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Abstract: Absorption spectra of substituted carotenoids
with varying acceptor strength are analyzed using collective
electronic normal modes obtained using the time-dependent
Hartree-Fock (TDHF) technique combined with the INDO/S
semiempirical hamiltonian. Two-dimensional plots of the col-
lective excitations in real space show an off-diagonal size as-
sociated with relative motion of electron - hole pairs created
upon optical excitation and a diagonal size representing the
pair’s center of mass motion. By varying the polyene chain
length we show that the response of symmetric molecules is
controlled by “bulk” delocalized excitations with coherence
size ∼ 12 double bonds whereas the response of short po-
lar molecules is dominated by a localized ”charge-transfer”
excitation created at the acceptor end with coherence and
diagonal lengths ∼ 12 and ∼ 17 double bonds respectively.

I. INTRODUCTION

Substituted conjugated molecules have interesting op-
tical properties which reflect the interplay of the donor-
acceptor strength and the type and length of the connect-
ing bridge [1–5]. The charge-transfer, energy-transfer,
and isomerization of such systems have been thoroughly
investigated and form the basis for our understand-
ing of the photophysics and photochemistry of complex
molecules [6–8]. Many photophysical and photochemi-
cal biological processes involve conjugated chromophores
such as porphyrins and chlorophylls. The nonlinear opti-
cal properties of these systems have also been studied in
search for new organic optical materials with large non-
linear polarizabilities [4,5,9–14].

In this article we calculate and analyze the electronic
spectra of a family of acceptor substituted carotenoids
[11] using the recently developed collective electronic os-
cillator (CEO) approach [15–18]. The carotenoids form
one of the most important groups of natural pigments,
and are found in all families of vegetables and animal
kingdoms [19,20]. In photosynthetic cells these molecules
appear in antenna complexes that absorb the light and
transfer excitation to the reaction centers [21,22]. In ad-
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dition they serve as antioxidants by quenching the chloro-
phyll triplet via energy transfer and preventing the for-
mation of singlet oxygen. The photoisomerization of the
closely related retinoids plays a role in various physiolog-
ical functions (e.g. the primary process of vision) [21,23].

The theoretical interpretation of spectroscopic mea-
surements usually involves an extensive numerical effort.
The optical response of organic molecules is tradition-
ally represented in terms of their global many–electron
eigenstates [24,25]. The techniques used to calculate
these eigenstates are usually limited by computational
time and memory to small molecules. For example, the
Configuration-Interaction / Sum-over-States (CI/SOS)
method [1,10] based on the expansion of the Stark en-
ergy of the molecule in powers of electric field, involves
the calculations of both the ground state and excited
states wavefunctions and the transition dipole moments
between them. The global eigenstates carry too much
information about the system, which makes it hard to
use them efficiently in the interpretation of optical re-
sponse and in the prediction of various trends. Many of
the interesting ground state properties may be explained
by the reduced single-electron density matrix [26,27]

ρ̄mn ≡ 〈g|c+
mcn|g〉, (1.1)

where c+
m(cm) are creation (annihilation) operators of

an electron at the m’th atomic orbital, and |g〉 is the
ground state many-electron wavefunction. The diagonal
elements ρ̄nn represent the electronic charge density at
the n’th orbital. These elements are used in various pop-
ulation analyses (Löwdin, Milliken) to prescribe a portion
of charge to specific atoms and are commonly visualized
using contour charge density maps. The off-diagonal ele-
ments, m 6= n, represent the bonding structure (i.e. bond
orders) associated with a pair of atomic orbitals and are
useful in interpreting the chemical bonding pattern along
the molecule [28–31]. In the CEO approach presented
here, the microscopic electronic dynamics underlying the
optical transitions between the ground state and an elec-
tronic excited state |ν〉 is expressed using the matrix ξν ,
with matrix elements

(ξν)mn = 〈ν|c+
mcn|g〉. (1.2)

The optical response involves only reduced information
about the global eigenstates. This information is con-
tained in the matrices ξν . To see this we note that the
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molecular dipole is a single-electron operator which may
be expanded in the form

P =
∑
mn

µmnc+
mcn, (1.3)

where µmn is the transition dipole matrix element. The
frequency-dependent linear polarizability α(ω) then as-
sumes the form

α(ω) =
∑

ν

∑
mnkl

µmnµkl
2Ων(ξν)mn(ξν)kl

Ω2
ν − (ω + iΓ)2

(1.4)

where Γ is a relaxation rate and ν label global excited
eigenstates |ν〉 with energies Eν and transition frequen-
cies Ων ≡ Eν − Eg. Eq.(1.4) implies that the matrices
ξν and the corresponding frequencies Ων contain all nec-
essary information for calculating the linear optical re-
sponse. Calculating ξν through Eq. (1.2) implies that
we first need to calculate the eigenstates |ν〉 and |g〉 and
then use them to compute the matrix element. However,
we will calculate the matrices ξν and frequencies Ων di-
rectly using the time-dependent Hartree-Fock (TDHF)
approach which allows us to avoid the tedious calcula-
tions of global eigenstates [15,18,17]. The TDHF scheme
is based on calculating the time-dependent density ma-
trix

ρmn(t) ≡ 〈Ψ(t)|c+
mcn|Ψ(t)〉

= ρ̄mn +
∑

ν

aν(t)(ξν )mn + a∗
ν(t)(ξ+

ν )mn, (1.5)

where Ψ(t) is the many-electron wave-function of the
molecule driven by the external field. The matrices ξν ap-
pear as eigenmodes of the linearized TDHF equation with
frequencies Ων . The diagonal elements of ξν (n = m)
represent the net charge induced on the n’th atomic or-
bital by an external field, whereas (ξν)mn n 6= m is the
dynamical bond-order representing the joint amplitude
of finding an electron on orbital m and a hole on or-
bital n. We shall refer to ξν as electronic normal mode
since they represent collective motions of electrons and
holes. They are the electronic analogues of vibrational
normal modes used in the interpretation of infrared and
Raman spectra. By displaying the matrices ξν using
two-dimensional plots we establish a direct real-space
connection between the optical response and motions of
charges in the molecule upon optical excitation. The elec-
tronic modes carry less information than the global eigen-
states but substantially more than required for calculat-
ing molecular polarizabilities. The matrix elements µmn

of the polarization operator are nonzero only for over-
lapping orbitals, which is the case when orbitals m and n
are centered either on the same atom or on nearest neigh-
bors in the molecular structure. Eqs.(1.4) and (1.2) then
imply that α(ω) only requires near-diagonal matrix ele-
ments of ξν . However in order to develop a clear physical
picture of the optical response it is essential to consider
all matrix elements of the modes (including those that do

not contribute directly to α(ω) since µmn = 0). Another
notable advantage of the CEO approach is that, unlike
CI calculations, it is size-consistent. This implies that all
calculated properties will show the proper scaling with
size in the large molecule limit.

Our analysis shows that it is very difficult to disen-
tangle the effects of donor-acceptor and bridge length
on the spectroscopy of molecules with relatively short
bridges. To obtain a clear picture of the optical re-
sponse of acceptor-substituted molecules we found it in-
structive to study the size-dependence of optical prop-
erties starting with very long bridges. In these systems
the effects of the acceptor and the bridge regions can
be clearly separated. Optical properties of acceptor-
substituted molecules with shorter bridges can then be
attributed to quantum confinement, which is important
when the bridge size becomes comparable to the coher-
ence length LI . This analysis is reminiscent of the de-
scription of exciton confinement in semiconductor nanos-
tructures [32] where LI is given by the Wannier exciton
diameter [33–35].

In Section II we investigate the ground-state proper-
ties of several acceptor - substituted carotenoids studied
experimentally in [36,11], using the ground-state density
matrix calculated from the INDO/S hamiltonian, as de-
scribed in Appendix A. Real–space analysis of the optical
response of these molecules is carried out in Section III
by solving the TDHF equations which use the ground
state density matrices and as an input. Details of the
calculations are given in Appendices B – D. Previous
applications of the CEO were based on the Pariser-Par-
Pople (PPP) hamiltonian which is parameterized to a
limited class of molecules. The combination with the
INDO/S hamiltonian presented here allows us to calcu-
late the optical properties of a broad range of molecules
without tuning any empirical parameters. Linear absorp-
tion and off-resonant quadratic and cubic polarizabilities
of these molecules are calculated, and their scaling with
size in neutral and polar molecules are investigated using
two-dimensional plots of the dominant electronic modes.
In Section IV the ground-state properties of large donor-
acceptor substituted molecules are analyzed. Finally we
discuss and summarize our results in Section V.

II. SIZE-SCALING OF THE GROUND –STATE
DENSITY MATRIX.

The six carotenoids listed in order of increasing
acceptor-strength in Fig. 1 were synthesized and their
optical electronic spectra measured in [36]. Betacarotene
(1) is a symmetric nonpolar molecule. In the other
molecules one end was substituted with an acceptor
group.

We first calculated the Hartree-Fock ground-state den-
sity matrices. Optimal ground-state geometries were ob-
tained at the AM1 level using Gaussian-94. The ZINDO
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FIG. 1. Six acceptor-substituted carotenoids [11,36] listed
in order increasing acceptor strength. Repeat units number-
ing used in two-dimensional plots is given for molecule1.

code was used next to generate the INDO/S hamilto-
nian (Appendix A). This Hamiltonian assigns a single
s-type basis function to hydrogen atoms and four ba-
sis functions (s,px,py,pz) to all other heavy atoms of
these molecules. The orbitals s,py,pz on the carbons
in the chain are sp2 hybridized and form the molecu-
lar σ-bonding skeleton. Qualitatively, only px orbitals
perpendicular to the molecular plane participate in the
π-bonding network and are responsible for the lowest
optical excitations. Assuming that σ-electrons do not
contribute to the ground state acceptor - bridge charge
redistribution and to the optical properties, we sorted
out all K × K (K being the total basis set size) density
matrices, retaining only elements corresponding to px or-
bitals. The resulting k × k matrices (where k < K is the
number of px orbitals of heavy atoms) were displayed as
contour plots. The ground state density matrix elements
have the following physical significance: the diagonal el-
ements (n = m) represent the π-electron charge at the
m’th atom, whereas the off-diagonal (n 6= m) elements
reflect the π-bond-orders between n and m atoms 1. We

1This applies for the polyenic chain but not to some atoms
at the ends of molecules, where other types of hybridizations
are formed. Since our goal is to explore the dynamics of the
π-electron system in the chain, we will use this interpretation.
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FIG. 2. Contour plots of ground state density matrices for
(A) neutral N(10) (compound 1) and (B) polar P (10) (com-
pound 6) molecules. The color code is shown in the upper
panel. The structures at the ends of molecules are shown by
rectangles.

thus end up with the same interpretation of the density
matrices as used previously for the simpler PPP hamil-
tonian [37,17].

The effect of the acceptor on the molecular ground
state can be interpreted by using contour plots of the den-
sity matrices. The absolute values of the reduced single-
electron ground-state density matrix elements |ρ̄nm| of
betacarotene (1) are shown in Fig. 2A. The axes repre-
sent carbon atoms. (The bridge atoms are labeled 1-18
as indicated in Fig. 2). The parts corresponding to the
end structures are marked by rectangles in the corners
of matrix. The chain’s density matrix is dominated by
the diagonal and near-diagonal elements, reflecting the
bonds between nearest neighbors. The nine bridge dou-
ble bonds and two double bonds located at the ends are
clearly identified. The ground-state density matrix of
molecule 6 (with the strongest acceptor) is displayed in
Fig. 2B. The decrease of π-electron density in the bridge
(along the diagonal of the matrix) near the acceptor is
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FIG. 3. Dipole moments (A), total charge on the acceptor
(B), frequency of the lowest transition (C), linear α(0) (D),
quadratic β(0) (E), and cubic γ (F) off-resonant polarizabili-
ties for six carotenoids. The ordinate axes are labeled by com-
pound number according to Fig.1. α, β, and γ are in the units
of eÅ2V −1 [1.441×10−23esu], eÅ3V −2 [4.323×10−29esu], and
eÅ4V −3 [1.297 × 10−34esu] respectively.

N(n)

P(n)
S

O

NC

CN

O

n

n
FIG. 4. Structures of the neutral N(n) and polar P (n)

(substituted by the strongest acceptor) molecules. Calcula-
tions were done for chain lengths of n =10,15,20,30,40 double
bonds.

clearly seen. Other calculated ground-state properties
of all molecules are displayed in Fig. 3. The growth of
ground-state dipole moments (panels A) and the total
charge on the acceptor end (panels B) is commensurate
with increasing the acceptor strength.

To explore the acceptor effect we examined the size-
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of modes a and b in polar P (n) molecule (D and E), and modes
a′ and b′ in neutral N(n) molecule (F and G)) along the chain
for chain length n = 40 double bonds.

scaling of the optical response and its saturation to the
bulk by increasing the polyenic chain length. 2 The
molecular templates shown in Fig. 4 represent two ex-
treme cases: neutral N(n) and polar P(n) molecules.
Some ground state properties of P(40) are displayed in
Fig. 5. We first consider the bond-length alternation pa-
rameter δlj which denotes the difference between the sin-
gle (l2j) and the double (l2j−1) bond lengths in the j’th
repeat unit along the bridge

δlj = l2j − l2j−1, j = 1, . . . , n. (2.1)

(Note that the first repeat unit j = 1 is at the accep-
tor end.) Panel A shows the variation of the bond-length
alternation along the bridge. Panel C represents the vari-
ation of the total atomic charge qA (Eq. (B1)) along the
chain, and panel B shows the integral of this quantity

QA = QAcceptor +
A∑

a=1

qa, (2.2)

2During geometry optimization in long molecules, the geom-
etry of the polyenic chain was constrained to be planar.
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where QAcceptor = 0.69e is the total electronic charge on
the acceptor. These calculations illustrate the interplay
of bulk and boundary (end) effects in electronic struc-
ture of conjugated molecules. The figures show that the
acceptor attracts electronic charge and attempts to in-
vert the chain structure to zwitteronic. The π-electronic
system in response screens the acceptor influence by in-
ducing a positive charge at the acceptor end. The elec-
trons completely neutralize the acceptor at an effective
length of about 10 double bonds, and the other parts of
the molecule are unaffected by the acceptor. This leads
to a saturation of the ground - state dipole moment at
this molecular size.

The acceptor-strength controls the magnitude of the
dipole moment whereas the electronic mobility deter-
mines the effective screening length. Our analysis is
based on following the charge distribution qA and bond-
length alternation δln along the chain. The bond-order
alternation, which is another important characteristic of
electronic structure, is usually strongly correlated with
the bond-length alternation δln [38], and for the sake of
brevity we have used δln as the measure of both quan-
tities. In the next section we will use the ground-state
density matrices to calculate and interpret the optical
spectra of these molecules.

III. ELECTRONIC NORMAL MODES AND
OPTICAL ABSORPTION

The experimental absorption spectra of the family of
substituted carotenoids (Fig. 1) are displayed in Fig. 6
(dashed lines) [36]. The spectrum of the unsubstituted
molecule (1) is dominated by a single peak a. As the ac-
ceptor strength is increased, this peak is red shifted and
a second, weaker, peak b appears. An additional impu-
rity peak i, appearing around 4.5 eV on all experimental
spectra (and absent in our calculations), originates from
the anti-oxidant added to samples in order to increase
their shelf lifetime. Nonlinear polarizabilities of these
molecules showed a dramatic growth with increasing ac-
ceptor strength.

The absorption spectra were calculated by solving the
TDHF equations outlined in Appendix B, using the
ground-state density matrices ρ̄ as an input. The elec-
tronic modes ξν (Appendix C) were calculated using
the DSMA outlined in Appendix D. We have recasted
Eq. (1.4) in the form

α(ω) =
∑

ν

fν

Ω2
ν − (ω + iΓ)2

, (3.1)

where fν = 2ΩνTr(µξν)2 is the oscillator-strength of the
g to ν transition. The six calculated spectra shown by
solid lines in Fig. 6 closely resemble the experimental
spectra. The red-shift of the band edge transition (a)
with increasing acceptor strength is completely repro-
duced: computed frequencies are within 0.07 eV of ex-
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FIG. 6. Calculated (solid lines) and experimental (dashed
lines) linear absorption spectra [36] of six carotenoids. Pan-
els are numbered according to Fig.1. The absolute values of
linear polarizability are given in arbitrary units. Theoretical
spectra were calculated with linewidth Γ = 0.2 eV. Peak i at
4.5 eV appearing on all experimental spectra originates from
the anti-oxidant added to samples

periment, except for compound 4 where the difference is
0.23 eV (see panel C in Fig. 3). The second peak (b)
was reproduced in our calculations with a weaker oscil-
lator strength compared with experiment. This discrep-
ancy may be attributed to two factors: First, as will be
shown later, an acceptor perturbs the second charge -
transfer mode which is dark in the symmetric molecule,
and makes it visible in linear absorption. This influ-
ence depends not only on the acceptor strength, but
also on π-electron mobility, which in turn depends on
the bond - length alternation (in non-alternating chains
the electrons move more easily). Calculations performed
with slightly different geometries (obtained from differ-
ent levels of semiempirical or ab initio geometry opti-
mizations) showed that the relative oscillator-strengths
of these peaks in molecules with strong acceptors are
much more sensitive to the bond - length alternation than
their frequencies (the second peak (b) became compara-
ble and even stronger than the first peak (a) for some
geometries). Therefore, even small differences between
experimental and calculated structures can lead to the
redistribution of intensity of the linear absorption peaks.
Second, the experiments, were carried out in films where
intermolecular interactions, which were not taken into ac-
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count in the present single-molecule calculations, may be
significant. For example, intermolecular charge transfer
[39] is possible between the acceptor and the neutral end
of an adjacent molecule.

The right column in Fig. 3 shows the variation of the
off-resonant first, second, and third order polarizabilities
α(0), β(0), and γ(0) with acceptor strength. We found a
steep growth α(0) and γ(0) by factors 2.5 and 15 respec-
tively from neutral to the most polar case. Experimen-
tally the compound with the strongest acceptor showed a
45-fold enhancement of resonant γ compare to the neutral
betacarotene [11]. To explore this strong acceptor effect
on the polarizabilities we examined the size-scaling and
saturation to the bulk of the optical response in molecules
P(n) and N(n). We expect the acceptor’s influence to de-
crease with increasing molecular size, and in the infinite
chain limit all molecules should have the same linear ab-
sorption spectra with the saturated band-edge transition
Ω∞ and bulk scaling of linear polarizability α ∼ n [38,40].
Starting with N(40) and P (40), we gradually decreased
the chain length and followed the evolution of the opti-
cal response up to 10 double bonds which is the bridge
length of carotenes 1 and 6. The electronic absorption of

1       20      40 

1 
  

  
  

20
  

  
  

40 D

 

 1         40       80

1 
  

  
  

 4
0 

  
  

  
80A

 

 

1         40       80

n=
40 III

III

B

 

 

1       20      40

n=
20

 

C

  

1    10     20

b'

n=
10

F

 

1    10     20

1 
  

 1
0 

  
 2

0

a'

E

 

 

FIG. 8. Contour plots of density matrices for neutral N(n)
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bonds. Middle and bottom panels display the same quantities
but for chain lengths of n = 20 and n = 10 double bonds, re-
spectively. The structures at the ends of molecules are shown
by rectangles.

P (n) (solid lines) and N(n) (dashed lines) are displays in
Fig. 7 for n=40,30,20, and 10 double bonds. The figure
clearly shows that the oscillator - strength of the lowest
frequency peak a of the polar molecules does not change
considerably whereas the second peak b grows with in-
creasing chain length and gradually attains the bulk limit
of the band edge a′ transition of the neutral molecules.

To account for these trends we display in Figures 8
and 10 the absolute magnitudes of the electronic modes
ξν corresponding to both peaks using the same format
of the ground state calculations (Fig. 2). These two-
dimensional plots allow us to gain a clear physical in-
sight into the nature of optical excitations. By displaying
the matrices representing the modes in the site represen-
tation we relate the optical properties directly to mo-
tions of charges in the system. Optical excitations create
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FIG. 9. Sketch of the dipole moments µ = Tr(µQ) gain for
dominant modes in neutral N(n) and polar P (n) molecules
with chain length n = 40 double bonds.

electron-hole pairs; The ordinate and abscissa label elec-
tron and hole respectively. The diagonal elements ξnn

reflect induced charges on various atoms whereas the off-
diagonal elements ξmn show the probability amplitude of
finding an excess electron at the m-th atomic orbital and
a hole on the n-th atomic orbital.

The electronic modes of the two strongest transitions
ξa′ and ξb′ appearing in the spectra of neutral molecules
N(40) (panels A and B) N(20) (panels C and D) and
N(10) (panels E and F) are displayed in Fig. 8. The
electronic modes of the neutral molecule are almost sym-
metric with respect to the diagonal (ξmn ≈ ξnm). This
means that there is no preferable direction of motion for
electron (or holes). The size of the mode along the ‘an-
tidiagonal’ (m − n) direction reflects the delocalization
of the relative motion of the electron-hole pair (exciton
coherence size) whereas the variation along the diagonal
reflects their center of mass motion (i.e. where the optical
excitation resides within the molecule). We shall denote
these the off-diagonal and diagonal sizes, respectively.

A more detailed view of the charge-density-wave i.e.
the variation of the diagonal elements for modes ξa′ and
ξb′ are given in panels F and G of Fig. 5 (This is a
complementary information to Fig. 8 which only gives
the absolute magnitudes of the density matrix elements
and does not show their sign). Optical excitations of
a neutral molecule are localized on the polyenic chain,
with no significant change in mode structures as the
chain-length is increased. ξa′ is a bulk mode with an
off-diagonal coherence size (i.e. size, where the ampli-
tudes of coherences decrease to 10% of their maximum
values) of about 12 double bonds. The dipole moment
µa′ = Tr(µξa′) of this mode is uniformly distributed
along the chain (see Fig. 9). We previously observed
such bulk features in the band-edge transition of poly-
acetylene oligomers [17]. The second oscillator ξb′ is very
different: It has the same off-diagonal coherence size,
but a non-uniform diagonal space distribution. Three
contributions to the dipole moment are clearly identified
µb′ = Tr(µξb′ ) = µI + µII + µIII . The distribution of
the dipole moment for these three regions is schemati-
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FIG. 10. Contour plots of density matrices for polar P (n)
molecule. Top panels: coordinates of the first a (A) and sec-
ond b (B) absorption peaks for chain length n = 40 double
bonds. Middle and bottom panels display the same quantities
but for chain length n = 20 and n = 10 double bonds. re-
spectively. The structures at the ends of molecules are shown
by rectangles.

cally shown in Fig. 9. The strongest electronic coher-
ences are created at the end regions of the molecule (I
and III) with diagonal size of about 17 double bonds.
Weaker bridge coherences are created in the middle of
the chain (II). The total contribution from the ends is
approximately zero, and only the region II contributes to
the oscillator strength of this mode. This mode therefore
makes only a weak contribution to the linear absorption.
However, such charge transfer modes have the potential
to dominate spectra of nonsymmetric structures.

The electronic modes ξa and ξb of the two oscillators
contributing to the linear spectra of the polar molecules
P(40), P(20), and P(10) are displayed in Fig. 10. The
diagonal elements of modes ξa and ξb in P(40) are shown
in panels D and C of Fig. 5. Fig. 10A shows that the low-
est peak (a) in P(40) represents a charge-transfer mode,

7
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completely localized at the acceptor end with the same
off-diagonal and diagonal sizes (12 and 17 double bonds
respectively) as for the neutral molecule. The princi-
pal difference is the appearance of strong electronic co-
herences at the acceptor end. The coherences are more
pronounced in the electron (ordinate) direction. This im-
plies that the created electron-hole pair involves electron
transfer from the acceptor to the chain. The hole resides
primarily on the acceptor, whereas the electron can move
also in region I of the bridge. This tends to reduce the
chain-to-the acceptor electron transfer which takes place
in the ground state. The dipole moment of the mode is
large and localized (see Fig. 9). This mode therefore car-
ries a strong oscillator strength in the optical response of
small chains, and saturates (become constant) in larger
molecules (n > 17 double bonds). The second bulk mode
(b) (Fig. 2B) differs only by the part controlled by ac-
ceptor from the bulk mode of neutral molecule (com-
pared to Fig. 8A). The oscillator - strength of this mode
for molecules with n > 12 double bonds grows linearly.
The absorption spectra of small chains are therefore con-
trolled by the charge-transfer mode (a) whereas the bulk
mode (b) becomes dominant with increasing molecular
size. The different character of these modes is lost for
chains shorter than effective coherence size of 12 double
bonds such as P(10) displayed in Fig. 10(E,F). Quantum
confinement [34] then dramatically affects the modes and
we can no longer classify them as either end or bridge
type. This is clearly evident by starting with large chains
and gradually reducing the size.

IV. THE GROUND STATE OF LARGE
MOLECULES: SOLITONS

Our study allows us to draw some general conclusions
with regard to the ground state of large molecules. Pan-
els A-C of Fig.11 display schematically the bond-length
alternation pattern of several molecules with increasing
acceptor strength. The ground state of an infinitely long
molecule is represented by a bond-order wave which gives
qA = 0, δln = ±δl̄. This means that the ground state is
doubly degenerate with either δln = +δl̄ (double-single
alternation) or δln = −δl̄ (single-double alternation). In
finite molecules, the ground state degeneracy may be
broken even if the molecules are very long. In neutral
polyens qA = 0 at the ends as well as in the bulk, which
implies the formation of double bonds at the ends, giv-
ing δlI > 0 and δlIII > 0. Our calculations show that
δlI = δlIII ≈ δlII . The bond alternation in the bulk can
assume two values, δlII = ±δl̄. However if δlII = −δl̄,
two solitons are needed to transform the boundary val-
ues δlI = δlIII ≈ δl̄ to the bulk values δlII = −δl̄ (see
Fig.11A) which means that the energy of the δlII = −δl̄
configuration is higher than that of the δlII = δl̄ con-
figuration (Fig.11A) by the energy needed to form two
solitons. The ground state is no longer degenerate and is
represented by a homogeneous solution δlII = δl̄. This

δl

+δl

-δl

δl

δl

δl

I II III

A

B

C

D

+δl

+δl

+δl

-δl

-δl

-δl

0

0

0

0

FIG. 11. Schematic variation of bond - length alternation
pattern in the long acceptor substituted molecules with in-
creasing acceptor strength (panels A to C). Two possible con-
figurations corresponding to ground states with δlII = δl̄ and
δlII = −δl̄ are shown by solid and dashed lines respectively.
Panel A. No acceptor, the ground state in non-degenerate
and has to δlII = δl̄ (solid line), the state with δlII = −δl̄
(dashed line) has a higher energy needed to form two soli-
tons. Panel B Intermediate-strength acceptor: the ground
state with δlII = δl̄ is nondegenerate (solid line) and contains
a soliton in the acceptor region. A state with δlII = −δl̄
(dashed line) contains two solitons and has a higher energy.
Panel C. Very strong acceptor; The molecule is separated into
the acceptor with the charge −e and anion with the charge +e
and (N-1) carbon atoms with the ground state representing
the charged soliton. The ground state of an anion may be-
come degenerate since a soliton can be formed anywhere (this
is represented by the dashed line). However Coulomb inter-
action between the acceptor and the soliton leads to its local-
ization near the acceptor (solid line). Panel D: Molecule sub-
stituted by a donor and an acceptor of intermediate strength.
Two ground states with δlII = δl̄ (solid line) and δlII = −δl̄
(dashed line) have the same energy (cyanine like).

illustrates that the nondegeneracy of the ground state of
linear conjugated molecules may be attributed to bound-
ary effects.

By adding an acceptor to one end of a long molecule,
we still have qIII = 0, δlIII ≈ δl̄, however the charge
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density at the acceptor end is qI 6= 0. This leads to a
decrease in the double chemical bond strength at that
end, which implies that δlI < δl̄. If the acceptor is not
very strong, a soliton is needed to transform δl = δlI to
its bulk value, δl = δlII = δl̄, and no soliton is needed at
the other end (solid curve in Fig. 11B. This is confirmed
by our calculations (see Fig.5A). The soliton is located at
the acceptor end of the molecule to minimize the length
of the region where δl is different from its bulk value.
The soliton size represents the length of the region where
the boundary value of δlI transforms to its bulk value.
Charge screening occurs in the same region, as is clearly
shown in Fig.5B and C. A configuration with δlII = −δl̄
(dashed lines in Fig.11B) involves the formation of soli-
tons on both ends and has a higher energy. The strong
acceptor case is displayed in Fig.11C. In this case we have
δlI = −δl̄ and the acceptor attracts an additional elec-
tron and the molecule is separated into two parts: the
edge carbon atom (with charge −e) and a polyacetylene
anion which contains an odd (N − 1) number of carbon
atoms and charge +e. The ground state of an anion
(known as a charge soliton) [41,42] is needed to change
the sign of the bond - length alternation δl = ±δl̄ on the
ends of the molecule. The charge +e is concentrated in
the region where δl undergoes the change from −δl̄ to
+δl̄. The center of this region, x0, and size of the region,
∆x, are usually referred to as the soliton position and size
respectively. The ground state is highly degenerate since
the soliton can be found anywhere along the molecule (
a typical situation is represented by the dashed line in
Fig. 11C). This leads to the formation of a soliton band
in the ground state. The ground state closely resembles
the charged solitons observed in the ground state of an-
ions of degenerate polymers molecules with odd numbers
of carbon atoms [41]. However the Coulomb interaction
between the charged acceptor and the soliton may lead
to localization of the soliton in the vicinity of the edge
(solid line in Fig. 11D). Decreasing the acceptor strength
leads to a reduction of the absolute value, q, of charge ac-
cepted by the edge atom (qA < e) and to the appearance
of bonding between the acceptor and the anion, which
leads to −δl̄ < δlI < δl̄. This situation, which has been
considered above, can be qualitatively represented as fol-
lows: a charged soliton is located at x0 < ∆x/2 and is
cut at x = 0 (the acceptor position) since there are no
carbon atoms at x < 0. If δl(x−x0) is the soliton profile
then δlI = δl(x − x0) and qA < e is the charge in the
soliton in the region −x0 < x < ∞. Note that x0 can
assume negative values as well. The weaker the acceptor,
the smaller is x0: decreasing x0 leads to the decrease of
qA and increase of δlI . In the case of a very weak accep-
tor, x0 → −∞ (i.e. qA → 0, δlI → δl̄). An intermediate
case represented in Fig.11D corresponds to x0 = 0.

If we add an acceptor to one end (I) and a donor to the
other end (III), the ground state degeneracy should occur
at some intermediate donor and acceptor strength corre-
sponding to δlI ≈ δlIII ≈ 0. Two configurations cor-
responding to ground states with δlII = ±δl̄ are shown

in Fig.11D. However in short molecules (L < ∆x) the
ground state will then be non-alternating with δl = 0.
This is known as the cyanine limit [43].

V. DISCUSSION

The optical response of long acceptor-substituted
molecules can be interpreted by dividing them into three
effective regions: the acceptor (I) and the neutral (III)
boundary transition regions at the molecular ends, con-
nected by the bridge (middle) region (II). (In donor-
acceptor substituted molecules, which were not consid-
ered here, region III will represent the donor end.) There
is no charge transfer between these regions, which means
that the optical properties are additive and can be in-
terpreted in the same way as those of molecular aggre-
gates [44]. Region II has the same properties as the
neutral molecule; it has only odd order responses which
scale linearly with size whereas regions I and III have a
fixed size. The ground and the excited states are zwit-
teronic. These effective regions are responsible for even-
order optical responses which naturally do not depend
on the size of the underlying molecule. They contribute
to odd-order response as well, but for long chains these
responses are dominated by the region II contribution
which is proportional to the size. For long chains the
influence of the acceptor has a finite range which leads
to the creation of several coherence sizes. The first co-
herence length, LI , is related to the size on which the
acceptor charge is screened; our calculations show that
the bond-length alternation, δl, is different from its bulk
value in the same region, hereafter referred to as the tran-
sition region. The acceptor may affect the excited states
by either modifying an existing delocalized state in the
transition region or creating new localized states at that
region. Both mechanisms affect optical properties, and
in particular they lead to a non-zero second-order polar-
izability β. We expect that the energy of a delocalized
state should not be affected by the acceptor, whereas the
energy of a localized state should strongly depend on the
acceptor strength. This implies that localized and delo-
calized states may be readily distinguished by resonant
three-wave mixing spectroscopies.

Optical properties of short molecules can be inter-
preted in terms of quantum confinement when the molec-
ular size becomes comparable with the sizes LI and LIII

of the I and III - regions. These constitute additional
coherence diagonal sizes, as opposed to the coherence off-
diagonal size of the neutral molecule, LII , represented
by the width of its bulk mode (see Fig.2F). In this case
the electronic eigenstates of regions I, II, and III are
mixed (see Fig.8C and D) and for smaller sizes the sep-
aration into effective subunits is no longer possible since
charge transfer takes place across the entire molecule (see
Fig.8A and B). The local excitation created by the ac-
ceptor drastically increases the polarizabilities of polyenic
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molecules. The π-electronic system screens the acceptor
influence: the acceptor strength controls the magnitude
of the dipole moment whereas the electronic mobility de-
termines the effective screening length.

The present approach should be particularly suitable
for incorporating nuclear motions [45] by including ad-
ditional nuclear oscillators. The time dependent den-
sity matrix will then allows us to follow the bond re-
arrangement in real time, coherent vibrations, solvent
modes, and isomerization. These effects may be probed
using femtosecond techniques [46,23,51,52]. Recent op-
tical studies of dendrimers have raised interesting ques-
tions with regard to the localization of optical excitations
[47]. The present approach should allow us to address
thise issue properly in a direct and unambiguous way.
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APPENDIX A: THE INTERMEDIATE NEGLECT
OF DIFFERENTIAL OVERLAP /

SPECTROSCOPY (INDO/S) HAMILTONIAN

We consider a general system of N electrons which can
occupy K possible molecular states (N ≤ K) and interact
with an external field. The eigenstates of the molecular
electronic Hamiltonian

ĤΨ = EΨ, (A1)

are approximated as a single Slater determinant Ψ =
|φ1(1)φ2(2) . . . φN (N) >, where {φi} are the molecular
orbitals. Following Roothaan’s procedure [28] they are
expanded as a linear combination of known spatial atomic
basis functions {χα}

φi =
K∑
α

Ciαχα. (A2)

The electronic Hamiltonian assumes the form [28]

Ĥ =
∑
mnσ

tmnc+
mσcnσ +

∑
mnkl
σσ′

〈nm|kl〉c+
mσc+

nσ′ckσ′clσ

− E(t)
∑
mnσ

µmnc+
mσcnσ, (A3)

where subscripts i, j, k, l run over atomic basic functions
and σ, σ′ label spin components. c+

n (cn) are the creation
(annihilation) operators which satisfy the Fermi anticom-
mutation relations in the orthogonal basis set

cmσc+
nσ′ + c+

nσ′cmσ = δmnδσσ′ , (A4)

and all other anticommutators of c+ and c vanish. Here-
after we will focus on the closed-shell case and exclude
spin variables [28]. Generalization to the unrestricted
opened-shell case is straightforward.

The first term in Eq. (A3) is the core-hamiltonian de-
scribing the kinetic energy and nuclear attraction of an
electron

tnm = 〈n| − 1
2
∇2

1 −
∑
A

ZA

|r1 − RA| |m〉

≡
∫

dr1χ
?
n(1)

(
∇2

1 −
∑
A

ZA

|r1 − RA|

)
χm(1), (A5)

where RA is the nuclear coordinate of atom A. The sec-
ond term represents electron-electron Coulomb interac-
tions where

〈nm|kl〉 =
∫

dr1dr2χ
?
n(1)χ?

m(2)
1

r12
χk(1)χl(2) (A6)

are the two-electron integrals. The interaction between
the electrons and the external electric field E(t) polar-
ized along the chosen z-axis is given by the last term in
Eq. (A3), µ being the dipole operator

µnm = 〈n|µz |m〉 ≡
∫

dr1χ
?
n(1)z1χm(1). (A7)

The SCF procedure used to solve the Schrödinger equa-
tion (A1) for the Hartree-Fock ground state [28] is based
on the iterative solution of the matrix equation

FC = Cε. (A8)

This equation may be recast in the form

[F (ρ̄), ρ̄] = 0, (A9)

where the ground-state density matrix is related to the
molecular orbital expansion coefficients (Eq. (A2)) as

ρ̄nm = 2
N/2∑

a

CnaC?
ma. (A10)

F (ρ̄) is the Fock matrix

F (ρ̄) = t + V (ρ̄), (A11)

and the matrix representation of the Coulomb electronic
operator V in the atomic basis set {χα} is

V (ρ̄)mn =
K∑
k,l

ρ̄kl[〈mk|nl〉 − 1
2
〈mn|kl〉]. (A12)
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The INDO approximation [49] limits the basis set to
valence orbitals of Slater type. These atomic orbitals are
assumed to be orthogonal

〈n|m〉 =
∫

dr1χ
?
n(1)χm(1) = δnm, (A13)

and the exchange terms in the two-electron interaction
are permitted only among orbitals located on the same
atom

〈χA
n χB

k |χA
mχB

l 〉 =
{ 〈χA

n χA
k |χA

mχA
l 〉 A = B

〈χA
n χB

k |χA
n χB

k 〉δnmδkl A 6= B

(A14)

where χA
n belongs to atom A and χB

n to atom B. The four-
dimensional matrix 〈χnχk|χmχl〉 thus becomes block-
diagonal in two dimensions. The parameters of the
INDO/S hamiltonian are given in [49,50,53].

APPENDIX B: THE SINGLE-ELECTRON
DENSITY MATRIX AND THE TDHF

EQUATIONS

The TDHF approach provides a convenient approxima-
tion scheme for calculating the optical response of large
molecules. The reduced single-electron density matrix
Eq. (1.1) representing the molecule driven by an external
field is given by ρ(t) = ρ̄ + δρ(t) where the ground-state
density matrix ρ̄ is the key input to this calculations. The
diagonal element of ρnm (n = m) represents the charge
at the m’th atomic orbital, and

qA =
∑
n∈A

ρ̄nn − ZA (B1)

is the net charge on the atom A. The off-diagonal ele-
ments (n 6= m) represent the electronic coherences be-
tween atomic orbitals. In particular, ρ̄nAmB describe the
chemical bonding strength (bond-order) between atoms
A and B. The matrix elements of δρnm(t) represent the
changes in these quantities induced by the electric field.

We start with the Heisenberg equation of motion for
c+
n cm. This equation is not closed since higher order

products will show up in the right hand side. Writing
equations of motion for these higher products will yield
increasingly higher products. This is the famous hierar-
chy of many-body dynamics that is common to classical
and quantum mechanics. To overcome this difficulty we
need a truncation procedure. The simplest assumes that
the many-body wavefunction is given by a single Slater
determinant at all times. This yields the time dependent
Hartree-Fock factorization [48,15,18]

〈c+
n c+

mcn′cm′〉(t) = 〈c+
n cn′〉〈c+

mcm′〉(t)
+ 〈c+

n cm′〉〈c+
mcn′〉(t) (B2)

To derive equations of motion we first decompose δρ(t)
into two components

δρ(t) = ξ(t) + T (ξ(t)), (B3)

where ξ represents the particle-hole (interband) and T (ξ)
represents the particle-particle and the hole-hole (intra-
band) parts. The dimensionality of density matrix ρ de-
fined by the basis set size is K ×K. We assume N occu-
pied and K−N unoccupied orbitals. The dimensionality
of interband and intraband parts are 2N(K − N) and
N 2 + (K − N)2 respectively. The projection property of
the reduced single-electron density matrix ρ(t)2 = ρ(t)
makes it possible to express T (ξ) in terms of ξ

T (ξ) =
(

ρ̄ − I

2

)(
I −

√
I − 4ξ2

)
, (B4)

where I is the unit K × K matrix.
Applying the TDHF anzatz Eq. (B2) we obtain the

following closed equations of motion for ξ.

i
∂ξ

∂t
− Lξ = R(ξ)p−h − E(t) · [µ, ρ̄], (B5)

where L is a linear operator in Liouville space (i.e. su-
peroperator) [15,18,17] given by

Lξ = [F (ρ̄), ξ] + [V (ξ), ρ̄], (B6)

and

R(ξ) = [F (ξ), ξ + T (ξ)] + [F (T (ξ)), ρ̄ + ξ]
− E · [µ, ξ + T (ξ)] (B7)

is the nonlinear part of the equation projected onto the
particle-hole subspace (Eq. (C2)). The Fock operator F
and the Coulomb operator V are defined by Eqs (A11)
and (A12).

The time-dependent polarization which determines all
optical properties is finally given by

P (t) = Tr(µξ(t)) + Tr(µT (ξ(t))). (B8)

Eqs. (B5) and (B4) constitute the basic TDHF equa-
tions [18]. They may be solved by expanding the density
matrix in powers of the external field

ξ = ξ(1) + ξ(2) + · · · ,
T (ξ) = T (2)(ξ) + T (3)(ξ) + · · · . (B9)

The original nonlinear equation (B5) is then transformed
into a hierarchy of linear inhomogeneous equations. To
j-th order we have

i
∂ξ(j)(t)

∂t
− Lξ(j)(t) = η(j)(t), (B10)

where η(j)(t) is given in terms of ρ̄ and lower order
ξ(k) k < j, η(1)(t) = −E(t)[µ, ρ̄], etc.

The linear and non-linear optical response is calculated
by solving Eq. (B10) either in the frequency domain or in
the time domain. In the frequency domain, the procedure
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involves diagonalizing the linearized Liouville operator L
which requires a large memory (∼ N4 where N is the
total number of orbitals in the system). Time-domain
calculations do not require a large memory (∼ N2) and
may be applied for larger systems. However evaluating
commutators in Eqs. (B6) and (B7) is time consuming.
These difficulties limit the application of the TDHF to
basis set size of about 100 functions.

APPENDIX C: THE ELECTRONIC NORMAL
MODES

In this Appendix we review a few properties of the
tetradic linear M0 = N(K − N) dimensional space de-
fined by the Liouville operator L and constrained by the
projection property of the reduced single-electron density
matrix ρ(t) [18,17,15].

The scalar product of any two interband K×K matri-
ces A and B which are the elements of this space is given
by [18,17]

〈A|B〉 ≡ Tr(ρ̄[A, B]). (C1)

Note that 〈A|B〉 = −〈B|A〉. This scalar product thus
behaves more as a classical Poisson bracket rather than
a quantum mechanical scalar product. The projection
property of ρ̄ allows us to project any matrix A into the
particle-hole subspace

Ap−h = [[A, ρ̄], ρ̄]. (C2)

The eigenmodes ξν and eigenfrequencies Ων of L satisfy
the equation.

Lξν = Ωνξν Lξ+
ν = −Ωνξ+

ν , ν = 1, . . . , M0. (C3)

The eigenmodes come in conjugate pairs: Each vector
ξν with frequency Ων has a counterpart ξ−ν = ξ+

ν with
frequency −Ων . Since L is real, the electronic modes can
be taken to be real as well. A classical mode picture of
the optical response is obtained by constructing the elec-
tronic oscillators defined by the coordinate-momentum
variables

Qν =
ξν + ξ+

ν√
2

, Pν = −i
ξν − ξ+

ν√
2

. (C4)

P and Q satisfy the relation

LQν = ΩνiPν , LiPν = ΩνQν , ν = 1, . . . , M0. (C5)

We shall adopt the following normalization of the elec-
tronic modes [18]:

〈ξ+
α |ξβ〉 = δαβ , 〈ξ+

α |ξ+
β 〉 = 0; (C6)

〈Pα|Qβ〉 = iδαβ, 〈Pα|Pβ〉 = 〈Qα|Qβ〉 = 0. (C7)

The electronic oscillator is a pair of conjugated electronic
modes (K × K matrices ξν and ξ+

ν or Pν and Qν) with
the frequency Ων Any interband K ×K matrix A can be
expanded in the basis set of electronic oscillators as

A =
M0∑
ν=1

〈ξ+
ν |A〉ξν − 〈ξν |A〉ξ+

ν

=
M0∑
ν=1

〈Qν |A〉iPν − 〈iPν |A〉Qν . (C8)

APPENDIX D: THE
DENSITY–MATRIX–SPECTRAL–MOMENT

ALGORITHM (DSMA)

The Density–Matrix–Spectral–Moments Algorithm
(DSMA) [17] is an approximate scheme for solving the
TDHF equations which allows us to calculate ξ(j) from
the source (η(j)) by solving Eq. (B10) without a direct
diagonalization of L. This is accomplished by comput-
ing the set of electronic oscillators which dominate the
expansion of η(j). We can take η(j)(t) to be real and
express it in terms of our momentum variables as [17]

η(j) =
M0∑
ν=1

〈ξ+
ν |η(j)〉ξν − 〈ξν |η(j)〉ξ+

ν

=
M0∑
ν=1

〈Qν |η(j)〉iPν =
M0∑
ν=1

µ(j)
ν iPν , (D1)

where η(j) can be viewed either in the frequency or in
the time domain, and µ

(j)
ν =

√
2〈ξν |η(j)〉 = 〈Qν |η(j)〉 are

the real frequency (or time) dependent expansion coeffi-
cients. These electronic oscillators provide a convenient
procedure for solving Eq. (B10) [18]. The formal solu-
tions of Eq. (B10) in the time and frequency domain are

ξ(j)(t) =
∫ t

0

dτe−iL(t−τ)η(j)(τ),

ξ(j)(ω) =
1

ω − L
η(j)(ω). (D2)

Substituting to these equations the expansion (D1) for
η(j) and utilizing the eigenvector properties of the modes

e−iLtξν = e−iΩνtξν , e−iLtξ+
ν = eiΩν tξ+

ν ;
1

ω − L
ξν =

1
ω − Ων

ξν ,
1

ω − L
ξ+
ν =

1
ω + Ων

ξ+
ν (D3)

we obtain the solution of Eq. (B10) in terms of eigen-
modes ξν and ξ+

ν (or Pν and Qν). For example, the j-th
order interband component of the reduced single-electron
density matrix in frequency domain is given by

ξ(j)(ω) =
M0∑
ν=1

µ(j)
ν (ω)

[
Ων

Ω2
ν − ω2

Qν − iω

Ω2
ν − ω2

Pν

]
. (D4)
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Since only few electronic oscillators contribute signifi-
cantly to the source in the expansion (D1), the summa-
tion can be truncated at some effective number of oscil-
lators M � M0 without sacrificing accuracy.

The family of the density-matrix spectral moments is
defined as Sn ≡ Lnη. These moments are used to con-
struct the main DSMA equations [17]

S(j)
n =

M∑
ν=1

Ωn
νµ(j)

ν iPν , n = 0, 2, 4, . . . , 2M − 2, (D5)

S(j)
n =

M∑
ν=1

Ωn
νµ(j)

ν Qν , n = 1, 3, 5, . . . , 2M − 1, (D6)

where S
(j)
0 = η(j) and S

(j)
n = LnS

(j)
0 , n = 1, 2, . . ..

The scalar products K(j)
n ≡ 〈S(j)

n |S(j)
n+1〉, n =

1, 2, . . . , 2M provide a set of equations for the frequencies
Ων and oscillator strength f

(j)
ν = (µ(j)

ν )2Ων :

M∑
ν=1

f (j)
ν Ω2n

ν = K(j)
n n = 0, 1, 2, . . . , 2M − 1. (D7)

The set of DSMA equations [(D5)-(D7)] is now complete.
We start our calculations by computing the moments S

(j)
n

and K(j)
n acting Liouville operator L (B6) on the source

η(j) and using definition of the scalar product (C1). We
then solve Eqs. (D7) for the frequencies Ων and oscillator
strengths f

(j)
ν . These equations are nonlinear but have

a simple analytical solution (Appendix B in [17]). Once
we have Ων and µ

(j)
ν , we solve (D5) and (D6) for the

modes Pν and Qν . The most time consuming part of
the DSMA is the calculation of commutators. Typically
only a small number of modes is required and the DSMA
greatly reduces the numerical effort involving in solving
the complete TDHF equations.

Because of truncation at M oscillators, the resulting
electronic modes do not coincide with the TDHF modes.
Eqs. (C5) hold approximately, but the normalization re-
lations (C7) are satisfied exactly. These effective elec-
tronic oscillators give the best approximation for the
spectrum with a given number of features (M). A no-
table advantage of the DSMA is that we immediately
obtain a global overview of the entire spectrum. How-
ever we cannot increase the number of effective oscilla-
tors M at will to improve the accuracy. High moments
scale exponentially (Kn ∼ Ω2n) and are dominated by
high frequencies. Therefore increasing the number of os-
cillators does not refine the low and middle frequency
range. In practice M is limited to ≤ 10 − 14. Previous
applications of the DSMA using the PPP hamiltonian
which only describes the π-electron system allowed to
calculate accurately spectra of polyens dominating by a
few lines. The INDO/S hamiltonian includes also the
valence electrons, therefore the source is not limited to
π−π? molecular excitations but also depends on a man-
ifold of high-frequency atomic transitions. For molecules

with a complicated electronic structure the DSMA does
not reproduce delicate spectral features such as excita-
tions with a small oscillator strength. To improve the
accuracy we have to apply the DSMA iteratively.

That the DSMA automatically generates orthonormal
effective oscillators (Eqs. (C7)) which satisfy the eigen-
value equation (C5) in an optimal way. Therefore, each
of the effective DSMA modes is a superposition of the
exact TDHF modes with close frequencies. Thus the en-
tire spectrum is divided into several regions. Each ef-
fective oscillator is responsible for part of spectrum and
it is dominated by fewer exact oscillators than the initial
source. This property allows to use any effective mode Pν

as a new fictitious source term η = iPν in the DSMA. The
resulting oscillators are much closer to the exact ones.
This procedure (i.e. using one of the new oscillators as a
new fictitious source for the next DSMA level) can be re-
peated several times until some convergence criteria are
satisfied. In practice this fictitious source id dominated
by a single oscillator (P1, Q1) which converges to the ex-
act one. To recover the next mode, the same iterative
procedure can be applied with one principal difference:
all input sources must be made orthogonal to the lower
modes. Thus by using

η⊥ = η −
recovered∑

k

〈Qk|η〉Pk, (D8)

we exclude all the recovered modes from the source in
the following calculations. We can continue this iterative
process utilizing this orthogonalization procedure to re-
fine several electronic modes. This yields an expansion
of the original source and allows us to focus on desirable
fine features of the spectrum at high resolution.

In principle, the frequency(time)-dependent polariz-
abilities can be calculated by applying the DSMA to the
frequency(time)-dependent source [Eq. (B5)]. This is dif-
ficult because hundreds DSMA runs are needed to scan
accurately all frequency(time) region. In practice we cal-
culate the off-resonant response first. The expressions for
the different orders of static sources η(j) = η(j)(ω = 0)
and intraband components of density matrices T (j) =
T (j)(ω = 0) are given by Eqs. (25) and (26) in [17] or
they may be derived by expanding Eqs. (B7) and (B4)
in powers of ξ. We run the iterative DSMA for each or-
der of the optical response. Calculations give us the sets
of electronic oscillators (Ων , Pν , Qν) which dominate jth
order of responses (j = 1, 2, . . .). The statically induced
density matrix is given by

ξ(j) =
M0∑
ν=1

Tr(ρ̄[η(j)
ν , Qν ])
Ων

Qν (D9)

and

δρ(j) = ξ(j) + T (ξ(j−1), ξ(j−2), . . .). (D10)

The optical polarizabilities are readily obtained using
Eq. (B8)
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χ(j) = − 1
Ek

o

Tr(µδρ(j)(ω = 0)), (D11)

where χ(1) = α(0), χ(2) = β(0), χ(3) = γ(0), etc. The re-
sulting electronic oscillators need to be used to construct
frequency(time)-dependent optical response. Frequency-
dependent response functions with up to the third or-
der response are expressed through the electronic modes
in [18] [Eqs. (5.6) and (E3)]. For example, oscilla-
tors dominating the first, second, and third orders off-
resonant responses contributes to the three, two, and
one-photon resonances in the resonant third order po-
larizability γ(−ω; ω1, ω2, ω3).

In summary, the DSMA calculates the optical response
by solving the TDHF equations for motion of the single-
electron density matrix. The algorithm consists of sev-
eral levels of increasing complexity. First we recover the
entire optical response with low resolution at extremely
low computational cost. All strong transitions are fully
recovered but the fine structure of spectrum is missing.
The iterative DSMA provides more detailed information.
We implemented the simplest version of this procedure
to calculate the optical response of organic molecules.
The band edge transition oscillator was calculated first.
The remaining electronic oscillators were recovered se-
quentially with increasing frequency and were used to
compute optical polarizabilities. 3 This approach allows
us to recover accurately the experimentally relevant low-
frequency spectral region (up to ∼ 8 eV).

[1] Nonlinear Optical Properties of Organic Molecules and
Crystals, Vol. 1, 2, J. Zyss and D. S. Chemla, Eds. (Aca-
demic Press, Florida, 1987).

[2] S. Speiser, Chem. Rev., 97, 1953 (1996).
[3] V. Balzani and F. Scandola, Supramolecular Photochem-

istry, Ellis Harwood,NY (1991).
[4] M. Blanchard - Desce, J.-M. Lehn, M. Barzoukas, C.

Runser, A. Fort, G. Puccetti, I. Ledoux, and J. Zyss,
Nonlinear Optics, 10, 23 (1995).

[5] M. Blanchard - Desce, R. Woltmann, S. Lebus, J.-M.
Lehn, P. Kramer Chem. Phys. Lett., 243, 526 (1995).

3A more general (and complex) procedure is to focus on a
limited frequency region, and pick up physically important
modes by analyzing all the effective oscillators obtained at
each iteration. The remaining modes are included in the dom-
inant modes and only a few modes are necessary. In such a
case we investigate the detailed structure of the chosen spec-
tral region, but the algorithms for sorting out the effective
electronic oscillators need to be developed for each particular
case.

[6] J. B. Birks, Photophysics of Aromatic Molecules, Willey,
New York (1970).

[7] J. Michl and V. Bonacic-Koutecky, Electronic Aspects of
Organic Photochemistry, Willey, New York (1990); M.
Klessinger and J. Michl, Excited States and Photochem-
istry of Organic Molecules, VCH, New York (1995).

[8] G. U. Bublitz, R. Ortiz, S. R. Marder, S. G. Boxer, JACS
119, 3365 (1997).

[9] D. R. Kanis, M. A. Ratner, and T. J. Marks, Chem. Rev.,
94, 195 (1994).

[10] J. L. Brédas, C. Adant, P. Tackyx, A Persoons, and B.
M. Pierce, Chem. Rev. 94, 243 (1994).

[11] S. R. Marder, W. E. Torruellas, M. Blanchard - Desce,
V. Ricci, G. I. Stegeman, S. Gilmour, J. L. Brédas, J. Li,
G. U. Bublitz, S. G. Boxer, Science 276, 1233 (1997).

[12] M. Blanchard - Desce, C. Runser, A. Fort, M. Barzoukas,
J.-M. Lehn, V. Bloy, V. Alain, Chem. Phys., 199, 253
(1995); M. Blanchard - Desce, J.-M. Lehn, M. Barzoukas,
I. Ledoux, and J. Zyss, Chem. Phys., 181, 281 (1994).

[13] M. C. Zerner, K. K. Stavrev, T. J. Meyer JACS, 117,
8684 (1995).

[14] A. Broo and M. C. Zerner, Chem. Phys., 196, 407 (1995);
ibid 196, 423 (1995).

[15] A.Takahashi, S.Mukamel, J.Chem.Phys., 100, 2366
(1994); S.Mukamel, A.Takahashi, H.X.Wang, G.Chen,
Science, 266, 251 (1994).

[16] S. Mukamel, S. Tretiak, T. Wagersreiter, and V.
Chernyak, Science, 277, 781 (1997).

[17] S. Tretiak, V. Chernyak and
S. Mukamel, Chem.Phys.Lett. 259, 55 (1996); S. Tre-
tiak, V. Chernyak and S. Mukamel, J. Chem. Phys., 105,
8914 (1996).

[18] V. Chernyak, S. Mukamel, J.Chem.Phys. 104, 444
(1996).

[19] O. Straub, Key to Carotenoids, Basel; Boston:
Birkheauser, 1987.

[20] G. Britton, S. Liaaen-Jensen, and H. Pfander, (ed.)
Carotenoids, Basel; Boston: Birkheauser 1995.

[21] Y. Koyama and Y. Mukai Biomolecular Spectroscopy,
Part B Edited by R.J.H.Clark and R.E. Hester, John
Willey & Sons Ltd, 1993.

[22] A. Young and G. Britton, George (ed.), Carotenoids in
Photosynthesis, Chapman and Hall, London, 1993.

[23] R.A. Mathies, C.H. Brito Cruz, W.T. Pollard, and C. V.
Shank, Science, 240, 777 (1988).

[24] G. Herzberg, Electronic Spectra of Polyatomic Molecules
(Van Nostrand, Toronto, 1966).

[25] J. F. Ward, Rev. Mod. Phys., 37, 1, (1965); B. J. Orr, J.
F. Ward, Mol. Phys., 20, 513, (1971).

[26] R.McWeeny and B.T.Sutcliffe, Methods of Molecular
Quantum Mechanics (Academic Press, New York, 1976);
E. R. Davidson, Reduced Density Matrices in Quantum
Chemistry (Academic Press: New York, 1976); A. Szabo,
N. A. Ostlund, Modern Quantum Chemistry (McGraw-
Hill: New York, 1989).

[27] H. White, Phys. Rev. B, (1994).
[28] A. Szabo and N. S. Ostlund, Modern Quantum Chem-

istry: Introduction to Advanced Electronic Structure The-
ory (McGraw-Hill, New York, 1989).

[29] R. S. Milliken, J.Chem.Phys., 23, 1833, 1841, 2338, 2343,

14



J. Am. Chem. Soc. 1997, 119, 11408-11419

(1955).
[30] A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev.,

88, 899, (1988); A. E. Reed, R. B. Weinstock, and F.
Weinhold, J. Chem. Phys., 83, 735, (1985).

[31] P. O. Lowdin, Phys. Rev. 97, 1474, (1955); Adv. in Phys.
5, 1, (1956).

[32] H. Haug and S. W. Koch, Quantum Theory of the Opti-
cal and Electronic Properties of Semiconductors, World
Scientific, Singapore, 1994, 3rd ed.

[33] W. L. Wilson, P. S. Szajowski, and L. E. Brus, Science
262, 1242 (1993); L. E. Brus, Feature Article, J. Chem.
Phys. 98, 3575 (1994).

[34] A. P. Alivisaros, MRS bulletin, 20, 23 (1995); Science
271, 993 (1996).

[35] M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, Al. L.
Efros, and M. Rosen, Phys. Rev. Lett., 75, 3728 (1995).

[36] Vincent Ricci, Large Enhancement of Third Order Sus-
ceptibility, MS Thesis, Dept. of Electrical Engineering,
University of Central Florida (1995).

[37] H. Fukutome, J. Mol. Struct. (Theochem) 188, 337
(1989), and references therein.

[38] S. Tretiak, V. Chernyak, and S. Mukamel, Phys. Rev.
Lett. 77, 4656 (1996).

[39] M. Yan, L.J. Rothberg, F. Papadimitrakopoulos, M.E.
Galvin, and T.M. Miller, Phys. Rev. Lett. 72, 1104,
(1994); M. Yan, L.J. Rothberg, F. Papadimitrakopou-
los, M.E. Galvin, and T.C. Miller, Phys. Rev. Lett. 73,
744 (1994); M. Yan, L.J. Rothberg, E.W. Kwock, and
T.M. Miller, Phys. Rev. Lett. 75, 1992, (1995).

[40] S. Mukamel and H. X. Wang, Phys.Rev.Lett., 69, 65
(1992).

[41] A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. -P. Su,
Rev. Mod. Phys., 60, 781 (1988).

[42] A.Takahashi and S.Mukamel, J. Chem. Phys., 103, 7144-
7155 (1995)

[43] F. Meyers, S. R. Marder, B. M. Pierce, and J. L. Brédas,
JACS, 116, 10703 (1994); S. R. Marder, J. W. Perry, B.
G. Tiemann, C. B. Gorman, S. Gilmour, S. L. Biddle, G.
Bourhill, JACS, 115, 2524 (1993).

[44] S.Mukamel, Principles of Nonlinear Optical Spectroscopy
(Oxford, New York, 1995).

[45] G. Zerbi, V. Veronelli, S. Martina, A. D. Schlöter, and G.
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