dynamics occurs in
the region of unavoided level crossings. The degeneracy
causes a problem to apply well developed single-determi-
nant methodologies such as Hartree–Fock (HF) and den-
sity functional theory (DFT) methods for performing
stationary state variational calculations. Correlated wave-
function approaches, e.g., configuration interaction (CI)
and coupled cluster (CC) techniques [34] are able to cir-
cumvent this problem. However, their implementations
require tremendous increase of computational costs. To
decrease the computational expense, the single-particle
states are frequently partitioned into the filled orbitals
(Fig. 1B) which can be described by a single Slater determi-
nant and mid-gap active space orbitals which are subject to
CI expansion. Since the dimensionality of the active space
is significantly smaller than its filled orbitals counterpart,
an expansion of the multi-electron wave function can be
done in terms of a few single Slater determinants. Such
methodologies have been extensively developed and are
referred to as multi-configurational self-consistent field
(MCSCF) method including popular complete active space
self-consistent filed (CASSCF) technique [34–37].

Dynamical time-dependent HF (TDHF) is one of the
oldest methods used to calculate electronic excitations by
following evolution of the non-degenerate ground state
under the influence of an external field [38–42]. Coupled
with semiempirical approaches this method has been suc-
cessfully applied to describe optical response in a variety
of molecular systems [43–45]. In the limit of weak fields,
the TDHF and TDDFT calculations are performed in the
vicinity of the stationary point using the random phase
approximation (RPA) [46]. In general, the time-dependent
variational approach, whose particular case is TDHF
method, can be formulated in terms of classical Lagrangian
equations of motion. The latter naturally give rise to the
classical Hamilton dynamics. For TDHF in the RPA these
equations describe dynamics of a set of harmonic oscillators
which can be coupled through high order unharmonic terms
[44,46,47]. TDHF methodology shares many similarities
with adiabatic time-dependent DFT (TDDFT) technique,
which became an effective modern tool for calculation of
electronic excitations in both finite molecular systems and
solids [48,49]. Formulation of TDDFT in terms of the clas-
sical Hamilton dynamics and oscillator picture of optical
responses have been recently established [50–52].

In this paper, we develop a generalization of the time-
dependent variational approach, specifically the TDHF
method, to treat the dynamics of degenerate ground state

in the vicinity of the stationary point. To address this chal-
lenging task we employ general formalism of classical
Hamilton dynamics [53–55], and derive a set of classical
equations of motion that describe the time evolution of
the electronic states. To set the stage for a large variety
of practical applications, we intend to develop a general
formalism by considering the problem at the level of the
time evolution of the electronic subspaces, spanned on
the molecular orbitals that determine a variational ansatz.
In Section 2, we start by introducing stationary variational
principle for degenerate ground state. Although this princi-
ple has been formulated before [56–60], it sets the stage for
our generalization, and we discuss it in details. Also the
simplest electronic state ansatz describing the degenerate
ground state is formulated in this section. Section 3 pre-
sents our central results where generalized dynamical vari-
ational principle is introduced. Based on this principle, the
Hamiltonian equations for the electronic state ansatz
dynamics in the vicinity of the stationary point are derived.
Simplicity of the equations structure is naturally connected
with the geometric properties of the adopted ansatz. There-
fore in Section 4, we provide a complimentary geometric
picture of the developed formalism. Concluding remarks
are given in Section 5.

2. Stationary variational method

In this section, we introduce a generalization of station-
ary (time-independent) variational principle to describe
multi-electron degenerate ground state. Development of
reliable computational technique requires a set of assump-
tions on multi-electron wavefunction leading to a restric-
tion of total multi-electron space where the variational
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principle is formulated to a sub-space of generalized elec-
tronic configurations. This constitutes a generalized ground
state ansatz also introduced in this section.

We start with the many-body electron HamiltonianbH ðxÞ parameterized by a set of nuclear coordinates x
which participate in molecular dynamics. Adopting a
quantum chemistry approach, we define a finite set of sin-
gle-electron orbitals jvii with i ¼ 1;K. After the expansion
of the multi-electronic state creation and annihilation oper-
ators in the basis of single electron orbitals, the many body
Hamiltonian acting in the space of all multi electron states
H takes the following second quantization form

bH ðxÞ ¼X
ij

tijðxÞĉyi ĉj þ
1

2

X
ijkl

V ij;klðxÞĉyi ĉyj ĉk ĉl: ð1Þ

Here cyi ðciÞ is electron creation (annihilation) operator of
the orbital state jvii, with the spin degrees of freedom
included into the index. tij is the hopping matrix element
between orbitals i and j, and V ij;kl is the Coulomb matrix
element antisymmetrized with respect to the permutations
within the index pairs ði; jÞ and ðk; lÞ.

2.1. Exact variational method

In the simplest case of non-degenerate ground state,
related multi-electron wave function jW0i can be chosen
to be real and normalized hW0jW0i ¼ 1. Generally speak-
ing, the stationary case can be considered in the complex
spaces, however, due to time-reversal symmetry all relevant
Hamiltonians are real and all solutions belong to the real
parts of the relevant complex spaces. Working in real parts
allows making use of this symmetry directly. Since the
phase of the wave function can take arbitrary values, the
latter is defined up to a factor ±1. By minimizing the fol-
lowing classical Hamiltonian functional

HðW0Þ ¼ hW0j bH ðxÞjW0i; ð2Þ

for fixed nuclear configuration x with the normalization
condition given above, the stationary Schrödinger equation
on jW0i can be recovered [61].

In the non-adiabatic case the ground state wavefunction
is loosely defined in the neighborhood of the ground-state
degeneracy. Specifically, the whole subspace of degenerate
multi-electron states should be considered. Here, we focus
on the situation when the nuclei configurations x lead to
the formation of n (almost) degenerate mid-gap orbitals
(Fig. 1B) corresponding to n-fold degeneracy of multi-elec-
tron eigenstates jWai with a ¼ 1; n. The latter are separated
from the other states in H by a substantial energy gap.
This allows us to introduce n-dimensional real subspace
S spanned on jWai, and a projection operator q̂ onto S
defined in H. This operator can be represented in terms
of the basis states as

q̂ ¼ 1

n

Xn

a¼1

jWaihWaj: ð3Þ
To generalize the variational principle, we define classical
Hamiltonian function as projection of quantum Hamilto-
nian on degenerate state subspace S

HðSÞ ¼ Trðq̂ bH ðxÞÞ: ð4Þ
This Hamiltonian can be recast into the following equiva-
lent form by using the representation of the projection
operator given by Eq. (3)

HðSÞ ¼ 1

n

Xn

a¼1

hWaj bH ðxÞjWai: ð5Þ

Minimization of HðSÞ with the orthonormality conditions
hWijWji ¼ dij can be achieved by introducing the Lagrange
multipliers kab ¼ kba, and the following function

hðSÞ ¼
Xn

a¼1

hWaj bH ðxÞjWai �
Xn

a;b¼1

kabhWajWbi: ð6Þ

Standard variational procedure for hðSÞ leads to a set of
coupled Schrödinger equationsbH W1 ¼ k11W1 þ k12W2 þ � � � þ k1nWn;bH W2 ¼ k21W1 þ k22W2 þ � � � þ k2nWn;

..

.

bH Wn ¼ kn1W1 þ kn2W2 þ � � � þ knnWn;

ð7Þ

restricted to the subspace S. Solution of these equations
provides a set of eigenfunctions associated with the lowest
energy state.

Note that definition of classical Hamiltonian function
HðSÞ given by Eq. (4) contains the trace of the operator
product, and therefore, is invariant under the basis set
transformations. This implies that HðSÞ depends on the
subspace itself (as we reflected by its argument), and the
generalized variational principle has been formulated to
minimize the energy of the subspace S regardless of partic-
ular choice of the basis functions. If one sets n ¼ 1 in Eqs.
(3)–(7) then Eq. (2) leading to non-degenerate ground state
variational principle can be recovered.

2.2. Stationary electronic ansatz

To formulate an approximation for the degenerate state
electronic wavefunctions, i.e. the generalized electronic
state ansatz, we consider a system with even number of
electrons which can occupy single-electron orbitals jvii
where i ¼ 1;K with spin degrees of freedom included in
the index. As shown in Fig. 1B, we partition these orbitals
into N filled orbitals occupied by 2N electrons, N a active
mid-gap orbitals occupied by na electrons, and the virtual
(unfilled) K–N–N a orbitals. Following HF approach, the
multi-electron state of filled orbitals can be described by
single Slater determinant jXsi, whereas in the active space
of orbitals we introduce a complete set of orthogonal na

electron correlated states jfai with a ¼ 1;N c
a. The latter

are linear combinations of single Slater determinants
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describing different occupations of active space orbitals by
na electrons. Then among these states we select spin singlets
only jfs

ai with a ¼ 1;N s
a. In general, the ansatz can be for-

mulated in terms of all possible many body states existing
in the active space. However to describe optical transitions,
the restriction to the singlets is an adequate approximation.
This approximation reduces the dimensionality of the
active space which is a critical issue for expensive CI
calculations.

Based on the introduced partitioning, we define n

approximate trial wave functions as products

jWai ¼ jXsijfs
ai; a ¼ 1; n: ð8Þ

Related subspace of generalized trial electronic configura-
tions St embedded in H is spanned onto these trial wave-
functions, and the projection operator on St obtained by
substituting Eq. (8) into Eq. (3) reads

q̂ ¼ jXsi
1

n

Xn

a¼1

jfs
aihf

s
aj

 !
hXsj: ð9Þ

According to Eqs. (1), (4) and (9), the classical Hamilto-
nian function projected on the space of trial configurations
St (ansatz) is

HðStÞ ¼
X

i;j

tijq
s
ij þ

X
i;j

V ij;klq
s
ilq

s
jk

þ
X
a;b

tab þ
1

2

X
i;j

V ia;bjq
s
ij

 !
qa

ab

þ 1

2

X
a;b;c;d

V ab;cdg
a
ab;cd ; ð10Þ

where indices i, j ða; b; c; dÞ denote all filled and virtual (ac-
tive space) orbitals. The quantity

qs
ij ¼ hXsjĉyi ĉjjXsi; ð11Þ

entering Eq. (10), is single electron density matrix acting in
the space of filled and virtual orbitals. Provided the single
Slater determinant is given in the basis of filled orbitals,
i.e. jXsi ¼ ĉy1 . . . ĉy2N j0i with j0i being electron vacuum state,
then qs

ij simplifies to have non-vanishing diagonal compo-
nents qs

ij ¼ dij for both i and j being filled orbital indices
only. Note that the Coulomb component for the filled
and virtual orbitals, i.e. the second term in Eq. (10), is par-
titioned into the product of two single electron density
matrices using Wick’s theorem [55].

Eq. (10) also contains

qa
ab ¼

1

n

Xn

a¼1

hfs
ajĉyaĉbjfs

ai; ð12Þ

ga
ab;cd ¼

1

n

Xn

a¼1

hfs
ajĉyaĉybĉcĉd jfs

ai; ð13Þ

which are respectively, single electron and correlated two-
electron density matrices calculated on the active space sin-
glet states.1 Obviously, a partitioning of the latter quantity
into a product of qa

ab according to Wick’s theorem (similar
to qs

ij) cannot be done in this case. In general, the singlet
states can be represented in terms of electron creation oper-
ators as

jfs
ai ¼

X
b1;...;bna

Sa
b1;...;bna

ĉyb1
. . . ĉybna

j0i; ð14Þ

where j0i is electron vacuum state, and Sa
b1;...;bna

are the com-
ponents of the active space many body wavefunction given
in the basis of active space single electron orbitals. This
expansion gives rise to a well know hierarchy of multiple
point correlation functions (full CI) describing the many
body states whose explicit form depends on the number
of involved active space electrons.

According to the variational principle, the stationary
point subspace St can be found by minimizing the function
HðStÞ with respect to St. The first term in the expression
for HðStÞ (Eq. (10)) contains single electron density matrix
acting in the subspace of filled and virtual orbitals. This
term can be minimized by standard HF procedures. Mini-
mization of the last two terms containing correlated active
space states requires exact, active space full CI calculations.
Since the correlated active space states are coupled to the
filled and virtual orbitals through the third term in Eq.
(10), both HF and active space full CI should be done in
a self-consistent way. By taking into account that electronic
state ansatz (Eq. (8)) can be viewed as a linear combination
of extended Slater determinants, where each term is a prod-
uct of jXsi and a Slater determinant contributing to jfs

ai,
practical implementation of the minimization procedure
for the Hamiltonian HðStÞ can be done by using the
MCSCF techniques [34–37].

3. Dynamical variational method

The stationary variational principle together with the
electronic ansatz formulated in the previous section provide
us with the equilibrium generalized electronic configuration
subspace ðSÞ, constituting the stationary point of classical
Hamiltonian HðSÞ. An external field perturbation which in
our case is optical excitation corresponds to time evolution
of S in the vicinity of S. This calls for a generalization of
the variational principle formulated above to its dynamical
version. In contrast to the stationary case where the many
body wavefunction space H, and its subspace of degenerate
ground state S are real, the time evolution occurs in the
complex spaces. It raises no problem to formulate the
dynamical variational principle and dynamical ansatz, since
the former real spaces are naturally embedded into their
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complex counterparts forming the real part of the latter.
The variational approach which we are going to implement
here is based on a simple observation that, since, quantum
evolution is represented by linear unitary operators it trans-
forms any n-dimensional vector subspace of H that can be
represented, e.g. by a set of n orthonormal vectors, to some
other yet still n-dimensional vector subspace.

In this section we first, show how the evolution of the
complex subspace S can be described as Hamilton classical
dynamics, and further make use of this Hamiltonian pic-
ture to build dynamical variational ansatz in the vicinity
of the stationary point S. For this purpose we introduce
an extended time-dependent quantum HamiltonianbH 0ðt; xÞ ¼ bH ðxÞ � EðtÞ

X
ij

lijðxÞĉyi ĉj; ð15Þ

where the first term is material Hamiltonian given by Eq.
(1). The second terms describes interaction between elec-
trons and time-dependent external electric field EðtÞ. The
interaction is given in the dipole approximation [17], and
the electronic transition dipole moment matrix elements
are denoted by lij, where, in general, the indices i; j run
over all filled, virtual, and active space orbitals.

3.1. Hamiltonian formulation of variational principle

In the simplest case of non-degenerate ground state the
stationary variational principle mentioned in Section 2.1
can be generalized to the dynamical variational principle.
Specifically, a time dependent ground state jW0ðtÞi can be
introduced, where the wavefunctions which differ by the
phase factor are identical. Then a classical Lagrangian

LðW0ðtÞÞ ¼ ihW0ðtÞjotW0ðtÞi � HðW0ðtÞÞ; ð16Þ
should be considered, where HðW0Þ is the classical Hamilto-
nian function defined by means of Eq. (2). Minimization of
the action S½W0� ¼

R tf

ti
dtLðW0ðtÞÞ leads to the time-depen-

dent Schrödinger equation in the form of classical Lagrang-
ian equations parameterized by the wavefunctions
(generalized coordinates) and their time derivatives (gener-
alized velocities). The latter can be recast to the form of
classical Hamiltonian equations with the same Hamiltonian
function HðW0ðtÞÞ and with generalized coordinates and
momenta represented by linear combinations of the wave
function real and imaginary parts [46]. A straightforward
extension of this approach could be done to the case of n-
fold degenerate multi-electron states. However, we prefer
to use the language of Hamilton classical mechanics from
the very beginning, since it significantly simplifies derivation
of the equations of motion for the adopted degenerate elec-
tronic ground state ansatz.

Classical Hamilton dynamics is determined by two
structures: classical Hamiltonian HðqÞ and the Poisson
bracket ff ; gg associated with two functions f ðqÞ and
gðqÞ all depending on generalized coordinates qi. Specific
assignment of qi to parameterize the space of generalized
electronic configurations S is given below where the time
evolution of electronic ansatz is considered. In general,
the Poisson bracket can be represented using an invariant
antisymmetric form x̂ij ¼ �x̂ji as

ff ; gg ¼
X

ij

x̂ij
of
oqi

og
oqj

; ð17Þ

and satisfies Leibniz’s product rule, and the Jacobi identity
[53–55]. Using this representation, the Liouville equations
of motion for the generalized coordinates dqi=dt ¼
fH ; qig, i.e. the Hamiltonian equations, read

dqj

dt
¼
X

i

x̂ij
oHðzÞ
oqi

: ð18Þ

Note, that in the basis set of conjugate momentum pi � qi

and coordinate qj � qj where the form is diagonal, i.e.
x̂ij ¼ �x̂ji ¼ 1, Eq. (18) acquires a well known form for
the Hamiltonian equations [53].

Since we are interested in the dynamics in the vicinity of
the stationary point �qðfHð�qÞ; �qg ¼ 0Þ, induced by the per-
turbation, the Hamiltonian HðqÞ can be expanded in pow-
ers of the displacements dqi

Hð�qþ dqÞ � Hð�qÞ þ 1

2
H ð2Þkl ð�qÞdqkdql; ð19Þ

where H ð2Þij ðqÞ ¼ o2HðqÞ=oqkoql and the Hamiltonian equa-
tions become

ddq
dt
¼ �x̂H ð2Þð�qÞdq; ð20Þ

where x̂ is the Poisson bracket matrix with the elements x̂ij,
H ð2Þ is the classical Hamiltonian matrix with the compo-
nents H ð2Þjk ðqÞ, and dq is a vector containing displacements
dqk. Eq. (20) is the final matrix form of the equations of mo-
tion which we use below to describe time-evolution of the
electronic state ansatz.

3.2. Equations of motion for electronic ansatz

To derive an explicit form of Eq. (20) for the adopted
electronic state ansatz Eq. (8), we should provide a repre-
sentation for the invariant antisymmetric form x̂, and the
expansion of classical Hamiltonian H ð2Þ in the vicinity of
the stationary point. We address this issue below.

First, we identify the generalized coordinates entering
Eqs. (17)–(20). The form of the classical Hamiltonian func-
tion given by Eq. (4) suggests that a natural choice of these
coordinates is a set containing the single electron density
matrix qs (Eq. (11)) defined in the space of filled and virtual
orbitals, the active space single electron density matrix qa

(Eq. (12)), and the active space two-electron density matrix
ga (Eq. (13)). These coordinates can be conveniently repre-
sented as the following block vector

q ¼
qs

qa

ga

0B@
1CA; ð21Þ
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Fig. 2. Optical field induces transitions which can be associated with the
components of dq (Eq. (25)): v describes transitions between filled and
virtual orbitals, u between active space and filled/virtual orbitals, and w

between the correlated singlet states formed from the active space orbitals.
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where each component (matrix) is defined within different
subspaces: qs is a matrix defined in the space of filled and
virtual orbitals, qa is a single electron density matrix in
the active space of correlated states. It can be diagonalized
in the set of the natural orbitals. Therefore we are going to
refer the subspace, where qa is defined as the space of active
natural orbitals. Finally, ga is defined in the active space of
all correlated singlets, and can be conveniently expanded in
their basis set.

Our primary interest is the dynamics in the vicinity of
the stationary point �q, therefore we partition Eq. (21) as
q ¼ �qþ dq, where the stationary point components of �q
are coordinates associated with the minimum of the Ham-
iltonian function given by Eq. (10). To define the compo-
nents of dq, we recall that the deviations from the
stationary point are induced by the optical excitations. This
suggests that we need to consider all possible optical tran-
sitions between the orbitals forming the three spaces
defined by the vector q (Eq. (21)). Accordingly, we intro-
duce the following (particle–hole) transition operators a
in the many body state space HbU ¼X

a;i

ðûaiuai þ ûiauiaÞ; ð22Þ

bV ¼X
i;i0
ðv̂ii0vii0 þ v̂i0ivi0iÞ; ð23Þ

bW ¼X
a;a0
ðŵa;a0wa;a0 þ ŵa;a0wa;a0 Þ; ð24Þ

where caret denotes H space (second quantized) operators
defining the optical transitions, and related quantities vij,
uai, and waa0 represent the intensities of these transitions.
This is illustrated in Fig. 2. They also form matrix elements
of the vector

dq ¼
v

u

w

0B@
1CA ð25Þ

entering classical equations of motion in the form of Eq.
(20).

Next, we identify the operators v̂, û, and ŵ. v̂ is defined
in the space of filled and virtual orbitals, where only possi-
ble optical transitions are those between ith filled and i0th
virtual orbitals. Therefore

v̂ii0 ¼ ĉyi ĉi0 ;

v̂i0i ¼ ĉyi0 ĉi:
ð26Þ

Another allowed optical transitions involve filled and ac-
tive space (mid-gap) orbitals jvii and jvai, respectively.
These transitions perturb both qs and qa, and therefore,
we identify

ûai ¼ ĉyaĉi;

ûia ¼ ĉyi ĉa:
ð27Þ

Finally, optical transition affecting ga are transitions within
the active singlet space correspond to
ŵaa0 ¼ f̂sy
a f̂s

a0 ;

ŵa0a ¼ f̂sy
a0 f̂

s
a;

ð28Þ

where f̂sy
a ðf̂s

aÞ is creation (annihilation) operator of correlated
singlet state in the active space which according to Eq. (14)
can be represented as f̂sy

a ¼
P

b1;...;bna
Sa

b1;...;bna
ĉyb1

. . . ĉybna
.

Next quantity entering the equations of motion (Eq.
(20)), and which we need to calculate is the Poisson bracket
(Eq. (17)). The Poisson bracket is defined by the differential
2-form whose representation is

xkl ¼ iTrfq̂½̂tk; t̂l�g: ð29Þ
This equation can be understood as the projection of the
commutator of two operators in many body electronic
space H on our trial subspace St. Since the Poisson brack-
et in the quantum limit becomes a commutator, presented
definition of xkl conceptually similar to the projected rep-
resentation of the Hamiltonian given by Eq. (4). Operators
t̂k and t̂l define the infinitesimal transitions leading to the
Hamilton dynamics, and can be identified with the opti-
cally-induced particle–hole operators given by Eqs. (26)–
(28). To calculate the 2-form we have to substitute all pos-
sible permutations of v̂, û, and ŵ into Eq. (29).

First we calculate the block-diagonal terms, i.e.
Trðq̂½û; û�Þ, Trðq̂½v̂; v̂�Þ, and Trðq̂½ŵ; ŵ�Þ and find the follow-
ing non-vanishing components

xii0;j0j
v ¼ iðqs

ijdi0j0 � dijq
s
i0j0 Þ; ð30Þ

xai;jb
u ¼ iðqa

abdij � dabq
s
ijÞ; ð31Þ

xaa0;b0b
w ¼ idaa0dbb0 : ð32Þ
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Similar calculation of the off-diagonal blocks shows that
Trðq̂½û; v̂�Þ ¼ Trðq̂½û; ŵ�Þ ¼ Trðq̂½v̂; ŵ�Þ ¼ 0. As a result, the
2-form is a block diagonal matrix

x ¼
xv 0 0

0 xu 0

0 0 xw

0B@
1CA ð33Þ

with the matrix elements given by Eqs. (30)–(32).
To find the Poisson bracket, i.e. the antisymmetric

matrix x̂ij, one needs to invert the 2-form xij. The inver-
sion is straightforward because each block of the 2-form
can be diagonalized. Specifically, in the basis set of single
H ð2Þð�qÞ ¼
h½v̂½v̂; bH ��i0 h½v̂½û; bH ��i0 þ 1

2
h½½v̂; û�; bH �i0 h½v̂½ŵ; bH ��i0

h½û½v̂; bH ��i0 � 1
2
h½½û; v̂�; bH �i0 h½û½û; bH ��i0 h½û½ŵ; bH ��i0 � 1

2
h½½û; ŵ�; bH �i0

h½ŵ½v̂; bH ��i0 h½ŵ½û; bH ��i0 þ 1
2
h½½ŵ; û�; bH �i0 h½ŵ½ŵ; bH ��i0

0BB@
1CCA: ð41Þ
Slater determinant of filled orbitals, the single electron
matrix qs

ij becomes diagonal, with non-vanishing elements
qs

ij ¼ dij, where both i; j describe filled orbitals. The density
matrix qa

ab is diagonal in the natural orbitals basis. We
denote the diagonal matrix element (eigenvalues) by �a with
a ¼ 1;N a, and note that their values confined in the interval
0 < �a < 1. The last xw block is already diagonal. There-
fore, the Poisson bracket is

x̂ ¼
x̂v 0 0

0 x̂u 0

0 0 x̂w

0B@
1CA ð34Þ

with the matrix elements

x̂v
ii0 ;j0j ¼ �idijdi0j0 ; ð35Þ

x̂u
ai;jb ¼ �idabdijð�a � 1Þ�1

; ð36Þ
x̂w

aa0 ;b0b ¼ �idaa0dbb0 : ð37Þ

The last quantity from equations of motion (Eq. (20)), left
to determine is the classical Hamiltonian, expanded in the
vicinity of stationary point S. First, we notice that opera-
tors bU , bV , and bW (Eqs. (22)–(24)) define infinitesimal dis-
placements, and form Lie algebra. Therefore, a finite
displacement of the projection operator q̂ defining the dis-

placement of the trial subspace bS t is

q̂ ¼ e
bU e
bW þbV �qe�

bW �bV e�
bU ; ð38Þ

where the fact that ½ bW ; bV � ¼ 0 is accounted for. The dis-
placement of the projection operator induces the evolution
of the classical Hamiltonian function

Hðq̂Þ ¼ Trð�qe�
bW �bV e�

bU bH e
bU e
bW þbV Þ: ð39Þ
After expanding the exponentials in Eq. (39) into the Tay-
lor series up to the second order (first non-vanishing) term
in Hð�qþ dq̂2Þ, we find

d2H ¼ Hð�qþ dq̂2Þ � Hð�qÞ

¼ 1

2
h½ bW þ bV þ bU ; ½ bW þ bV þ bU ; bH ��i0
þ 1

2
h½½ bW þ bV ; bU �; bH �i0; ð40Þ

where the short hand notation h�i0 � Trð�q�Þ means averag-
ing at stationary point. By taking the second derivative of
Eq. (40) with respect to dq (Eq. (25)), the classical Hamil-
tonian can be represented in the final block-matrix form
In summary, the classical Hamiltonian equations in the
vicinity of the stationary point are given by Eq. (20). For
the adopted ansatz these equations define optically induced
evolution of the density matrix dq given by Eq. (25). The
Poisson bracket and classical Hamiltonian function enter-
ing the equations of motion are given by Eqs. (34) and
(41). By taking a product of the Poisson bracket and the
Hamiltonian function classical Liouville operator can be
introduced and reads

Lð�qÞ ¼ x̂H ð2Þð�qÞ: ð42Þ

The eigenvalues Xa and eigenvectors na of this operator sat-
isfy the equation

Lð�qÞna ¼ Xana; ð43Þ

and define observable optical transition energies and tran-
sition densities. The adopted block-matrix representation
reflects that initially introduced optical transitions between
the electronic orbitals (Fig. 2) are mixed and their superpo-
sitions contribute to the transitions which can be observed
in experiment. The Poisson bracket x̂ (Eq. (34)) is block
diagonal and does not mix optical transitions, whereas
the classical Hamiltonian H ð2Þð�qÞ (Eq. (41)) contains off-
diagonal blocks which give rise to this effect.

4. Geometrical picture of non-adiabatic variational approach

In this section, we present a geometrical picture of the
formalism developed in Sections 2 and 3. The purpose of
this section is to demonstrate that the simple structure of
the equations introduced above originates from certain
additional geometrical structures in the space M of trial
generalized configurations. These geometrical structures
can be associated with the physical quantities that naturally
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arise in the non-adiabatic variational approaches.
Although the notation we are using, which is standard in
differential geometry, might appear a bit unconventional
for the chemical physics audience, the material of this sec-
tion is self-contained and self-explanatory. We also made
an effort to introduce the basic concepts of the fiber bun-
dles and connections (lifts) using the objects we are dealing
with as primary examples. Actually the connections that
are known in the physics literature as gauge fields appear
in non-adiabatic dynamics theories as non-adiabatic cou-
plings. The fiber bundles also appear in these theories, at
least on the implicit level. A more detailed, still very brief
summary of the basic properties of Hamilton classical
dynamics, fiber bundles and connections, relevant for our
applications can be found in Ref. [55]. Invariant picture
of classical Hamilton dynamics is covered in detail in the
famous textbook [54] by V.I. Arnold. A standard textbook
[62] on differential geometry contains plenty of details on
smooth fiber bundles and connections in them. The cele-
brated monography [63] by Yu I. Manin discusses deep
connections between the gauge fields and objects that are
studied in differential and complex-analytical (algebraic)
geometry.

Parameterization of the quantum mechanical electronic
Hamiltonian by vibrational coordinates given in Eq. (1)
can be used to model the non-adiabatic molecular dynam-
ics. Since our goal is to find an adequate description of the
electronic structure in the vicinity of the level crossings
where the non-adiabatic dynamics occur a definition of
what we call the electronic structure for non-diabatic
molecular dynamics, or simply non-adiabatic electronic
structure, is requires.

We start by defining the space of all vibrational config-
urations X, and a subspace X ðnÞ � X of the configurations
in it so that the lowest n eigenvectors of bH ðxÞ are detached
by a gap from the rest of the spectrum. With each config-
uration x 2 X ðnÞ we can associate a n-dimensional vector
subspace SðxÞ 2 Gðn;HÞ spanned onto the lowest n eigen-
vectors, where Gðn;HÞ denotes a Grassman manifold
whose points are n-dimensional subspaces of the space of
multi-electron configurations H.

Stated more formally, we have a map S : X ðnÞ !
Gðn;HÞ and an OðnÞ bundle Rn ! E ! X ðnÞ induced by
S from the universal OðnÞ bundle over Gðn;HÞ. We also
have a connection r in E identified as the non-adiabatic
coupling terms induced by S from the canonical connec-
tion in the universal bundle. Projecting the HamiltonianbH ðxÞ to the fibers Ex we obtain a set of n� n adiabatic
Hamiltonian matrices HðxÞ, or more formally a global sec-
tion H : X ðnÞ ! EndðEÞ of the endomorphism bundle
R2n ! EndðEÞ ! X ðnÞ.

The nonadiabatic electronic structure ðE;r;HÞ that
consists of the bundle E describing the electronic states
involved in non-adiabatic dynamics, the connection r
describing non-adiabatic coupling terms, and H describing
the adiabatic Hamiltonian, fully determines the input
needed for nonadiabatic molecular dynamics. The non-adi-
abatic structure is totally determined by the map S, as
described above, and can be obtained by applying the var-
iational principle discussed in this section.

4.1. Stationary variational method

Exact variational principle introduced in Section 2.1 has
a clear geometric interpretation if the classical Hamiltonian
function HðSÞ (Eq. (4)) defined as a projection on quan-
tum Hamiltonian on S is considered to be a map

H : Gðn;HÞ ! R: ð44Þ
Here, H depends on x parametrically, and each point on
Grassman manifold Gðn;HÞ is an n-dimensional subspace
S �H. For a fixed configuration x 2 X ðnÞ, the subspace S
can be found by minimizing the function HðSÞ. Specifi-
cally, one has to find local coordinates on Gðn;HÞ which
parameterize S, and can be represented by the wavefunc-
tions satisfying the Schrödinger equation (7).

A variational approximation (ansatz) is generated by
choosing a submanifold of generalized trial configurations
M � Gðn;HÞ whose points are subspaces St 2H spanned
by n trial wavefunctions. In the case of non-degenerate
ground state, the trial manifold M � Gð1;HÞ is simply
formed from single multi-electron wavefunctions each rep-
resenting an element of projective space PðHÞ ffi Gð1;HÞ,
where the normalized wavefunctions that differ by a phase
prefactor are considered to be identical. We emphasize,
that in contrast to non-degenerate case, the trial manifold
for n-fold degenerate case is spanned by n multi-electron
wavefunctions which are elements of Gðn;HÞ rather than
P1ðHÞ. After restricting the classical Hamiltonian function
to this manifold

H : M ! R; ð45Þ

its minimization with respect to St 2 M leads to an
approximation for the stationary point S. Once the sta-
tionary point is found related components of the non-adi-
abatic electronic structure ðE;r;HÞ could be determined in
a standard way [50,64].

We are now in a position to define the structure of the
manifold of generalized trial configurations M associated
with the adopted in Section 2.2 electronic state ansatz
(Eq. (8)). Any trial generalized configuration for our
ansatz, represented by a point in M can be described in
the following way. Denoting the space of single molecular
electron orbitals by V 0, with dimðV 0Þ ¼ K, we partition it
into two orthogonal components V 0 ¼ V el 
 V u, the space
V el of orbitals that can be occupies, and the space V u of
(always) unoccupied orbitals. Among that which can be
possibly occupied, we select N a active mid-gap orbitals
and denote the space spanned on them by V a � V el. The
rest N orbitals in V el, which are completely occupied, span
the space V f � V el of filled orbitals. Note that V a and V f

are mutually orthogonal and V el ¼ V a 
 V f .
The structure defined above can be fully described by a

set V a � V el � V 0 of nested vector subspaces with
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dimV a ¼ N a and dimV el ¼ N a þ N . The space of such con-
figurations represented by nested vector subspaces
V a � V el � V 0 is known as the flag space F ðN a;N aþ
N ; V 0Þ, it has a standard structure of a compact complex-
analytical manifold. The flag space can be viewed as a fiber
bundle (or, more generally a fibration) over a Grassman
manifold in the following sense. Consider a pair of maps

GðN ; V ?a Þ!
e

F ðN a;N a þ N ; V 0Þ!
p

GðN a; V 0Þ; ð46Þ
where the flag space is referred to as the total space,
GðN a; V 0Þ as the base, whereas the projection map p maps
(projects) the total space to the base. For any point
V a 2 GðN a; V 0Þ represented for this particular case by some
active space we refer to p�1ðV aÞ as the fiber over the point
V a in our particular case the fiber p�1ðV aÞ is given by all
ðN a þ NÞ-dimensional vector spaces V el � V a that contain
V a. Each of such spaces is totally determined by the com-
ponent V f � V ?a , defined earlier, and therefore represents
a point in GðN ; V ?a Þ, which means p�1ðV aÞ ffi GðN ; V ?a Þ. It
is easy to understand that fibers over different points V a

are actually different, yet equivalent spaces. This is a stan-
dard feature of fibrations (bundles). The left space in Eq.
(46) represents its fiber. More formally if one chooses some
point V a 2 GðN a; V 0Þ (usually referred to as the base
point), then the map e represents the natural embedding
of the fiber over the base point into the total space. The
term fibration is due to the fact that set-theory-wise the to-
tal space

F ðN a;N a þ N ; V 0Þ ¼
[

V a2GðNa;V 0Þ
p�1ðV 0Þ ð47Þ

is a union of all fibers, parametrized by the base. Although
Eq. (47) is written for our particular example, it actually
holds for a generic fibration. Strictly speaking, a fibration
is something more than just a union of fibers, since the total
space has a structure of a smooth manifold that is pre-
served by the projection map. We will not further discuss
these standard issues, all necessary information can be
found in standard textbooks on differential geometry.

Another fibration that together with the one given by
Eq. (46) plays an important role for a convenient represen-
tation of M can be easily defined as follows. We start with
introducing the (tautological) bundle

V a ! EðN a; V 0Þ ! GðN a; V 0Þ; ð48Þ
whose fiber over a point V a 2 GðN a; V 0Þ is V a, considered
as a vector space (which rationalizes the term ‘‘tautologi-
cal”). We further consecutively apply fiber-wise the opera-
tions ^na ; f�gs, and Gðn; �Þ to arrive at the bundle

f^na V ags ! Gðn; f^na V agsÞ ! GðN a; V 0Þ: ð49Þ

We are now in a position to provide a convenient descrip-
tion of the trial manifold M for our ansatz. Consider a trial
configuration S 2 M . According to our earlier description
it is fully described by the following set of data: an N a-
dimensional active space V a � V 0, an N-dimensional space
V f � V 0 of completely filled orbitals, with V f ? V a, and an
n-dimensional space V c � f^na V ags, spanned on n generic
(correlated) na-electron singlet states based on active orbi-
tals. Here f^na V ags � ^na V a denotes the subspace of singlet
states. Stated differently the trial configurations S 2 M are
represented by triples ðV a; V f ; V cÞ with the aforementioned
conditions. Associating with such a configuration S ¼
ðV a; V f ; V cÞ its first component, the latter being a point
V a 2 GðN a; V 0Þ, results in a representation of the configura-
tion space as a bundle

GðN ; V ?a Þ � Gðn; f^na V agsÞ ! M ! GðN a; V 0Þ: ð50Þ
The bundle structure given by Eq. (50) should be inter-
preted as follows. A simple inspection shows that a fiber
in Eq. (50) is represented by a cartesian product of the
fibers of the fibrations given by Eqs. (46) and (49). A more
careful treatment shows that this property is preserved on
the global level, i.e. the fibration on Eq. (50) is the fiberwise
cartesian product of Gðn; f^na EðN a; V 0ÞgsÞ ! GðN a; V 0Þ
and F ðN a;N a þ N ; V 0Þ ! GðN a; V 0Þ over GðN a; V 0Þ. This
can be represented by the following standard diagram

ð51Þ

It is instructive to note that the other two maps in the dia-
gram of Eq. (51) naturally represent bundles with the total
space M:

Gðn; f^na V agsÞ ! M ! F ðN a;N a þ N ; V 0Þ ð52Þ
F ðN a;N a þ N ; V 0Þ ! M ! Gðn; f^na EðN a; V 0ÞgsÞ ð53Þ

The representation of the trial manifold M as a fiberwise
product of two standard bundles, supported by the dia-
gram of Eq. (51) plays an important role in the generaliza-
tion of the stationary ansatz to its dynamical counterpart.

A natural embedding M � Gðn;HÞ that is needed to
define the variational Hamiltonian dynamics in M can be
achieved by noticing that the space of multi-electron states
H can be represented as anti-symmetrized product of
spaces of single electron orbitals V 0, specifically H ffi
^Nþna V 0. This allows us to associate a point ðV a; V f ; V cÞ 2
M with a point in the Grassman manifold Gðn;HÞ which
is a direct product bXs � f̂s

c of 2N-electron state obtained
by fully occupying the single-electron orbitals bXs (single
Slater determinant) and space of singlets f̂s

c in the space
of correlated na-electron states. Since, the second quantiza-
tion is a natural way to represent operators mapping
Gðn;HÞ on itself, and since we have established a map
M ! Gðn;HÞ by embedding M � Gðn;HÞ, we can now
discuss how the restriction of the classical Hamiltonian
on M given by Eq. (45) can be calculated. Specifically,
the Hamiltonian bH and the ansatz states bXs � f̂s

c can be
represented in terms of the second quantization operators
given in the basis of single electron orbitals due to the fact
that H ffi ^Nþna V 0. Then the projection of the quantum
Hamiltonian on these states can be calculated explicitly



Fig. 3. Illustration of differential form and classical Hamiltonian pull-
back. Mapping qM ! q̂ is due to the natural embedding M � Gðn;HÞ.
Accordingly, in the associated tangent spaces the operator mapping
ðv; u;wÞ ! ðv̂; û; ŵÞ exists. All possible pairs from the set ðv; u;wÞ in
TqM ðMÞ should to be sampled, and their images ðv̂; û; ŵÞ in Tq̂ðGðn;HÞÞ
should be substituted to xðq̂Þ. The result of the calculations is identified as
the form restriction xðqM Þ. Similar procedure is used to perform the
Hamiltonian pull-back.
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using the algebra of second quantization. This procedure is
illustrated in Fig. 3, and called pull-back. Its technical
implementations was presented in Section 2.2, resulting in
the explicit form of classical Hamiltonian (Eq. (10))
restricted to M.

4.2. Dynamical variational method

The most general, invariant, representation of classical
Hamiltonian equations for q 2 Gðn;HÞ is [54,55]

dq
dt
¼ ðdH � idTqðGðn;HÞÞÞx̂ðqÞ; ð54Þ

where x̂ðqÞ 2 TqðGðn;HÞÞ � TqðGðn;HÞÞ is an asymmet-
ric bivector that determines the canonical Poisson bracket
acting in the Grassmanian Gðn;HÞ. We denote points of
the Grassmanian with q, since a vector space V that repre-
sents a point can be uniquely associated with a matrix
q 2 EndðHÞ with the properties q2 ¼ q and rankq ¼ n that
projects H into V. The equations of motion in the form of
Eq. (54) can be interpreted as the action of differential
1-form

dH ¼
X

k

oH
oqk

dqk; ð55Þ

represented by external differential of the classical Hamilto-
nian on Gðn;HÞ, on the left component of the bivector x̂.
The result of this action is a number multiplied by the right
component of the bivector. Substitution of Eq. (55)
together with the Poisson bracket

x̂ ¼
X

ij

x̂ijðqÞ
o

oqi

� o

oqj

; ð56Þ

given in the local coordinate representation, with
x̂ij ¼ �x̂ji, into Eq. (54) yields coordinate representation
of the Hamiltonian in Eq. (18) introduced in Section 3.1.
The Poisson bracket is uniquely determined by the
closed differential form x 2 A1;1ðGðn;HÞÞ that induces
the canonical symplectic structure on the Grassman mani-
fold, and in some local coordinates can be represented in a
form

x ¼
X

ij

xijðqÞdqi ^ dqj; ð57Þ

The Jacobi identity for the Poisson bracket being reformu-
lated for the symplectic form reads dx ¼ 0, which means
that the form is closed [54]. Once we know the representa-
tion for the symplectic form, the Poisson bracket can be
immediately obtained by inverting xij, specifically, x̂ij ¼
ðx�1Þij, or equvalently

P
ijx̂ikxkj ¼ dj

i .
According to Eqs. (54)–(57) the classical Hamilton

dynamics on Grassman manifold Gðn;HÞ is fully deter-
mined by the symplectic form x and the classical Hamilto-
nian function H. A representation for the latter quantity
can be obtained by projecting the quantum Hamiltonian
(Eq. (1)) on the Grassman manifold Gðn;HÞ as given by
Eq. (4). The canonical symplectic form for a Grassmanian
can also be constructed if we interpret q̂ as a map q̂ :
Gðn;HÞ ! EndðHÞ that associates the point of the Grass-
manian with the corresponding projection operator (as
described above), specifically

xðq̂Þ ¼ iTrfq̂½dq̂ ^ dq̂�g: ð58Þ
Note that the caret is used to distinguish the projection
operators acting in many body electron space H from
points on Grassman manifold. The invariant representa-
tion in Eq. (58) can easily be recast to the local coordinate
representation

xðqÞ ¼ i
X

ij

Trfq̂½̂ti; t̂j�gdqi ^ dqj; ð59Þ

where t̂i ¼ oq̂=oqi are operators in H whose action induces
tangent vectors within TqðGðn;HÞÞ. According to Eq. (59),
components xij of the symplectic form can be calculated
using Eq. (29) used in Section 3.2.

Application of the exact dynamical variational principle
given by Eqs. (54)–(59) to describe an approximate evolu-
tion of the electronic state ansatz (Eq. (8)) requires the cal-
culations of the symplectic form and classical Hamiltonian
restrictions to the manifold of the generalized trail config-
urations defined by Eq. (51). These calculations can be per-
formed by implementing the form and the Hamiltonian
pull-back from Gðn;HÞ to M which is based on the embed-
ding M � Gðn;HÞ (Fig. 3). The Hamiltonian pull-back
was already introduced above and according to Eq. (59)
can be done to the symplectic form in the same way.

As shown in Fig. 3, pull-back of the form requires sam-
pling all tangent vectors from TqðMÞ and substitution of
their preimages from H into Eqs. (29) and (59), first, we
consider the properties of TqðMÞ induced by the fiber bun-
dle structure which was introduced in the previous subsec-
tion. This is achieved by using the notion of a connection in
a bundle; in the physics literature connections are called
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gauge fields. Connections in bundles can be defined in sev-
eral equivalent ways. For our purposes the most conve-
nient approach is based on interpreting connections as
lift operators. For our bundle a connection can be defined
as a set of lift operators

rq : TqaðGðN a; V 0ÞÞ ! TqðMÞ; qa ¼ pðqÞ ð60Þ
parametrized by points q 2 M of the total space. The term
lift reflects the fact that a lift operator ‘‘lifts” the tangent
vectors in the base to the tangent vectors in the total space
as illustrated in Fig. 4. Extensive discussion of this issue
can be found in Ref. [62,63], and brief introduction in
Ref. [55]. The lift induces the splitting of TqðMÞ into the
tangent space of the base and the tangent space of the fibers
all defined in Eq. (51)

TqM ðMÞ ffi TqaðGðN a; V 0ÞÞ 
 Tq GðN ; V ?a Þ
�

�Gðn; f^na V 0gsÞÞ: ð61Þ

To define a connection (lift) described in Eq. (60), we make
use of the fact that the bundle represented by Eq. (50) con-
stitutes a cartesian fiberwise product of the bundles given
by Eqs. (46) and (49). Stated differently this means that
Fig. 4. Illustration of the lift operation. Consider a fiber to the base at
point qa, and associated tangent spaces touching at points q and qa,
respectively. Then an arbitrary vector f in the total space can be
decomposed into two components denoted by fk and rqn. The former
component belongs to the tangent space of the fiber. The latter component
rqn is the lift of some vector n from the tangent space to the base at point
qa. In other words, f is fully defined by fk and n.
the cartesian product structure of the fibers is preserved
on the global level. The first Grassmanian in the cartesian
product of the second component in the direct sum in Eq.
(61) represents the fibers of the flag-space bundle [Eq. (46)]
which has a well-defined canonical connection. The second
Grassmanian represents the fibers of the bundle given by
Eq. (49). To introduce a canonical connection in the latter,
we note that the tautological bundle [Eq. (48)] is also
equipped with the canonical connection. Fiberwise applica-
tion of a sequence of operations ^na ; f�gs, and Gðn; �Þ to the
tautological bundle can be also extended to the connec-
tions. Stated differently, this induces a connection in the
bundle described by Eq. (49), hereafter also referred to as
the canonical connection. According to Eq. (50) showing
that the fibers of M are cartesian products, and that this
bundle structure is globally preserved (the aforementioned
statement about the fiberwise product structure of our
main bundle), the lift rq can be simply defined as a direct
sum of the canonical connections defined for the compo-
nents of the fiberwise cartesian product.

The cartesian product of the fibers in Eq. (50) allows to
perform further decomposition of the tangent space

TqM ðMÞ ffi TqaðGðN a; V 0ÞÞ 
 TqsðGðN ; V ?a ÞÞ

 TgaðGðn; f^na V 0gsÞÞ; ð62Þ

and the introduced connection allows to decompose the
Poisson bracket in TqM ðMÞ into the sum

x̂ðqMÞ ¼ x̂qa 
 x̂qs 
 x̂ga : ð63Þ

whose components x̂qa 2 TqaðGðN a; V 0ÞÞ � Tqa ðGðN a;
V 0ÞÞ, x̂qs 2 TqsðGðN ; V ?a ÞÞ � TqsðGðN ; V ?a ÞÞ, and x̂ga 2 Tga

ðGðn; f^na V 0gsÞÞ � TgaðGðn; f^na V 0gsÞÞ are represented by
the canonical Poisson brackets in the corresponding Grass-
manians. Also, the off-diagonal elements of the bivector
associated with TqaðGðN a; V 0ÞÞ, Tqs ðGðN ; V ?a ÞÞ, and
TgaðGðn; f^na V 0gsÞÞ vanish, once the decomposition of
Eq. (62) is provided by the canonical connection (lift), de-
fined above.

Calculations in Section 3.2 where the displacement (par-
ticle–hole) operators v, u, and w can be identified as the ele-
ments of the tangent spaces in Eq. (62), respectively,
confirm Eq. (63) by providing in Eq. (34) the block diagonal
matrix representation of the Poisson bracket. These calcula-
tions also represent the implementation of the Poisson
bracket pull-back (Fig. 3), since, they use the algebra of sec-
ond quantization (Eqs. (26)–(28)) defined in H. Note that
the pull-back of the Hamiltonian function does not corre-
spond to the block diagonal form (Eq. (41)), and that the
off-diagonal blocks mix the tangent spaces from Eq. (62).

We conclude this section with a summary of reasons for
involving some basic machinery of differential geometry for
our applications. The Poisson bracket involved in our
approximate variational dynamics is conceptually very sim-
ple: it is obtained as a pull-back (Fig. 3) of the Poisson
bracket involved in the exact (complete) variational
dynamics. However, for practical applications of the
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proposed ansatz it should be computed explicitly. The
Poisson bracket described as a simple decomposition by
Eq. (63) and the comments immediately following the
equation actually constitutes a result of an explicit calcula-
tion; the details will be published elsewhere. The decompo-
sition is possible due to the decomposition of the tangent
space [Eq. (62)]. The latter results from the fact that our
trial space M has a structure of a bundle over the Grassma-
nian GðN a; V 0Þ, and more than that constitutes a fiberwise
cartesian product over the same base. The decomposition
of the tangent space and, therefore, the decomposition of
the Poisson bracket depends on the connection choice. In
particular, the decomposition does not have necessarily a
block-diagonal form of Eq. (63). We have used the bundle
product structure of M to define a canonical connection
based on canonical connections in standard bundles,
involved in the construction. We have demonstrated that
once the described canonical connection is used for the tan-
gent space decomposition the relevant (i.e. obtained via the
pull-back procedure) Poisson bracket has a block-diagonal
form and the components are represented by the well-
known canonical Poisson brackets [Eq. (58)] in the relevant
Grassmanians. Stated differently, not only we computed
the relevant Poisson bracket explicitly, but also applied a
geometrical picture to express it in a very universal way
in terms of canonical Poisson brackets and standard fiber
bundles over Grassmanians.

5. Concluding remarks

Classical equations of motion presented by Eqs. (20),
(25), (34) and (41) constitute our central result, which
can be used to study the non-adiabatic electronic-state
dynamics in a variety of (bio)molecular systems. [2–
Nonadiab

PM

Fig. 5. Proposed scheme of two-color pump–probe spectroscopy. (A) Photo-ex
from the level crossing. In this region only transitions between occupied and v
photo-excited wavepacket to the region of level crossing. (C) In the level cro
monitored by the probe pulse delayed by time s whose energy �hxPR matches t
4,9,11,26] We have explicitly derived these dynamical
equations and presented them in the most general 3� 3
block-matrix form. The latter representation is useful for
understanding their internal structure. Impending numeri-
cal implementation of the developed approach and further
analysis of the physical properties associated with the
equations structure, requires specification of the active
space dimensionality, which obviously varies from one sys-
tem to another. The aforementioned dimensionality deter-
mines the truncation level for the chain of coupled
equations that contain the correlated multi-electron den-
sity matrices defined in the active space. Further develop-
ment of the self-consistent method for the non-adiabatic
molecular dynamics, that involves the quantum mechani-
cal or semi-classical nuclei wavepacket propagation,
requires the knowledge on the non-adiabatic couplings
between the potential energy surfaces. This can be done
on the fly by using the time-dependent electronic density
matrix, parameterized by the nuclei coordinates, which
can be calculated using the proposed set of classical equa-
tions of motion.

Based on the approach discussed above we propose a
self-consistent method to model two-color pump–probe
spectroscopic response associated with the wavepackets
dynamics in the vicinity of unavoided level crossing. This
scheme is illustrated in Fig. 5 The photo-excitation of a
vibrational wavepacket takes place far from the level cross-
ing region as shown in Fig. 5A. For this nuclei configura-
tion the ground electronic state is non-degenerate, and
therefore optically allowed transitions occur between filled
and virtual orbitals only. Within the proposed approach
these transitions can be determined by the TDHF calcula-
tions. Further propagation of the excited wavepacket
shown in Fig. 5B is due to the quantum mechanical or
tic MD

PR

PR

citation of vibrational wave-packet at the energy �hxPM in the region away
irtual orbitals exist. (B) Quantum mechanical/semiclasscial propagation of

ssing region the mid-gap states appear, and associated response can be
he mid-gap transitions.
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semiclassical molecular dynamics. Once the wavepacket
reaches the level crossing as shown in Fig. 5 (C), the mid-
gap states appear corresponding to the degenerate ground
electronic state. Wavepacket dynamics in this region are
non-adiabatic and the optical transitions which carry infor-
mation about it are mixed transitions to the mid-gap states.
Accordingly, they can be probed with the laser pulse tuned
to the mid-gap transition energy. The time evolution of the
signal should reflect specific features, e.g., changes in the
transition selection rules associated with the non-adiabatic
wavepacket dynamics. Specific determination of these fea-
tures can be done after the implementation of the proposed
technique into computational code and performing
detailed simulations for specific molecular systems. Pro-
posed scheme can be further extended to model coherent
four-wave-mixing experiment.

Further development of the technique includes extension
to TDDFT framework. Both TDHF and the TDDFT fol-
low the dynamics of a similar quantity: a single Slater
determinant that can be uniquely described by an
idempotent single-electron density matrix q (with q2 ¼ q)
[47,50,65,66]. However, they yield different equations of
motion for qðtÞ, stemming from the different interpretation
of qðtÞ. In the TDHF, qðtÞ is viewed as an approximation
for the actual single-electron density matrix [47] whereas
in TDDFT qðtÞ is an auxiliary quantity constrained to
merely reproduce the correct electronic charge distribution
at all times [67,68]. TDDFT is formally exact. However, in
practice it yields approximate results since exact expressions
for the exchange-correlation energy Exc½nðrÞ� and the corre-
sponding potential vxcðr; ½n�Þ in the KS scheme are not
available and are introduced semiempirically. A close
resemblance between TDHF and TDDFT (especially its
adiabatic version) may be established by formulating KS
density functional theory (DFT) in terms of the den-
sity matrix q rather than on the KS orbitals [50]. This for-
mal similarity makes it possible to apply the same
algorithms for solving the equations of motion for density
matrix.

In conclusion, we have proposed a dynamical varia-
tional ansatz to describe the time evolution of the degener-
ate electronic state which occur in the vicinity of unavoided
level crossing. The approach is based on Hamiltonian
equations of motion and determine the evolution of the
whole subspace spanned on the ground state wavefunc-
tions. Adopted geometric picture of the developed formal-
ism provides a complimentary point of view on the
dynamics which can be associated with the Hamilton
dynamics in the tangent spaces of the fibers. Geometric
consideration sheds light onto the internal simplicity of
the derived equations of motion, and in particular the sim-
ple block-diagonal representation of the Poisson bracket.
The derived equations can be used to calculate the spectro-
scopic observables such as transition energies and densities,
and provide with a self-consistent simulation scheme for
investigation of the non-adiabatic dynamics features in
the time-resolved optical response. Further development
of the technique includes extensions to non-adiabatic
TDDFT methods.
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