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The exciton scattering (ES) approach attributes excited electronic states in quasi-1D branched polymer
molecules to standing waves of quantum quasiparticles (excitons) scattered at the molecular vertices. We
extract their dispersion and frequency-dependent scattering matrices at termini, ortho, and meta joints for
m-conjugated phenylacetylene-based molecules from atomistic time-dependent density-functional theory
(TD DFT) calculations. This allows electronic spectra for any structure of arbitrary size within the
considered molecular family to be obtained with negligible numerical effort. The agreement is within 10—
20 meV for all test cases, when comparing the ES results with the reference TD DFT calculations.
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Theoretical understanding and simulation of electronic
spectra in nanosized molecular systems are important areas
of research in physics and chemistry. Commonly used
quantum-chemical methodologies, such as time-dependent
density-functional theory (TD DFT), are generally able to
provide quantitatively correct results [1,2]. However, the
substantial numerical cost of such approaches [O(N?) —
O(N*), N being the system size] makes computations for
large molecules with thousands of atoms prohibitively
expensive. This calls for development of multiscale
ladder-type approaches.

Recently we proposed an exciton scattering (ES) ap-
proach [3] designed for molecular systems where excited
states can be described as strongly bound electron-hole
pairs (excitons) [4—-6]. This picture holds for low-
dimensional (quasi-1D) geometries, where strong
Coulomb correlations result in exciton binding energies
comparable to the optical gap [4,5]. Conjugated organic
macromolecules and molecular wires featuring delocalized
m-electron states, which are promising for numerous tech-
nological applications, are examples of such systems [7—
11]. However, explicit computation of excited states in
large conjugated molecules is not feasible with quantum-
chemical approaches (e.g., TD DFT) that properly account
for electron exchange and correlations. In this Letter we
develop an efficient multiscale modeling procedure based
on the ES approach and demonstrate its remarkable accu-
racy in reproducing the electronic spectra of test polymers.

The excitation quasimomentum k in an infinite polymer
chain is well defined due to its discrete translational sym-
metry. The excitations are characterized by the spectrum
w(k) that relates the excitation frequency w to the quasi-
momentum, as well as by their size /,, i.e., a typical
distance between the electron and the hole. At length scales
longer than [,, the conjugated polymer molecules are
represented by graphs whose edges correspond to linear
chains [8-13], which allows for the development of a
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phenomenological theory. The main idea behind the ES
approach is the representation of excited states in a
branched conjugated molecule by states of quasiparticles
(excitons) on the corresponding graph (see Fig. 1) [3,14].
The picture of plane waves scattered at the molecular
vertices is asymptotically exact in long linear segments,
[ > [,. The computation of the excited state electronic
structure in large molecules is divided into two steps:
(i) retrieving the exciton properties in the molecular build-
ing blocks and (ii) solving a generalized ‘‘particle in a
box” problem. Step (i) involves quantum-chemical calcu-
lations in simple molecular fragments and requires limited
numerical effort. The numerical effort of step (ii) depends
on the number of linear segments rather than on the num-
ber of single-electron orbitals, which substantially reduces
computations in macromolecules.

In a segment « between vertices a and b an exciton wave
function is given by a superposition of plane waves:

¢a(xa) = Qu,ab exp(ika,abxa) + Ao ba exp(ikoz,baxa)r (1)

where an integer x,, labels repeat units in the segment. The
quasimomenta k, ,;, and k, j, are related to the excitation
frequency w through the exciton spectrum: w(k, ) =
w(k, p,) = w. Time reversal invariance in the absence of
magnetic field results in the symmetric spectrum w(—k) =
w(k); hence, k, 4, = —kgqp,. Denoting the values of the
outgoing and incoming plane waves at a joint a by 1#&2) and

1#5;,), respectively, we have the following relation in the
segment of [, repeat units [15]:

o) = o) expliky.ap(@)l,] )

A frequency-dependent n X n scattering matrix FE{”L B(w)
describes a vertex of degree n:

Pod = S T (@), 3)

BDa
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FIG. 1. Top: within the ES model, the molecule is represented

by a graph, and excited states are viewed as quasiparticles
described by wave functions. Middle: dispersion of the lowest
exciton band in phenylacetylene oligomers derived from the TD
DFT calculations. Bottom: phases parametrizing the ES matrices
at the chain termini (¢7), ortho (¢, and 6,), and meta (¢, and
6,,) joints.

Equations (2) and (3) constitute a frequency-dependent
homogeneous system of linear equations with the same

number of equations and unknown amplitudes ¢£§). Given
the exciton dispersion w(k) and the ES matrices I', ,5(w),
the values of w for which the system has nonzero solutions
provide the transition frequencies between the ground and

excited states, whereas the amplitudes sz;—;) determine the
spatial distribution of the excitations.

While the ES approach can be applied in any low-
dimensional system (e.g., conjugated polymers, molecular
quantum wires, and carbon nanotubes) featuring tightly
bound excitons, we focus on a particular class of molecules
that consist of phenylacetylene (PA) linear chains without
extraneous vertices (see the insets in Figs. 2 and 3).
Conjugated PA oligomers are the building blocks for
many macromolecules such as dendrimers [11-13]. We
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FIG. 2. Top: electronic spectra calculated using the ES model
and direct TD DFT computations for selected compounds in-
cluding linear chains (P); ortho (O) and meta (M) molecules are
shown in the insets. Bottom: deviations between the ES and TD
DFT results. The agreement improves for larger compounds.

use model chemistry for excited states based on the TD
DFT [16]. The geometry optimization of each structure
is followed by the calculation of up to 20 excited states
using the Gaussian 03 software [17] with the 6-31G basis
set and the hybrid Becke-half-and-half-Lee-Yang-Parr
(BHandHLYP) functional containing 50% of orbital ex-
change. The BHandHLYP model properly describes elec-
tronic excitations in w-conjugated polymers as tightly
bound excitons [18], which results in correct size-scaling
trends of the chain polarizabilities [19]. Exciton wave
functions that characterize joint electron-hole motion are
probed by the TD DFT transition density matrix [14,18]
Pf,f,)n/ = (¥ e, | PO) between the ground state W(©
and the excited state ¥*) with ¢, (c,,) being the electron
creation (annihilation) operators on the mth atomic orbital.

To study scattering from the molecular ends and the
exciton dispersion we consider finite linear oligomers P
(see Fig. 2). The scattering at the ends is described by a
unitary 1 X 1 matrix I'V(w) = exp[i¢(w)], i.e., a uni-
modular complex number determined by its frequency-
dependent phase. Equations (2) and (3) result in the fol-
lowing quantization condition:
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kl = mn— ¢r. “4)

Here [ is the length of the molecule in repeat units, and 7 is
an integer labeling the excited states. In the ES approach,
k(w) and I'(w) are independent of the segment length,
being solely determined by the molecular structures of
the polymer backbone and scattering centers.

We extract k(w) and ¢;(w) from the results for the
excited state energies and the corresponding transition
density matrices in linear molecules of different lengths
(P10-P43, 12 molecules in total). In principle, the exciton
spectrum can be found from the data in very long oligo-
mers, where the effect of the terminal scattering is negli-
gible. The latter can be further retrieved using the data
from shorter oligomers. However, since the numerical
methods are naturally restricted to moderate oligomer
lengths, neglecting the scattering phase in Eq. (4) com-
pletely (or fixing it, e.g., at the hard-wall value ¢+ = 7 for
all energies) would not make a sufficiently accurate ap-
proximation for the spectrum. Simultaneous evaluation of
two smooth functions k(w) and ¢;(w) can be performed
based on the available set of energies w where the func-
tions obey Eq. (4) for different molecular lengths / and
numbers of standing wave nodes (n — 2). We use two
numerical methods dubbed as two-point and four-point
approaches [15], both derived from the Taylor expansion,
and apply the piecewise polynomial least squares fit to
tabulate the functions k(w) and ¢;(w) for their further
use (see Fig. 1). We note that w(k) can be adequately
approximated by a single cosine, which suggests that the
strongest effective interaction in the molecule occurs be-
tween neighboring repeat units. We find a substantial fre-
quency dependence of the scattering phase in the range
7 < ¢r <2, which deviates from the hard-wall reflec-
tion implying ¢y = 7. One can refine the accuracy of the
derived k(w) and ¢7(w) by including TD DFT results from
more and longer molecules.

Next we consider molecules with two linear segments
linked by a symmetric joint through meta (M) or ortho (O)
substitutions (see Fig. 2). The symmetry suggests the
following parametrization of the scattering matrices:

t )) r(w) = sinf(w) explid(w)],

r

r(w) = (Z

Hw) = icosh(w) explip(w)],
(5)

where the reflection r(w) and transmission #() amplitudes
are expressed in terms of two frequency-dependent phases
0(w) and ¢(w). Since in the ES approach only a quantita-
tive difference between the meta and ortho joints appears
in the scattering matrices, the following simple analysis is
valid for both cases. Molecules with equal arms of length /
are symmetric with respect to the joint, and consequently
all excitations there are either even or odd. Equations (2)
and (3) imply two separate quantization conditions:
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FIG. 3. Top: electronic spectra calculated using the ES model
for selected compounds shown in the insets. TD DFT results are
not available for the largest molecules. Bottom: deviations
between the ES and TD DFT results.

2kl =2an*0 — (¢ + ¢7) ¥ 7/2, (6)

where the upper and lower signs correspond to even and
odd modes, respectively, and n is an integer which in-
creases by one for every higher mode of the same parity.
The combinations ¢(w) = 8(w) can be found for any
excited state of corresponding parity by applying Egs. (6)
with k(w) and ¢;(w) already retrieved from linear mole-
cules. Thus, we calculate TD DFT electronic spectra of the
meta- and ortho-conjugated molecules M — [ and O/ — [
for [ = 14, 15; then we use piecewise smooth fitting func-
tions to approximate the combinations ¢(w) *= 6(w) and
obtain these phases separately. The results for both M and
O joints are shown in Fig. 1. Our calculations confirm the
known qualitative properties of the joints [11,13]. Phases
¢ and 0 for the ortho joint are close to those for the ideal
transmission (—7/2 and 0, respectively), whereas meta
joint phases ¢, and 6,, are near the values of the complete
terminal reflection (¢ and 7/2, respectively). This indi-
cates that the ortho joint is almost transparent to excitons
and the meta joint acts as a chain terminus.

The components of the ES model (k(w), ¢r(w), ¢(w),
and 0(w)) enable efficient computation of electronic spec-
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tra in arbitrary PA-based molecular structures with M and
O joints in the energy range corresponding to the lowest
exciton band 3.2—-4.6 eV. The accuracy of the extracted ES
data can be verified by comparing the energies predicted by
the ES model with those obtained from direct quantum-
chemical calculations. Figure 2 shows this comparison for
selected P, M, and O molecules. Overall, deviations of the
ES theory from the reference TD DFT calculations are
within 20 meV even for the smallest test molecules.
Naturally, the accuracy of the ES model increases with
the increasing linear segment length. The excited state
energies seem to be rather insensitive to the non-negligible
ratio of the exciton size to the segment length. Figure 2
shows that the electronic spectra of P and O molecules
have many similarities because the O joint is nearly trans-
parent to the excitons. In contrast, the spectra of the M
molecules exhibit typical features of localized Frenkel
excitons such as the Davydov splitting.

Finally, Fig. 3 shows the calculated electronic spectra of
more complex compounds with M and O joints. In this
case the direct TD DFT results are available for the small-
est molecules only, and the ES model shows excellent
agreement within 10 meV. Notably, the average accuracy
of even high-quality quantum-chemical calculations of
molecular excited states such as TD DFT is about 0.1-
0.3 eV compared to the experimental data [1,2]. Where
available, the results of numerically expensive atomistic
calculations are nearly exactly reproduced by the ES model
with negligible computational expense.

In summary, the ES approach has been used to study
electronic spectra of conjugated phenylacetylene poly-
mers. We extracted the parameters of the ES model from
the TD DFT results in simple PA molecules, although
virtually any quantum-chemical approach capable of de-
scribing correlated molecular excited states would be suit-
able as well. The ES approach, combined with a particular
quantum-chemical method, is designed to predict the elec-
tronic spectra in large molecules. Once the components of
the ES model including the exciton dispersion spectra and
scattering matrices are tabulated, the electronic spectra of
arbitrary structures can be easily obtained. In this Letter we
have considered molecular ends, as well as ortho and meta
joints. Application of the ES approach to the joints of
higher order is left for future studies.

Comparisons with time-consuming full TD DFT calcu-
lations showed deviations not exceeding ~10-20 meV.
This demonstrates the great potential of the ES approach

for computational design of molecular structures with
desirable electronic and optical properties.
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