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Nonadiabatic molecular dynamics simulations, involving multiple Born-Oppenheimer potential en-
ergy surfaces, often require a large number of independent trajectories in order to achieve the desired
convergence of the results, and simulation relies on different parameters that should be tested and
compared. In addition to influencing the speed of the simulation, the chosen parameters combined
with the frequently reduced number of trajectories can sometimes lead to unanticipated changes in
the accuracy of the simulated dynamics. We have previously developed a nonadiabatic excited state
molecular dynamics methodology employing Tully’s fewest switches surface hopping algorithm. In
this study, we seek to investigate the impact of the number of trajectories and the various parameters
on the simulation of the photoinduced dynamics of distyrylbenzene (a small oligomer of polypheny-
lene vinylene) within our developed framework. Various user-defined parameters are analyzed: clas-
sical and quantum integration time steps, the value of the friction coefficient for Langevin dynamics,
and the initial seed used for stochastic thermostat and hopping algorithms. Common approximations
such as reduced number of nonadiabatic coupling terms and the classical path approximation are also
investigated. Our analysis shows that, at least for the considered molecular system, a minimum of
∼400 independent trajectories should be calculated in order to achieve statistical averaging neces-
sary for convergence of the calculated relaxation timescales. © 2012 American Institute of Physics.
[doi:10.1063/1.3680565]

I. INTRODUCTION

The simulation of nonadiabatic molecular dynamics
(NA-MD) has rapidly become an indispensable tool for
understanding complex ultra-fast photophysical processes
such as charge and energy transfer, and non-radiative
relaxation.1–13 Computational modeling is truly a comple-
ment to experiment: it often provides mechanistic information
that cannot be detected through measurement alone or serves
as a powerful predictive tool to stimulate new research. With
the development of femtosecond spectroscopy techniques,
methods for the simulation of nonadiabatic dynamics have
advanced14, 15 to meet the demand. Molecular dynamics with
quantum transitions (MDQT) is a well tested and computa-
tionally tractable surface hopping method for the simulation
of nonadiabatic dynamics. In MDQT, quantum transitions are
incorporated according to the fewest switches surface hop-
ping (FSSH) stochastic algorithm described by Tully.16 This
scheme has become one of the most popular alternatives to
Ehrenfest dynamics17 due to its simplicity and accuracy es-
pecially in cases where mean-field approaches fail to capture
the correct dynamics.18–20

a)Author to whom correspondence should be addressed. Electronic mail:
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MDQT and other varieties of surface hopping methods
have been applied to a broad range of systems concern-
ing different kinds of processes such as electronic coupling
within simple theoretical models,21–25 reactive scattering,26–28

photodissociation of small molecules,29–31 vibrational relax-
ation in clusters and condensed phase,32 proton and electron
transfer,33–35 and photoexcitation of organic molecules.9–13

Nevertheless, the stability of MDQT results to changes in pa-
rameters and the number of trajectories has been extensively
analyzed only for the simplest models, while the robustness of
the method applied to larger systems has received relatively
little attention.36

A generalized framework for MDQT simulations of pho-
toinduced dynamics in large organic molecules involving
multiple coupled electronic excited states requires an “on-
the-fly”37, 38 calculation of energies, gradients, and nonadi-
abatic coupling terms (NACTs). Efficient computation of
these quantities represents one of the major bottlenecks in
the field of theoretical simulations of organic photochem-
istry. Frequently, numerical expense precludes applications
of sophisticated excited state ab initio methodologies to very
large molecular systems requiring many trajectories and de-
tailed sampling of conformational space to reach conver-
gence. In a recent article,39 we have presented a novel
nonadiabatic excited state molecular dynamics (NA-ESMD)
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implementation that provides a computationally accessible
and reasonably accurate description of photoinduced dynam-
ics in large molecular systems consisting of hundreds of
atoms on timescales on the order of tens of picoseconds. The
method uses actual excited state potential energy surfaces and
accounts for a minimal amount of many-body effects in the
excited state [i.e., configuration interaction singles (CIS) or
time-dependent Hartree-Fock (TDHF) approximation]. As a
compromise, utilization of semiempirical model Hamiltoni-
ans delivers superb computational efficiency. The method has
recently been successfully applied to model the photoinduced
dynamics of conjugated distyrylbenzene (a short oligomer of
polyphenylene vinylene, PPV)39 and several small phenylene-
ethynylene dendritic segments.8, 40 Such NA-ESMD simula-
tions are possible due to “on the fly” calculations of excited
state energies,41–43 gradients,39, 44, 45 and nonadiabatic cou-
pling terms39, 46–48 analytically.

The two main obstacles in any MDQT simulation ap-
plied to real polyatomic molecules in condensed phase are the
computational cost of each individual trajectory and the large
ensemble of trajectories explicitly required. Compared to a
single trajectory approach, the numerical cost of computing
multiple trajectories needed for statistical averaging can be
prohibitively expensive.49, 50 Nevertheless, individual trajec-
tories are independent and propagation of a “swarm” of trajec-
tories is trivially parallizable to run computations on multiple
processors.

Our NA-ESMD method39 combines MDQT using the
fewest switches criterion and Langevin dynamics algorithms;
both are stochastic by nature. The stochastic behaviour is sim-
ulated through the use of a random number generator. A dif-
ferent random seed should be used for each independent tra-
jectory, since trajectories with identical seeds starting from
different geometries tend to synchronize over long simulation
times.51 The standard MDQT procedure consists of propagat-
ing a swarm of trajectories starting at different initial condi-
tions and different random seeds. Therefore, the effect of ran-
dom seeds on the overall dynamics of the ensemble should be
addressed. That is, the extent to which the observed dynamics
of the statistical average depends on the initial random seed
assignment.

NA-MD simulations involve the simultaneous propaga-
tion of quantum electronic coefficients and classical nuclear
coordinates. The quantum integration time step is usually re-
quired to be smaller than the classical time step used to in-
tegrate the nuclear equations of motion. Therefore, NACTs
must be obtained at many intermediate times. This task is usu-
ally overcome by using simple linear interpolation and extrap-
olation schemes.21, 36 However, the NACTs are usually sharp
peaks strongly localized in time, a feature that can introduce
large inaccuracies in the interpolation approximation. Our re-
cently developed NA-ESMD framework introduces flexibility
by allowing NACTs to be evaluated a desired number of times
during the interval between classical time steps. A compari-
son of the relative performance of both procedures remains to
be evaluated since the optimum combination of quantum and
classical integration time steps can have a large effect on the
overall efficiency and accuracy of the calculations. These pa-
rameters should depend on each individual system, and sim-

ilar behavior should be expected within the same family of
molecules.

Another aspect to be addressed in NA-MD simulations
is the effective number of NACTs computed during the sim-
ulation. For a simulation involving NS electronic states, there
are NS(NS − 1)/2 non-redundant coupling terms to be com-
puted. The complete set of coupling terms is required for
the exact integration of the equation of motion for the elec-
tronic wave function. In a complete coupling (CC) picture, all
of the NACTs are computed. Various cutting schemes have
been proposed in order to reduce the computational cost as-
sociated with evaluating the nonadiabatic coupling terms.52

In these approximations, only a fraction of the NS(NS − 1)/2
nonadiabatic coupling terms are computed at each integra-
tion time step. However, these schemes invariably introduce
error in the propagation of the electronic wave function. In
one such approximation, known as the partial coupling (PC)
scheme, the coupling between states other than the current
state is neglected, i.e., only coupling terms involving the cur-
rent state are computed, and the number of coupling terms is
significantly reduced to NS − 1. A more severe approxima-
tion assumes that population will only flow from the current
state to the state directly below in energy. This two-state (TS)
model requires evaluation of only one coupling term and up-
ward hops to higher energy are ignored.53 Recent advances in
analytic techniques have helped to mitigate the computational
load of the coupling term39, 46–48 so that cutting schemes are
not needed.

In addition to the NACT cutting schemes described
above, various other approximations are often used to lighten
the computational load of NA-MD routines.6, 7, 20, 54 The
classical-path approximation (CPA) is a severe simplifica-
tion which assumes that nuclear dynamics is independent of
the electronic evolution, thereby circumventing the so-called
quantum back-reaction problem. This allows a single nuclear
trajectory, obtained for the ground electronic state, to be used
to describe the nonadiabatic dynamics following photoexci-
tation. In this sense, nuclear evolution is given a priori. The
CPA is only valid in cases where the forces imparted on the
nuclei change little as the electronic subsystem evolves. Re-
cent advances in the computation of excited state gradients
practically eliminates the need for such approximations; the
actual excited-state forces due to the quantum subsystem can
be calculated analytically.41, 44, 45

Another issue that should be analyzed is the dissipation
effects on the dynamics with use of a Langevin dynamics
scheme within our NA-ESMD framework. A larger empiri-
cal friction coefficient γ potentially leads to faster vibrational
relaxation. The resulting vibrational damping can reduce the
value of the computed NACTs55 with the concomitant effects
on the electronic relaxation. Additionally, the choice of the
friction coefficient can significantly impact the rate of confor-
mational sampling in the system. This has been noted in pre-
vious protein folding simulations in which the dynamics were
either accelerated or decelerated according to the frictional
force.56, 57 In the MDQT approach, preparation of the initial
conditions is a critical preliminary step in the simulations.
The initial sampling of conformational space (before any elec-
tronic excitation takes place) should be adequate to represent
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the equilibrated ensemble of molecules at given thermody-
namic conditions. Typically, this requires computing a long
Born-Oppenheimer (BO) ground state trajectory of the sys-
tem with parameters (temperature T and friction coefficient γ )
consistent with the future excited state simulations. Therefore,
the minimum time required to achieve the adequate ground
state conformational sampling should be evaluated.

In this article, we extend our previous work to study the
effects that the number of trajectories and various parame-
ters have on the NA-ESMD simulation of distyrylbenzene.
Various user-defined parameters are analyzed: classical and
quantum integration time steps, the number of nonadiabatic
coupling terms to be considered, the value of the friction co-
efficient for Langevin dynamics, and the initial seed used for
stochastic thermostat and hopping algorithm. Our analysis
demonstrates the flexibility and robustness of the NA-ESMD
framework to variation of any of these parameters.

Section II provides a brief description of the theoretical
approach used in our simulations including a discussion of the
Langevin equation of motion and the implementation of the
surface hopping methodology. The results of our numerical
simulations of photoexcited dynamics in distyrylbenzene are
presented in Sec. III including a detailed analysis of the tested
parameters such as optimum integration time steps, the num-
ber of trajectories used for statistical averaging, and the ran-
dom number seed. Calculation of NACTs and NACT cutting
schemes are also discussed, and the validity of the classical-
path approximation is analyzed. Finally, the impact of the fric-
tion coefficient for Langevin dynamics is investigated with
special consideration for the effect on ground state conforma-
tional sampling. Our findings are summarized in Sec. IV.

II. THEORETICAL METHODOLOGY

The NA-ESMD model combines the FSSH algorithm, as
it is used in the MDQT method,16, 21 with “on the fly” cal-
culation of the electronic energies, gradients, and nonadia-
batic coupling vectors for the excited states using a collec-
tive electronic oscillator (CEO) package.41, 58–60 The CEO code
is based on well-tested semiempirical models combined with
the TDHF or the CIS formalism to describe correlated excited
states. A detailed description of the CEO code and NA-ESMD
implementation can be found elsewhere.39, 41, 49

MDQT treats the electronic degrees of freedom quan-
tum mechanically, while the motion of the nuclei is treated
classically. A swarm of N classical trajectories is propagated
constituting a photoexcited wavepacket. The nuclei of each
trajectory are evolved on a single adiabatic potential energy
surface (PES) rather than in the mean field, and transitions
between coupled electronic states are possible depending on
the strength of the NACTs. In our NA-ESMD implementa-
tion, the electronic wave function is expanded in terms of the
adiabatic many-electron basis functions φα(r; R(t)) (CIS or
TDHF approximation), representing a mixed state

�(r, R, t) =
∑

α

cα(t)φα(r; R(t)), (1)

where the time-dependent expansion coefficients are given by
cα(t), while r and R are the electronic and nuclear degrees of

freedom, respectively. Substitution of Eq. (1) into the time-
dependent Schrödinger equation yields the equation of motion
for the coefficients cα(t),

ı¯
∂cα(t)

∂t
= cα(t)Eα − ı¯

∑
β �=α

cβ(t)Ṙ · dαβ, (2)

where the equation has been simplified by expressing the adi-
abatic basis functions {φα} as eigenstates of the Hamiltonian.
dαβ is known as the nonadiabatic coupling vector and is de-
fined as

dαβ = 〈φα(R)|∇Rφβ(R)〉 (3)

and Ṙ · dαβ is the scalar nonadiabatic coupling term (NACT)
given by

Ṙ · dαβ =
〈
φα

∣∣∣∣∂φβ

∂t

〉
, (4)

where Ṙ = ∂R/∂t . Within the NA-ESMD framework, these
quantities are calculated analytically.39, 46, 47

The nuclei are propagated using the Velocity Verlet61, 62

algorithm where the time step �t is employed. A constant-
temperature Langevin dynamics algorithm63 with a fric-
tion coefficient γ (ps−1), developed to be consistent with
the velocity Verlet integration technique, is implemented in
the NA-ESMD framework. The Park-Miller “minimal stan-
dard” pseudo-random number generator64 following numer-
ical recipes65 is used to determine both the stochastic force
and to evaluate the acceptance/rejection of hops in the sur-
face hopping algorithm. The variations of the quantum coef-
ficients requires a smaller quantum time step δt ≤ �t where
the number of quantum steps per classical integration step is
given by Nq = �t/δt. The time evolution of the coefficients
in Eq. (2) can be split into real and imaginary parts yielding
a system of coupled equations,39 which can be solved using
the Runge-Kutta-Verner fifth- and sixth-order method based
on a code designed by Hull, Enright, and Jackson.66, 67 The
excited state energies, Eα(R), and NACTs, Ṙ · dαβ , are eval-
uated at intermediate times between classical time steps with
δt time-interval. Meanwhile, the hopping probability is eval-
uated at each classical time step. While hops are attempted
at each classical step, the transition probability is accumu-
lated where a summation is performed over the contributions
of each quantum step using the corresponding value of NACT
for each of them.21, 39 The values of the nuclear coordinates
at t + nδt are obtained using the Velocity Verlet equations
with values of R̈i and Ṙi evaluated at t. Propagating classical
and quantum equations with two different algorithms, as de-
scribed in detail in Ref. 39, can be justified by the advantages
and disadvantages of each.68 Selecting the optimum combi-
nation of these integration parameters can have a large effect
on the efficiency and accuracy of the simulations.

III. NA-ESMD MODELING OF PHOTOINDUCED
DYNAMICS IN DISTYRYLBENZENE

A. Molecular dynamics simulations

The chemical structure of distyrylbenzene, a small
oligomer of polyphenylene vinylene, is shown in Fig. 1. For
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FIG. 1. (a) Chemical structure of distyrylbenzene and (b) a snapshot from the
ground-state trajectory revealing the geometry conformations. (c) Schematic
representation of molecular photoexcitation and intraband relaxation (inter-
nal conversion) via nonadiabatic vibronic dynamics. (d) Schematic represen-
tation of MDQT dynamics. The excited state energy Eα is a function of the
nuclear coordinates R. The nuclear trajectory is propagated on the excited
state Born-Oppenheimer potential energy surface and transitions between
electronic states are allowed.

all simulations presented here, we use the AM1/CIS level of
theory. Our first step is modeling of the photoinduced dynam-
ics of distyrylbenzene at room temperature (300 K). We start
by computing ground state molecular dynamics simulations
consisting of six BO trajectories of 100 ps using the time step
�t = 0.5 fs. The Langevin thermostat63 was used to keep the
temperature constant with a friction coefficient γ = 2.0 ps−1.
The system was heated and allowed to equilibrate to a final
temperature of T0 = 300 K during the first 10 ps of each tra-
jectory. The remainder of each trajectory was then used to col-
lect a set of initial positions and momenta for the subsequent
excited state simulations. Configurations were sampled with
intervals of 0.5 ps for a total of 1080 initial configurations for
the subsequent MDQT simulations in the excited states.

Nonadiabatic excited state trajectories were started from
these initial configurations after a vertical excitation to the
highly excited mAg (or Sm) state. The mAg (or Sm) transition
is a significant state in conjugated polymers corresponding to
a delocalized excitonic transition.69 In experiment, photoex-
cited dynamics is typically studied by ultrafast pump-probe
spectroscopy.70 Experimentally determined absorption spec-
tra for distyrylbenzene place the lowest excited state 1Bu (S1)
at 2.74 eV (calculated vertical transition energy is 3.1 eV) and
the mAg has a 1.72 eV separation from S1 (calculated value is
2.0 eV).69, 71, 72 The ground state S0 has 1Ag symmetry. As a
consequence, the transition 1Ag → 1Bu is optically allowed,
while the 1Ag → mAg transition is forbidden. However, the
mAg state can be populated by the optically allowed 1Bu →
mAg transition.

Here, we focus on the intraband relaxation (see Fig. 1)
as the system passes nonadiabatic regions and transitions be-
tween multiple BO surfaces. In order to determine the mAg

state, the 20 lowest excited states were calculated for each
starting geometry and the transition with the highest oscilla-
tor strength from 1Bu state was selected. We found that for the
Sm state, m varied from 8 to 12 due to conformational disorder
induced by thermal fluctuations at 300 K. Excited state trajec-
tories were propagated for 1 ps at 300 K, and NS = 15 excited
states were included in our simulations in order to allow tran-
sitions to higher energy states. Unless otherwise noted, the
standard parameters used in the NA-ESMD simulations are
�t = 0.1 fs, Nq = 3, and γ = 2.0 ps−1, where 1080 indepen-
dent trajectories are used. In order to compare the effects of
the different tested parameters and approximations among the
various simulations, the steady rise of the S1 state population
was monitored by fitting the curve to the following empirical
equation:

f (t) = A exp (t/τ 1)

A + exp (t/τ 1)
− A

1 + A
. (5)

The timescale for the S1 population growth is given by τ 1

and A is a normalization constant which has been constrained
to satisfy the criteria of f(0) = 0 and f(∞) = 1 to provide
physically relevant population analysis.

B. Optimum set of parameters and convergence

1. Classical and quantum integration time steps

Evaluation of NACTs at intermediate times between two
classical steps is required during the propagation of the quan-
tum coefficients, and linear interpolation schemes21, 36 have
been the standard procedure for this purpose. The validity
range of the interpolated values introduces limitations to the
size of the classical integration step for an accurate propa-
gation of the nuclei. Our NA-ESMD framework introduces
flexibility in the evaluation of NACTs by allowing them to
be calculated a desired number of times between classical
time steps. That is, the calculation of NACTs and excited-state
gradients can be separated. In this way, larger classical time
steps can be employed and the numerical expense for calcula-
tion of gradients can be reduced. However, this computational
savings can potentially be negated if the number of quantum
steps per classical step is too large causing an increase in the
computational cost for several NACT calculations. Therefore,
we have tested various combinations of classical time step �t
and number of quantum steps Nq in our NA-ESMD simula-
tions of intraband relaxation in distyrylbenzene. The tested
parameters as well as the associated normalized CPU time
per trajectory are provided in Table I. For each combination
of parameters, a total of 1080 independent trajectories have
been calculated. The parameters �t = 0.01 fs and Nq = 10
were chosen to represent the accurate “reference” case, while
the other tested parameters range from �t = 0.1 to 2.0 fs with
either 1, 3, or 5 quantum time steps per classical step. We
note that our “reference” case does not necessarily provides
fully numerically converged results by adequately explor-
ing every NACT peak appearing upon state crossings for all
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TABLE I. Classical (�t) and quantum (δt) integration time step parameters
for NA-ESMD simulations and a number of quantum steps per classical step
(Nq) along with normalized average CPU times per trajectory.

�t (fs) δta (fs) Nq CPU time

0.01 0.001 10 1.0
0.1 0.02 5 0.09
0.1 0.033 3 0.07
0.5 0.17 3 0.02
2.0 2.0 1 0.003

aδt = �t/Nq.

trajectories (see our discussion of Fig. 3). However, further
reduction of the timestep parameters is impractical due to sig-
nificant increase of numerical efforts (see Table I) and emerg-
ing dependence of the results on the convergence parame-
ters for Davidson’s algorithm used to obtain excited states
via iterative scheme.39 Indeed, even for all other equal pa-
rameters (initial conditions, time steps, etc.), two trajecto-
ries with different Davidson’s convergence criteria diverge.
This effect particularly escalates for small time steps below
�t = 0.01 fs.

Figure 2 shows the population rise for the S1 state for
each of the tested combinations of classical and quantum in-
tegration time steps. The top panel shows the results for the
standard mAg relaxation dynamics using NS = 15 excited
states and 1080 trajectories. The rapid decay of the initial Sm
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FIG. 2. Comparison of time constants for the S1 population growth for vari-
ous combinations of classical integration time steps, �t, and number of quan-
tum steps, Nq, for the 1 ps NA-ESMD simulations using 1080 trajectories.
(Top) Simulated Sm relaxation includes NS = 15 excited states. The inset
shows the decay in the initial state (Sm) population. (Bottom) Small scale
simulation of S2 relaxation using NS = 3 excited states

population is shown in the inset, and it consistently occurs
within a few tens of femtoseconds. The tested parameters pro-
vide good agreement with the accurate simulation and, as ex-
pected, the greatest deviation is observed for the �t = 2.0 fs
and Nq = 1 simulation. Relaxation time constants were ob-
tained by fitting the rise of the S1 population curves in Fig. 2
using Eq. (5). The time constants for each set of parameters
are listed in Table II along with the percent difference from the
reference result. Here, the accurate case (dashed line) yields
the fastest relaxation dynamics with a time constant of τ 1

= 404 fs while recovery of the S1 population is slower for
the other cases. A comparison between the accurate simula-
tion and the other tested parameters reveals that the percent
difference in the fitted time constants is consistently in the
range of 11 to 15% with the exception of the �t = 2.0 fs and
Nq = 1 simulation where a 19% difference is observed. Over-
all, there is a little difference in the S1 population growth for
the different tested parameters indicating a regime of robust
performance.

Next, a series of small-scale simulations was performed
monitoring the nonadiabatic relaxation following excitation
to state S2 and a total of NS = 3 excited states were cal-
culated. The results of these simulations are shown in the
bottom panel of Figure 2 for each of the tested parameters
using 1080 trajectories, and the fitted relaxation time con-
stants for the rise of the S1 population and the relative dif-
ferences are provided in Table II. Again, we observe that
the accurate case (dashed line) produced the fastest relax-
ation dynamics with a time constant of τ 1 = 634 fs. For the
other parameters, recovery of the S1 population is consistently
slower with little dependence on the chosen integration time
steps.

Although the changes to the integration time steps pro-
duce little variation in the dynamics of the system, there is
a large effect on the computational efficiency. As shown in
Table I, the associated numerical expense for the “reference”
calculation is at least an order of magnitude larger than that
associated with the other parameters. Therefore, the compu-
tational efficiency can be increased without sacrificing the ac-
curacy of the modeled dynamics. The parameters �t = 0.1
and Nq = 3 have been selected as the standard simulation pa-
rameters in order to be consistent with our previous work.39

2. NACT interpolation

A representative trajectory has been selected from the
swarm of trajectories, and the calculated nonadiabatic cou-
pling term coinciding to the first transition, S9 → S8, is plot-
ted in Fig. 3. The number of quantum steps, Nq, was var-
ied while the classical time step was held constant at �t
= 0.1 fs. During a typical simulation, the nonadiabatic cou-
pling undergoes rapid fluctuations as a state crossing or
region of strong coupling is approached; the NACTs are usu-
ally strongly localized peaks. If the chosen value of Nq is not
sufficiently large, then the linear interpolation scheme will
cause the nonadiabatic coupling (and transition probability)
to be underestimated. In this example, the maximum calcu-
lated coupling for Nq = 3 (red circles) is 15% less than the
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TABLE II. Relaxation time constants for the S1 population rise (τ 1) and decay of Sm population (τm) during 1 ps
NA-ESMD simulations for 1080 trajectories using various classical and quantum time steps.

Parameters τ 1
NS=15 (fs) % differencea τ 1

NS=3 (fs) % difference τm
NS=15 (fs) % difference

�t = 0.01, Nq = 10 403.6 — 634.1 — 14.9 —
�t = 0.1, Nq = 5 460.9 14.2 913.2 44.0 14.6 2.0
�t = 0.1, Nq = 3 470.1 16.5 904.1 42.6 14.7 1.3
�t = 0.5, Nq = 3 459.3 13.8 940.1 48.3 15.5 4.0
�t = 2.0, Nq = 1 489.9 21.4 876.6 38.2 19.3 29.5

a% difference with respect to accurate case �t = 0.01, Nq = 10.

maximum value computed using Nq = 5 (black squares). By
analyzing widths of NACT peaks (Fig. 3) occurring due to
state crossings along the randomly selected trajectories, we
found several very sharp peaks, appearing in cases when the
force fields on the states that cross are very different. Con-
sequently, finer time-steps may be necessary to capture such
nonadiabatic transitions.

As an example, we point to the decay of the initial Sm

population discussed briefly in Sec. III B 1. The average
nonadiabatic coupling for the swarm of 1080 trajectories is
shown in the top panel of Fig. 4 for each of the tested set
of parameters �t and Nq. If the coupling term is substan-
tially underestimated, the system can pass through a region
of strong coupling with very low hopping probability caus-
ing an otherwise probable transition to be ignored. These
large differences in the average NACTs are reflected in the
rapid decay of the initial Sm population shown in the inset of
Fig. 2 and in the bottom panel of Fig. 4. To roughly quantify
the decay rates, a single exponential fit f(t) = exp(-t/τm) has
been applied. The resulting time constants and relative devia-
tions are summarized in Table II. The results indicate that the
decay of the initial Sm state is determined by the size of the
quantum time step δt (where δt = �t/Nq). Larger values of δt
produce the slowest Sm decay because they provide lower res-
olution of the nonadiabatic coupling peaks and underestimate
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FIG. 3. Calculated NACTs for the first nonadiabatic transition, Sm → Sm − 1
plotted for a single representative trajectory where the number of quantum
steps, Nq, has been varied while the classical time step is held constant at
�t = 0.1 fs. For smaller Nq = 3 (red circles), linear interpolation causes the
nondadiabatic coupling to be underestimated compared to the larger Nq = 5
calculation (black squares).

transition probabilities. Again, a compromise is required: the
selected value of Nq must be large enough to provide an ad-
equate resolution of the nonadiabatic coupling peaks while
maintaining the computational efficiency of the simulation.

3. Statistical averaging

The MDQT procedure requires calculation of a large
number of trajectories until a statistical convergence is
achieved. For middle size to large polyatomic molecules,
propagating a large swarm of trajectories can be prohibitively
expensive. This commonly leads to improper evaluation of
the minimum number of trajectories required to achieve the
desired accuracy. Therefore, in order to investigate how the
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FIG. 4. (Top) NACTs averaged over the swarm of 1080 trajectories are
shown for the various combinations of classical integration time steps, �t,
and a number of quantum steps, Nq. During the first few fs of the NA-ESMD
simulation all trajectories still remain in the initial Sm state. (Bottom) The
decay rate of the initial Sm state population at early times corresponds to the
computed value of the nonadiabatic coupling.
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separate panel along with the accurate reference calculation �t = 0.01 fs and
Nq = 10. The average time constant is also indicated (�) and the error bars
represent the standard deviation.

convergence depends on the number of independent trajecto-
ries included in the average, we divide the simulation into 6
batches (each batch containing 180 trajectories) and consider
how the results are affected by the addition of each new batch.
All possible unique combinations of batches are considered,
and our analysis include: 180 trajectories (6 combinations of
1 batch), 360 trajectories (15 combinations of 2 batches), 540
trajectories (20 combinations of 3 batches), 720 trajectories
(15 combinations of 4 batches), 900 trajectories (6 combina-
tions of 5 batches), and 1080 trajectories (1 combination of 6
batches).

The time constant τ for the rise of the S1 population
was determined for each combination by fitting the associated
curve to Eq. (5). Analysis of the variance (standard deviation)
from the average time constant at different numbers of tra-
jectories provides insight into the convergence behavior. The
time constants for each of the combinations, the average time
constant, and the variance for each set of tested parameters
�t and Nq are plotted in Fig. 5, and the data is provided in
Table III. The calculated time constants for the S1 population

growth are plotted for all possible combinations of batches
together with the average time constant and the error bars
representing the variance. For a given set of parameters, we
observe only a slight fluctuation in the average time constant
as the number of trajectories is increased. We have attributed
this noise to be a by-product of the error associated with the
fit; we expect that fitting multiple batches and then averaging
their time constants should produce (nearly) the same result as
averaging the multiple batches first and then fitting the data.

Our analysis indicates that for all tested parameters, for
the given molecule, a minimum of 360 trajectories must be
computed in order to reach a converged result with less than
5% standard deviation. This can be further reduced to 2%
if 720 trajectories are included. Generally, we observe that
the improvement in accuracy associated with each additional
batch diminishes so that the benefit from computing extra tra-
jectories is no longer worth the additional numerical cost.

4. Random seed

Each trajectory is assigned a random seed to initialize the
random number generator which is used for both the stochas-
tic force in Langevin dynamics and for accepting or rejecting
state transitions in the surface hopping algorithm. In all simu-
lations, a different random seed is used for each independent
trajectory in order to avoid trajectory “synchronization.”51 To
illustrate the effect of random seed change, the 1 ps NA-
ESMD simulation was repeated for 1080 trajectories using
both the standard time steps (�t = 0.1 fs, Nq = 3) and the
accurate “reference” time steps (�t = 0.01 fs, Nq = 10).
The random seed assigned to each of the 1080 trajectories
was changed compared to the reference simulation while all
other parameters and initial geometries were preserved. The
results are presented in Fig. 6 where the population build-up
curves are shown. As expected, the decay of the Sm popula-
tion is not affected by the change in seed since the associated
time scale is relatively short. However, the alternate seed as-
signments do cause variation of the S1 population for both
simulations. In both cases, the alternate seed choice lead to
about 10% increase in the computed relaxation time constants
τ 1, where the calculated time constants are 470 fs and 404
fs for the original standard and accurate simulations, respec-
tively. The simulation with the alternate seed produced fitted
time constants of 420 fs and 365 fs for the standard and ac-
curate simulations, respectively. This ∼10% variation of the

TABLE III. Average relaxation time constants (τ 1
avg ± τ 1

std , fs) for the S1 population rise computed for 1 ps NA-ESMD
simulations with various numbers of independent trajectories.

Number of �t = 0.01 �t = 0.1 �t = 0.1 �t = 0.5 �t = 2.0
trajectories Nq = 10 Nq = 5 Nq = 3 Nq = 3 Nq = 1

180 404.5 ± 25.3 461.4 ± 19.6 471.3 ± 35.4 459.9 ± 22.4 491.0 ± 30.0
360 403.9 ± 15.2 461.1 ± 11.7 470.6 ± 20.7 459.5 ± 13.5 490.4 ± 18.5
540 403.7 ± 10.7 461.0 ± 8.24 470.3 ± 14.4 459.7 ± 9.4 490.2 ± 13.1
720 403.7 ± 7.6 461.0 ± 5.9 470.2 ± 10.3 459.3 ± 6.8 490.1 ± 9.4
900 403.6 ± 5.1 461.0 ± 3.9 471.6 ± 7.2 459.3 ± 4.6 490.0 ± 6.3
1080 403.6 460.9 470.1 459.3 489.9

Downloaded 18 Apr 2012 to 192.12.184.7. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



054108-8 Nelson et al. J. Chem. Phys. 136, 054108 (2012)

0 250 500 750 1000
0.0

0.2

0.4

0.6

0.8

S
1

S
m

 Δt=0.01, N
q
=10

 Δt=0.01, N
q
=10 alt. seed

 Δt=0.1, N
q
=3

 Δt=0.1, N
q
=3 alt. seed

P
op

ul
at

io
n

(f
ra

ct
io

n 
in

 s
ta

te
 n

)

Time (fs)

0 25 50
0.0

0.5

1.0

FIG. 6. S1 population growth during 1 ps NA-ESMD simulations where the
random seed has been varied. Comparison of the accurate simulation (�t
= 0.01 fs and Nq = 10) and the standard simulation (�t = 0.1 fs and Nq

= 3) are shown. The decay of the initial state (Sm) population is shown in the
inset. The generated random number series affects both the stochastic force
and the surface hopping algorithm.

calculated rates represents a statistical fluctuation due to lack
of complete statistical averaging.

C. MDQT approximations

1. NACT simplification schemes

A common approximation used to mitigate the computa-
tional bottleneck imposed by the evaluation of NACTs is to re-
duce the number of coupling terms included in the simulation.
These approximations, however, not only restrict the classical
hopping between states but also impact the evolution of the
quantum coefficients and prevent quantum population trans-
fer between states which can have a less predictable effect
on dynamics. We have tested the validity of these approxi-
mations by comparing the partial coupling (PC) and two-state
(TS) schemes to the complete coupling (CC) picture. Table IV
contains the number of coupling terms (NC) computed for
each model as well as the computed relaxation time constants.

We first analyze a simple case where NS = 3 ex-
cited states have been computed and the initial state S2 has
been populated. Such few-state models have been extensively
used in previous studies for testing various surface hopping
schemes.73–75 Here our standard NA-ESMD simulation pa-
rameters have been employed using 180 trajectories. The re-

TABLE IV. Number of computed NACTs (NC) and computed relaxation
time constants (τ 1) for 1 ps NA-ESMD simulations using various NACT ap-
proximate schemes.

Model NC τ 1
NS=15 (fs) τ 1

NS=3 (ps)

complete coupling (CC) 1/2 NS(NS − 1) 470.1 1.19
partial couping (PC) NS − 1 937.6 1.39
two-state (TS) 1 3420a 1.46

aCorresponds to the S2 population rise, S1 is not populated during TS simulation with
NS = 15.
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FIG. 7. Approximate NACT cutting schemes (PC and TS) are compared to
the CC simulation. (Top) The S1 population rise during the standard 1 ps NA-
ESMD simulations with 1080 trajectories using NS = 15 excited states (solid
lines). The S2 population rise for the TS simulation is also shown (dashed
line). The inset shows the decay of the initial state (Sm) population. (Bottom)
Same as the top, but using NS = 3 excited states and 180 trajectories with S2
being the initial excited state.

sults for this simple test case are shown in the bottom panel
of Fig. 7, where the time constants for the S1 population rise
are 1.19 ps, 1.39 ps, and 1.46 ps for the CC, PC, and TS
models, respectively. The results for our three-state dynam-
ics are in a good agreement to a similar comparison done by
Pittner et al.52 for the three-state simulation of methani-
minium cation with S2 being initially populated. This work
has shown that both TS and PC approximations produce ac-
ceptable results and reproduce the essential features observed
in the CC modeling. Indeed, for such small scale simulations
involving only a few excited states, the approximate NACT
schemes are valid and work quite well with no significant im-
pact on the observed dynamics.

However, the automatic extrapolation of these approxi-
mations to multi-state simulations can be misleading. It has
not yet been investigated whether these approximations can
be successfully applied to modeling involving larger numbers
of excited states. The number of coupling terms that are omit-
ted from the approximate models increases quadratically with
the number of excited states used (Table IV). The compari-
son of the CC, PC, and TS models for the standard 1 ps NA-
ESMD simulation of mAg relaxation dynamics using NS = 15
excited states is shown in the top panel of Fig. 7. Here TS, PC,
and CC models produce vastly different results. In fact, for the
two-state model S1 is not populated over the entire course of
1 ps dynamics and even S2 (dashed line) has over a seven-fold
increase in relaxation time constant compared to the complete
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coupling model. The partial coupling model fails to reproduce
the CC results as well, indicating that it is not only the elec-
tronic couplings of the current state that are important, but the
nonadiabatic couplings between all pairs of states are needed
in order to capture the true dynamics.

2. Classical-path approximation

The validity of the CPA has been tested by performing
the standard 1 ps NA-ESMD simulation of the Sm state re-
laxation in distyrylbenzene using the nuclear evolution from
a single ground electronic state trajectory as an input for all
excited state trajectories during nonadiabatic dynamics. The
results invoking the CPA and our reference data are compared
in Fig. 8. The time constants τ 1

CPA and τ 1
ref corresponding

to the calculations with and without the CPA implementa-
tion, have values of 622 fs and 470 fs, respectively. While
the relaxation rate is slowing down by about 30% in the CPA,
Figure 8 clearly shows that the relaxation dynamics is dif-
ferent for the two simulations. The most striking result of this
comparison is the slow decay of the initial Sm population with
respect to the reference simulations. In consequence, the S1

population growth rate substantially decreases in the CPA cal-
culation. This fact can be attributed to differences in the con-
formational space followed by both type of simulations due
to different force fields being used. Utilization of the “native”
excited state gradients promotes vibrational relaxation toward
the excited state optimal geometry, thus facilitating more fre-
quent surface crossings. Moreover, according to Eq. (4), the
value of the NACT terms can be strongly affected by the ef-
fective nuclear velocities in the direction of the nonadiabatic
coupling vector. This feature cannot be adequately addressed
in the CPA representation.

D. Friction coefficient for Langevin dynamics

In order to analyze the dissipation effects on the NA-
ESMD simulations, the friction coefficient γ has been varied
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FIG. 8. S1 population growth during 1 ps NA-ESMD simulation using the
classical-path approximation compared to the reference calculation which
uses the actual excited state energy gradients. The inset shows the decay in
the initial state (Sm) population.

TABLE V. Relaxation time constant (τ 1) and average temperature calcu-
lated for various friction coefficients γ for the standard 1 ps NA-ESMD
simulations.

γ (ps−1) τ 1 (fs) Tavg (K) Trms
a (K)

0.2 357.9 324 30
2.0 470.1 302 3.8
20 541.7 300 1.4

aThe reference temperature is T0 = 300 K.

by two orders of magnitude from 0.2 ps−1 to 20 ps−1. Re-
sults are summarized in Table V where the computed time
constants τ 1, as well as the average temperature and its corre-
sponding deviations during the dynamics are shown. The top
panel in Fig. 9 displays the calculated Sm state relaxation in
distyrylbenzene using different γ values. Overall, observed
vibronic relaxation (the decay of the initial state Sm and the
accompanying rise of S1 population) is slowing with increas-
ing γ values. Larger viscosity overdamps nuclear relaxation.
For example, low γ values reveal recurrence in the popula-
tion of the Sm state (see inset in Fig. 9), which disappears
as γ increases due to dephasing and solvent friction. Conse-
quently, the conformational space is sampled at a slower pace
for large γ values, thus reducing the effective rate of state
crossings. Moreover, the faster vibrational damping, particu-
larly in the direction of the nonadiabatic coupling vector, has
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FIG. 9. Comparison of 1 ps NA-ESMD simulations with 1080 trajectories
using friction coefficient values γ = 0.2, 2.0, and 20 ps−1 and a Langevin
thermostat temperature T0 = 300 K. (Top) The S1 population rise. The in-
set shows the decay in the initial state (Sm) population. (Bottom) The time-
dependence of temperature averaged over an ensemble of trajectories. The
larger γ produces high temperature fidelity while a smaller γ causes large
temperature fluctuations.
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the concomitant effect of reducing the values of the nonadi-
abatic coupling terms (see Eq. (4)). All these factors lead to
an increase of the excited state lifetimes (compare the pop-
ulation rise for the S1 state for different γ values in Fig. 9).
The respective time dependence of the average temperature
is shown in the bottom panel in Fig. 9. γ can be thought of
as the coupling between the system and the bath, which trans-
fers vibrational energy to the solvent. As can be seen, larger γ

values lead to a faster transfer of the excess energy to the sol-
vent, while significant vibrational heating is observed for the
smallest γ = 0.2 ps−1 due to energy transfer from electronic
to vibrational degrees of freedom of the molecule.

The friction coefficient also impacts the rate of confor-
mational sampling. We next analyze how the chosen friction
coefficient influences the required length of the initial GS tra-
jectory for MDQT. Three ground-state trajectories of 6 ns in
length were computed using different friction coefficients of
0.2 ps−1, 2.0 ps−1, and 20 ps−1 for each trajectory. After the
molecule had been equilibrated in the ground-state for 1 ns,
the geometries were sampled at 1 ps intervals for 10 ps,
100 ps, 500 ps, 1 ns, or 5 ns (reference simulation) to simulate
trajectories of varying length. In order to determine the de-
gree of conformational sampling within the system we mon-
itor the torsion angle θ corresponding to the rotation around
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FIG. 10. The histogram of the torsion angles θ sampled over the ground
state trajectory for different friction coefficients. Here 1 ns equilibration time
is used followed by a sampling period of 10 ps, 100 ps, 500 ps, 1 ns, and 5 ns
from which the initial geometries and velocities are taken at 1 ps intervals.

the double-bond of the vinylene segment, corresponding to
a “soft” librational motion characteristic for such molecules.
Histograms of the sampled angles are shown in Fig. 10. These
histograms have been normalized to facilitate comparison and
the same y-axis and x-axis scales are used in each panel. The
insets provide a rescaled view of the tail of the histograms.
We expect that upon t → ∞ obtained distributions should be
independent of γ . Indeed, our reference 5 ns spectra are very
similar for all γ values used.

At the 10 ps level, obtained sampling is poor and does not
represent the true conformational space. The 100 ps trajectory
offers substantial improvement while at the 500 ps level, most
of the critical features of the 5 ns spectrum are reproduced.
The insets in Fig. 10 reveal that the degree of sampling for
larger angles is affected by the friction coefficient. For γ =
0.2 ps−1 angles up to θ = 20◦ are well sampled at the 100
ps level. In fact, large angles are oversampled in comparison
to the reference spectrum. For γ = 2.0 ps−1 the same angles
are sampled to a lesser extent and there is less oversampling
with respect to the reference spectrum. However, for γ = 20
ps−1 the 100 ps spectrum undersamples the large angles with
respect to the 5 ns spectrum and has sufficiently less sampling
compared to the 0.2 ps−1 and 2.0 ps−1 spectra. In general, the
ground state trajectory should be lengthened for larger γ val-
ues to obtain complete conformational sampling for a given
molecular system.

IV. CONCLUSIONS

Numerical simulations beyond Born-Oppenheimer ap-
proximation are very expensive. Consequently, for past
decades numerous algorithms developed for nonadiabatic dy-
namics simulations have been tested primarily on only model
systems such as numerically tabulated potential energy sur-
faces of a few excited states for several vibrational coordi-
nates. Advances of quantum chemistry, numerical algorithms
and computer technology currently make it possible to ap-
ply previously developed machinery for nonadiabatic dynam-
ics simulations to realistic molecular systems. Such model-
ing is challenging partially due to the fact that previously
developed and commonly used simplifications that generally
work well in the model case, may fail for realistic molecules
with tens of excited states, hundreds of vibrational degrees
of freedom and strongly varying vibrational frequencies and
electron-phonon coupling constants. Our NA-ESMD simula-
tions presented here clarify some of these issues.

One of the simplest and most effective ways to reduce
numerical cost of NAMD simulations is to increase the classi-
cal and quantum integration time steps. In doing so, however,
one must take caution to ensure that the selected parameters
are within an acceptable range of accuracy and do not pro-
duce any deleterious effects on the simulated dynamics. The
net hopping probabilities calculated from the FSSH algorithm
for a finite time are ideally independent of the integration time
step. When the system is in a region of strong coupling, how-
ever, time step independence may not be maintained since the
value of the nonadiabatic coupling changes rapidly. In these
regions, where a state switch is likely to occur, the dynam-
ics may depend on the chosen integration time step, which
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should correctly resolve the nonadiabatic coupling peaks. The
balance between selecting an appropriate classical and quan-
tum time step (sufficient to resolve the nonadiabatic coupling
peaks) while maintaining a manageable cost, requires close
attention.

One can also imagine an algorithm in which the quantum
time step can be adjusted on the fly by monitoring the values
of d(NACT)/dt and/or d(NACT)/dR to detect when the sys-
tem is approaching a coupling region and then reducing the
quantum time step by some specified factor until the peak is
resolved. However, care must still be taken in selecting the
appropriate parameters used to detect coupling regions. Re-
gardless of the approach, the optimal parameters may differ
from system to system. It is therefore convenient to start by
running a few trial trajectories using different �t and Nq pa-
rameters. The results should provide necessary information
on the width of NACT peaks, which may be very narrow when
the force fields on the states that cross are substantially differ-
ent. Using this approach, the resolution of the nonadiabatic
coupling terms can be verified before running a swarm of tra-
jectories for a large-scale simulation. Using our NA-ESMD
package we have shown that, for future simulations, it is pos-
sible to use larger classical time steps while retaining reason-
able accuracy.

As expected, the assignment of the random seed used for
the stochastic surface hopping algorithm and Langevin dy-
namics has only a small effect on the computed dynamics and
results in less than 10% statistical fluctuations in the calcu-
lated rates. Consequently, any random seed effects will be
washed out after averaging over a sufficiently large number
of trajectories. Although about 400 trajectories is found to
be sufficient to achieve reasonable statistical convergence of
the calculated time constants, a larger number is desirable to
attain better accuracy and to eliminate random seed effects.
In order to eliminate the statistical fluctuations caused by the
random seed assignments, one would have to average not only
over an ensemble of geometries but over a range of random
seeds as well. In other words, multiple trajectories would need
to be computed for the same geometry starting from differ-
ent random seeds. However, we find that the dependence on
the random seed is not large enough to justify extra compu-
tational effort that would be required to compute additional
trajectories. We consider 400 trajectories to be a reliable min-
imum standard for the NA-ESMD simulations. Generally, the
number of trajectories required to reach the converged result
may depend on the amount of conformational variation in the
molecular system under investigation.

Approximations for MDQT simulations should be ap-
plied only after careful consideration. NACT cutting schemes,
which reduce the computational cost associated with the cou-
pling term by evaluating only a portion of the NACTs, offer
increased savings for simulations involving more and more
excited states. However, we have shown that these approxi-
mations are only valid for simulations involving only a few
(2–3) excited states. The transition probability that changes
classical populations depends on the relative change of the
quantum coefficients. These changes are expressed as a sum
of contributions of couplings with all other states and are
proportional to the NACTs (see Eq. (2)). A reduction in the

number of NACT terms leads to a truncation of this summa-
tion and reduces the change in the populations as well as the
hops. Some fraction of the quantum population must be trans-
ferred to the new state before a state switch can occur. In the
truncated models, all pathways for population transfer that do
not involve the current state are eliminated. As fewer cou-
pling terms are included, the pathways to build the quantum
population of the new states become more restricted and the
calculated relaxation becomes slower. In addition to restrict-
ing the population transfer, the TS model confines the system
to a sequential state-by-state relaxation and eliminates decay
pathways in which the system hops over multiple states. Even
though the partial coupling and two-state simplifications may
seem to be very attractive in cases involving many excited
states, this is exactly when they should be avoided.

Another approximation, the Classical-Path Approxima-
tion, resulted in a significant change to the simulated re-
laxation dynamics. This indicates that the forces gener-
ated by the photoexcited electronic subsystem should be
properly included in the nuclear evolution when modeling
molecular systems with substantial electron-phonon coupling
constants.

By virtue of the fluctuation-dissipation theorem derived
by Langevin, the friction coefficient must be proportional to
the stochastic force variance, which controls the temperature
fluctuations.76 As expected, a friction coefficient of 2.0 ps−1

provides balanced temperature coupling without the dampen-
ing effect on the dynamics associated with larger values. Our
results are in good agreement with the findings of Paterlini
and Ferguson63 which demonstrated that γ in the range of 1 to
5 ps−1 is an optimum parameter for Langevin dynamics simu-
lations in water. Overall we observe that larger γ values result
in slower vibrational relaxation of photoexcited states. More-
over, for larger γ values, the ground-state trajectory from
which initial geometries and velocities are sampled for sub-
sequent nonadiabatic dynamics modeling must be lengthened
to obtain adequate conformational sampling. In general, we
find that a 500 ps ground-state trajectory at the room temper-
ature is sufficient to capture the same degree of sampling as
longer 1 ns and 5 ns trajectories.

The proper choice of the friction coefficient would then
clearly affect the time scale of the process, but at least in
the cases presented here, it does not affect the physical pic-
ture behind the intraband relaxation. The actual choice of the
friction coefficient value is a subject of interest. For exam-
ple, the value based on experimental viscosity may be differ-
ent than the value computed from explicit solvent simulations
with current force fields. Little or no work has been done for
solvents other than water. In the future, as we move towards
explicit solvent simulations, the choice of the friction coeffi-
cient value will no longer be a concern.

In summary, we have demonstrated that user-defined pa-
rameters and approximations for nonadiabatic excited state
molecular dynamics simulations have substantial impact on
the quality of calculated results. It is essential to give proper
consideration to each system under investigation when choos-
ing parameters such as integration time steps and the number
of independent trajectories to be computed for the stochastic
surface hopping algorithms.
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