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A nonlinear conjugate gradient optimization scheme is used to obtain excitation energies within the
random phase approximation �RPA�. The solutions to the RPA eigenvalue equation are located
through a variational characterization using a modified Thouless functional, which is based upon an
asymmetric Rayleigh quotient, in an orthogonalized atomic orbital representation. In this way, the
computational bottleneck of calculating molecular orbitals is avoided. The variational space is
reduced to the physically-relevant transitions by projections. The feasibility of an RPA
implementation scaling linearly with system size N is investigated by monitoring convergence
behavior with respect to the quality of initial guess and sensitivity to noise under thresholding, both
for well- and ill-conditioned problems. The molecular-orbital-free algorithm is found to be robust
and computationally efficient, providing a first step toward large-scale, reduced complexity
calculations of time-dependent optical properties and linear response. The algorithm is extensible to
other forms of time-dependent perturbation theory including, but not limited to, time-dependent
density functional theory. © 2008 American Institute of Physics. �DOI: 10.1063/1.2965535�

I. INTRODUCTION

Matter responds to electromagnetic perturbation in a
time-dependent fashion: incident light induces periodic fluc-
tuations within the electron density of a molecule that can be
described by its excitation spectrum. The excitation spectrum
is of fundamental importance to many fields, ranging from
analysis of interstellar clouds to the molecular basis of dis-
ease. Unfortunately, excited states are difficult to calculate
for large complex systems because the scaling of the compu-
tational cost with the number of atoms is prohibitive. While
numerous efforts have been devoted to the development of
reduced complexity algorithms for ground state properties,1

much less work has been focused on efficient algorithms for
excited state response properties. The purpose of this paper is
to investigate a method for variational characterization of the
excitation spectrum that could potentially scale linearly with
system size. This would allow studies of much larger sys-
tems than currently achievable. The excitation spectrum is
described by the random phase approximation �RPA� within
time-dependent Hartree–Fock theory,2–8 but our algorithm is
general and can be applied also to time-dependent density
functional theory.9,10

A. The RPA equation

Concomitant to the development of many body theory to
describe the ground states of molecules, work to calculate
properties of the more elusive excited states employing the
RPA began in the early 1950’s. Avoiding the complications
of addressing independent particles in a many electron sys-
tem, the original, classical mechanical RPA treats the

electron-repulsion terms as part of an ensemble average. The
Fourier transforms of the Coulomb terms have “random
phases” that cancel, hence the name.11,12 Recognition of an
explicit quantum mechanical connection to single
determinants13 led to the demonstration of equivalence be-
tween the RPA and a time-dependent extension of Hartree–
Fock �HF� theory—thus permitting a fully quantum me-
chanical treatment of matter under light-induced
perturbation.14

During the 1960’s, three equivalent formalisms devel-
oped around application of the RPA to calculate excited
states. While these derivations, based upon equations of
motion,15–17 Green’s functions,18,19 and time-dependent
Hartree–Fock theory20–22 are nontrivial,6,7,23 it is sufficient to
note that, for electronic transitions, a description utilizing
only the one-body density is valid—provided that the par-
ticle excitation energies are smaller than the Fermi energy
and two-body correlations can be neglected.20 In this case,
electronic excitations are well described by the RPA eigen-
value equation,6,23 written in the molecular orbital �MO� ba-
sis as

� A B

B* A*
��X�

Y�
� = ��I 0

0 − I
��X�

Y�
� . �1�

The resonant frequencies, or excitation energies, are repre-
sented by the eigenvalues, �. The elements of the matrices A
and B are given by

Aim,jn = �ij�i − �mn�m + Vim,jn − Vij,mn, �2�

and
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Bim,jn = Vim,jn − Vin,jm, �3�

and the elements of Vim,jn are the conventional two-electron
integrals.8 The i, j indices are from the set of occupied states,
while the m, n indices correspond to the virtual orbitals, and
�m and �i denote the Fockian eigenenergies.

The matrices A and B correspond to fourth order tensors
of dimension �Nocc�Nvirt�� �Nvirt�Nocc� spanning the Liou-
ville space of transitions between the occupied �occ� and

virtual �virt� subspaces. These act upon the vectors X� and Y� ,
composed of orbital coefficients, so that particle-hole �ph�
transitions are described by X� while Y� contains the hole-
particle �hp� transitions.

The first two terms of A in Eq. �2� correspond to the
undressed, bare excitations, i.e., those predicted by Koop-
man’s theorem. The last two terms, or B, add a correlation-
based correction to the bare energies of A based upon the
Coulomb and exchange interactions. �Setting Y =0, produces
the Tamm–Dancoff24–26 approximation.� Finally, the unitary
matrix,

N = �I 0

0 − I
� ,

is a unit diagonal metric tensor, serving as an orthonormal-
ization constraint,19,27 defining the indefinite inner product
associated with the space of ph-hp transitions in the molecu-
lar orbital basis.

B. Linear scaling approaches to solving
the RPA equation

The RPA equation was originally derived in the molecu-
lar orbital representation, as in Eq. �1�, and the familiarity of
“molecular orbitals” in discussions involving ground states
render it a popular basis in which to work.10,28 However, use
of the molecular orbital representation requires a full eigen-
function solution of the ground state problem, which typi-
cally requires a computational cost that scales as O�N3�,
where N is the number of basis functions, assumed to be
proportional to system size. A requirement for any reduction
of this computational O�N3� bottleneck is, therefore, to find a
molecular-orbital-free algorithm for the solution of the RPA
equation.

Recently, a number of groups29–34 have achieved a linear
scaling computational complexity for the self-consistent field
�SCF� problem in Hartree–Fock �or density functional
theory� using “fast” algorithms for computation of the Fock-
ian F and sparse matrix algebra �dropping of small elements�
to exploit quantum locality of the density matrix P. If the
transition densities in the time-dependent response equations
also demonstrate quantum locality, then the same fast meth-
ods used for the ground state problem are applicable.30,33

Solving the time-dependent quantum response problem
in O�N� is pivotal in studies of large scale systems currently
inaccessible to conventional methods. Perhaps the most suc-
cessful approach, to date, is to propagate an electron impulse
response through numerical integration in real time,35–38 and
then retrieve the spectra from the time series through Fourier
transformation. More recently, Coriani et al.29 have imple-

mented the matrix exponential approach of Larsen et al.,34

observing an acceleration in computation of excitation ener-
gies for one dimensional systems. Their approach also avoids
the costly diagonalization by utilizing a molecular-orbital-
free representation.

Other recent reduced complexity approaches for time-
dependent response calculations include the linear scaling
techniques by Izmaylov et al.30 and Kussmann and
Ochsenfeld,39 as well as the Sternheimer approach by An-
drade et al.,40 the pseudospectral technique for solving the
Tamm–Dancoff approximation by Ko et al.,41 and the prom-
ising nonsymmetric Lanczos chain method of Rocca et al.42

It is worth noting that in the adiabatic zero-frequency
limit, when �→0, the adiabatic response problem can be
solved with surprising efficiency in linear scaling complexity
using adiabatic density matrix perturbation theory based on
purification.43 Linear scaling density matrix perturbation
theory can be applied to the calculation of response proper-
ties of molecules, both for lower44 and higher order
perturbations,32 as well as for the crystalline problem,31 in-
cluding the electric polarizability.

The reduced complexity approach in this paper is based
upon a well-established variational characterization of the
eigenvalue spectrum as applied to the RPA equation. The key
idea is use of a molecular-orbital-free approach, avoiding the
O�N3� bottleneck. This is achievable through a functional
optimization of an asymmetric Rayleigh quotient as formu-
lated by Thouless more than four decades ago.19 The intent
of this paper is not to present a linear scaling algorithm, but
to analyze and discuss the limitations and feasibility of a
variational optimization of a Thouless functional in the con-
text of reduced complexity calculations.

II. MOLECULAR-ORBITAL-FREE TIME-DEPENDENT
PERTURBATION THEORY

To derive a molecular-orbital-free formulation for the
RPA equation suitable to O�N� calculations, we may start
from time-dependent Hartree–Fock theory,6,23

i
�P

�t
= �F,P�s = FPS − SPF , �4�

where S is the overlap matrix, P is the single-particle density
matrix of the Hartree–Fock ground state, and F is the effec-
tive single-particle Hamiltonian, i.e., the Fockian �or the
Kohn–Sham Hamiltonian, in a generalization to time-
dependent density functional theory�. In an orthogonalized
representation, S becomes the identity matrix.

Looking at the first-order response under variation of the
density matrix �P, we find that

i
��P

�t
= �F,�P�s + �G��P�,P�s, �5�

which, in the frequency domain, gives the RPA linear re-
sponse eigenvalue equation,

�F,x�s + �G�x�,P�s = �x . �6�

Here, x is the Fourier transform of �P and
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G�x� = 2J�x� − K�x� . �7�

The left commutator in Eq. �6� gives the zeroth-order ap-
proximation corresponding to the bare excitations, and the
second commutator, with G�x�, includes additional Cou-
lomb, J�x�, and exchange screening, K�x�. In a generaliza-
tion to time-dependent DFT, the exchange screening is re-
placed by the exchange correlation screening, i.e., the
second-order functional derivative of the exchange-
correlation action.9,45–47 The RPA excitation spectrum is thus
given by the eigenfrequencies �, corresponding to ph-hp
transitions in Eq. �6�.

In a compact form, we can express the RPA equation,
Eq. �6� as

Lx� = �x� . �8�

The vector x� is dyadic, corresponding to the unrolled N�N
matrix x, i.e., xN�N⇔x�N2�1, where the double-headed arrow
denotes both equivalence and a tensorial mapping, or simply
a stack operation.48 For the matrix transpose xT, we use the
corresponding unrolled vector notation x�t. In the following,
we employ a mixed supervector/matrix notation; projection
is most natural for matrices, while the use of a vector nota-
tion lends itself to gradient-based minimization. The action
of L onto x� in Eq. �8� is thus given by

Lx� ⇔ �F,x�s + �G�x�,P�s. �9�

The general formulation of the RPA equation, as ex-
pressed in Eqs. �6� and �8�, is independent of the basis-set
representation and can be applied in a molecular-orbital-free
approach, avoiding an expensive diagonalization scaling as
O�N3� with system size N. In our molecular-orbital-free al-
gorithm, we employ an orthogonalized atomic orbital basis
representation, with S=I, which can be efficiently con-
structed with O�N� complexity through a congruence
transformation,49 e.g., based upon the approximate inverse
Cholesky transform.50 While this work involves solution of
the RPA eigenvalue equation, extension to time-dependent
density functional theory is straightforward. Furthermore, it
is possible, in principle, to extend this approach to calcula-
tions of spectroscopic observables such as the frequency-
dependent polarizabilities, using the RPA eigensolutions.

III. NONLINEAR CONJUGATE GRADIENT
OPTIMIZATION OF THE THOULESS
FUNCTIONAL

While the Lanczos algorithm has been used to iteratively
solve the RPA equation,51 severe problems are experienced
when calculating high-lying excitations, e.g., due to orthogo-
nality constraints.52,53 More importantly, achieving linear
scaling complexity requires sparse linear algebra, which may
preclude the Lanczos algorithm due to numerical
instabilities.42,54–57 Our molecular-orbital-free scheme uti-
lizes a nonlinear conjugate gradient optimization of a Ray-
leigh quotient related to the method of Muta.58 The use of
nonlinear conjugate gradients are particularly advantageous
in the context of linear scaling algorithms because of the

ability to remain robust under an incomplete sparse matrix
algebra, as demonstrated in the work of Simoncini55 and
Notay.59

The core of our algorithm is a variational characteriza-
tion of the excitation spectrum based on the Thouless
functional.19 Thouless demonstrated the possibility of a
variational approach to solving the RPA equation via itera-
tive optimization of an asymmetric Rayleigh quotient. This
functional, when expressed in representation-independent
form, becomes

��x�� =
x� · Lx�N

�x� · x�N�
, �10�

where it is understood that the numerator is computed as in
Eq. �9� and the denominator is given by the absolute value of
the Euclidean vector product denoted by the dot between x�
and x�N. The metric tensor N is included through

x�N = Nx� ⇔ �P − Q�x , �11�

where the subscript N denotes the action of N onto x�, P is the
occupied subspace projector, and Q=I−P is the complemen-
tary projector for the virtual subspace.

Only stationary solutions to the Thouless functional in
Eq. �10�, corresponding to ph-hp transitions between the oc-
cupied and virtual subspaces, are of physical relevance.
Rather than impose ph-hp symmetry explicitly by construc-
tion, it is straightforward to reduce the variational search
space to the physically-relevant solutions by the
projection7,60–62

xP = PxQ + QxP , �12�

or, equivalently,

xP = ��x,P�,P� . �13�

This projection conforms to the ph-hp formalism of the RPA
equation in the MO basis, Eq. �1�, with removal of nonphysi-
cal states and considerable reduction of the size of the varia-
tional search space.

For large, sparse problems, it is possible to construct the
P and Q projectors �or density matrices� with linear scaling
complexity using recursive purification methods.63–65 In the
general case, the metric tensor N, which occurs implicitly in
the Thouless functional, corresponds to the indefinite scalar
product66,67

�v� ,u��P ⇔ Tr�vP
T�uP,P�	 = Tr�vP

T�P − Q�uP	 �14�

with the norm


x
P = 
x�
P = ���x�,x��P� . �15�

We may now consider optimization of the representation-
independent Thouless functional,

��x�� =
�x�,Lx��P


x
P
2 . �16�

This formulation of the Thouless functional implicitly in-
vokes ph-hp symmetry for the excitations, which produces
paired eigenvalues, ��i, as would be associated with the
Liouville operator.68
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To locate the first transition, �i=1�, we minimize Eq.
�16�,

v� i = argmin
x�

��x�� , �17�

which yields the eigenfrequency

��i = � ��v� i� . �18�

The search for subsequent eigenstates requires that lower ly-
ing eigenvectors be either projected out or shifted away, such
that they are not rediscovered by consecutive minimization.
We use a Wilkinson shift69 of the interior eigenvalues, shift-
ing � j to � j +�, outside the region of interest, written as the
shifted Lx�:

Lx� + �
j

i−1

�� j + ���v� j�v� j,x��P + v� j
t�v� j

t,x��P� , �19�

where �v� j	 and �w� j	 are the previously determined RPA
eigenstates and excitation energies, respectively.

Our molecular-orbital-free algorithm utilizes a conven-
tional Polak–Ribière nonlinear conjugate gradient
algorithm,70,71 with restarts, in an orthogonal atomic orbital
�e.g., Löwdin72� basis, as is summarized in Fig. 1. The outer
loop runs over the first M interior eigenvalues, while the
inner loop iterates over the nonlinear conjugate gradient

steps. The projections in lines 4 and 10 eliminate nonphysi-
cal states by imposing ph-hp symmetry, which significantly
reduces the search space. Note: the action of the L operator is
performed through the Fock builds in Eq. �9�. The first L
operation on line 7 is used for calculation of the gradient,
and the second L operation occurs at line 13, which is used
in the line search of line 14.

The Wilkinson shift occurs on lines 7 and 13, while con-
struction of the Thouless functional occurs in line 8. The
gradient g� is defined in lines 9 and 10 and the conjugate
gradient search directions p�k are given by the subsequent
calculations on lines 11 and 12. As in conventional conjugate
gradient methods, p�k is initialized by the steepest descent,
i.e., the negative of the gradient. Restarts for �=0 were not
necessary, and did not occur during our test calculations.

The functional minimum of the line search along the
conjugate gradient directions on line 14 is given by

	� =
− b � �b2 − 4ac

2ac
, �20�

where

a = �p� ,t��P��p� ,x��P + �x�,p��P� − �p� ,p��P��p� ,s��P + �x�,t��P� ,

�21�

b = 2�p� ,t��P�x�,x��P − 2�x�,s��P�p� ,p��P, �22�

c = �x�,x��P��p� ,s��P + �x�,t��P� − �x�,s��P��p� ,x��P + �x�,p��P� . �23�

After each inner loop iteration over k, the desired ith eigen-
pair composed of eigenvector v� i and eigenvalue �i, are given
on lines 17 and 18.

IV. PERFORMANCE OF THE MOLECULAR-ORBITAL-
FREE ALGORITHM

A. Illustration of the RPA eigenvalue spectrum

To illustrate the performance of the molecular-orbital-
free solution of the RPA equation, the properties of the solu-
tions and various relevant concepts, a schematic picture con-
taining a hypothetical set of spectra is provided in Fig. 2.

The spectrum to the extreme left, labeled FULL, depicts
a complete eigenvalue spectrum. All eigenvalues, physical
and nonphysical, are included: no projections have been per-
formed. There are numerous “bands” present, possibly im-
plying clustering or degeneracies which would slow down a
variational search of the eigenstates.

The next spectrum, to the immediate right, TRANSI-
TIONS, demonstrates the effect of the projection in Eq. �12�
including only the subspace of ph-hp transitions. The re-
moval of unphysical states significantly reduces the density
of eigenvalues, particularly around zero. This greatly facili-
tates the search for eigensolutions of the RPA equation, in
particular for low-lowing excitations of physical interest.73–77

The third and fourth spectra, on the right, CALCU-
LATED and KOOPMAN’S, provide enlargements of the ei-
genvalue spectrum, in the positive region near zero. The
CALCULATED spectrum shows the low-lying ph-hp transi-
tions given by the RPA eigenvalue equation. Note that high

FIG. 1. The molecular-orbital-free RPA algorithm.
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energy excitations are not expected to be well described by
the RPA equation.23,78–80 The KOOPMAN’S spectrum illus-
trates the bare excitations, those without Coulomb or ex-
change screening, and corresponds to the eigenvalue excita-
tion spectrum of the ground state Fockian. Koopman’s
theorem provides only an approximate spectrum,8 but, as
will be shown below, initial vectors derived from Koopman’s
theorem produce good initial guesses for our nonlinear con-
jugate gradient optimization.

B. Convergence behavior

To study the behavior of our molecular-orbital-free algo-
rithm, it was prototyped in an orthogonalized atomic orbital
basis employing dense linear algebra and a conventional
O�N4� approach to Hartree–Fock theory. Our test calcula-
tions are thus not performed with any linear scaling com-
plexity. The present implementation is limited to s-type
STO-3G basis functions and is not expected to produce
chemically relevant data. Rather, we utilize this description
to characterize the most important features related to more
accurate representations, as well as consider the problems
inherent to linear scaling implementation. In this manner, we
can simulate the influence of large basis sets, extended peri-
odic systems and complex molecules.

As with more conventional approaches to solving the
excitation problem within time-dependent perturbation
theory, the work required to resolve an eigenstate increases
with an increasing condition number 
, i.e., the ratio between
the highest and lowest singular values of L. To study conver-
gence and other properties, we generated test systems using a
linear arrangement of fourteen hydrogen atoms. Progres-
sively smaller interatomic spacings produce correspondingly
higher condition numbers 
, which parallels that which could
arise as the size of system or basis set increases. Note that a

variation of the condition number also illustrates the effect of
preconditioning. All condition numbers 
 are estimated ap-
proximately in order of their magnitude.

To simulate the effects of an incomplete, sparse matrix
algebra—an absolute necessity for linear scaling
capability—we add a random matrix with elements of ampli-
tude �� after each application of L to a vector, i.e., the Lx�
Fock builds. This is equivalent to using a looser numerical
threshold in the case of a vanishing difference density ma-
trix, which has been shown to yield linear scaling.81

Two types of initial guesses are considered; a random
guess and a “Koopman’s guess.” The Koopman’s guess is
based on direct diagonalization of the ground state Fockian.
This is an expensive procedure that certainly does not scale
linearly with system size. The purpose is to study the effect
of an improved initial guess. An efficient O�N� construction
of an accurate initial guess remains a very important, yet
unsolved problem not discussed in this article.82–85

The convergence is measured in terms of the relative
errors of the approximate RPA eigenvalues �n, where the
error,

Err�n� =  �n − �ref

�n
 , �24�

is calculated in each conjugate gradient iteration n. The ref-
erence eigenvalues, �ref, were obtained from direct diagonal-
ization of the L matrices using the ZGEEV routine in the
LAPACK library.86

1. Small �, varied initial guess

The convergence behavior for the first five eigenvalues,
	1-	5, of the system with a condition number 
=102 is de-
picted in Fig. 3. The algorithm starts with randomly gener-
ated initial vectors for each of the five eigenvalues sought.
The nonlinear conjugate gradient optimization for each ei-
genvalue is then allowed to proceed until Err�n��10−12.

Compare these results to the curves in Fig. 4, which
depict the convergence patterns for the same system, but this
time starting with initial guess vectors based upon Koop-

FIG. 2. �Color online� Illustration of a set of eigenvalue spectra for the RPA
equation. The entire spectrum, FULL, is shown on the far-left. Notice the
dense clustering of eigenvalues around zero. Immediately to the right,
TRANSITIONS, depicts the spectrum containing only physical particle-hole
and hole-particle excitations. The next spectrum, CALCULATED, is an ex-
pansion emphasizing a few low-lying transitions. The spectrum to the ex-
treme right, KOOPMAN’S, contains the corresponding transitions as would
be estimated from Koopman’s theorem.

FIG. 3. �Color online� Convergence of the first five eigenvalues for a well-
conditioned �
=102� matrix using random initial guesses.
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man’s theorem. Despite the apparent non-ideality implied by
the hypothetical Koopman’s-based spectrum �KOOP-
MAN’S� in Fig. 2, the initial eigenvectors generated by
Koopman’s guess provide substantial improvement in the
rate of convergence compared to that of the random vectors
used to generate the plots in Fig. 3. For the third eigenvalue,
the convergence is improved by almost an order of
magnitude.

2. Convergence: Varied �, good initial guess

While the behavior of the algorithm for well-conditioned
matrices is useful for proof of concept, the performance of
any algorithm in the presence of ill-conditioned matrices is
of paramount importance for many problems, especially in
the limit of large basis sets. Figure 5 illustrates the conver-
gence for condition numbers ranging from 
=101 to 104. We
use initial vectors based on Koopman’s theorem in each case.
The curves in Fig. 5 depict the convergence behavior for the
lowest excitation energy for each condition number 
, but

similar patterns are observed for all of the first five eigenval-
ues in each case. The dashed �black� and dotted �red� lines
show convergence patterns for the more well-conditioned
systems, whereas the solid �green� and dash-dotted �blue�
lines represent convergence for the less well-conditioned
systems. The small blip observed at iteration 8 for the 

=103 system is an artifact of the error calculation because of
a sign change relative to the reference value.

The number of iterations required to reach convergence,
Err�n��10−12, increases by almost an order of magnitude
when the condition number is increased. This also indicates
the potential improvement that could be reached by an effi-
cient preconditioner. For the two better-conditioned systems,
the distribution of the smaller eigenvalues is more even, re-
sulting in smooth curves and relatively rapid convergence.
This pattern for the first eigenvalue is also observed in the
more well-conditioned case in Figs. 3 and 4.

In going from well- to ill-conditioned matrices, not only
does the slope decrease, extending the number of iterations
to convergence, but the morphology of the curves changes
as well. A pronounced step/plateau pattern is evident, par-
ticularly as the optimization proceeds. This behavior is typi-
cal of conjugate gradient schemes with clustered
eigenvalues.49,87,88

C. Sensitivity to numerical error

To probe the robustness of the molecular-orbital-free al-
gorithm, we added noise of varying levels to a well-
conditioned �
=102� system, as illustrated in Fig. 6. Again,
we used a Koopman’s theorem-based initial vector and ob-
served the convergence behavior for the first eigenvalue.
Random noise in the range, �� � �10−8 ,10−4�, provides a
reasonable estimate of the induced errors we encounter in a
typical linear scaling implementation, where small elements
below some chosen numerical tolerance are set to zero �see
also Fig. 7�. We added this noise to every component of the
newly formed vector �Lx�� for each iteration of the inner con-

FIG. 4. �Color online� Convergence of the first five eigenvalues for a well-
conditioned �
=102� matrix using initial guesses derived from Koopman’s
theorem.

FIG. 5. �Color online� Convergence of the first eigenvalue for matrices with

� �102 ,104�. In each case the Koopman’s guess was used.
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−4
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−6
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−8
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Condition Number, κ =102

Convergence of Eigenvalue 1
Initial Guess: Koopman’s Theorem

FIG. 6. �Color� Convergence of the first eigenvalue for 
�102 with random
noise in the range �� � �10−8 ,10−4�, using initial guesses based upon Koop-
man’s theorem.
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jugate gradient loop �the “k” loop� in order to simulate the
accumulation of numerical error as the calculation proceeds
�see Fig. 1�.

We find that the algorithm is robust and stable with re-
spect to numerical noise and that the error at convergence
scales approximately linearly with the level of noise. The
same behavior is also observed for more ill-conditioned sys-
tems, as shown in Fig. 7.

V. DISCUSSION AND CONCLUSIONS

We have presented an algorithm for the variational char-
acterization of the RPA eigenvalue spectrum, based on the
Thouless functional and a nonlinear conjugate gradient opti-
mization in a molecular-orbital-free representation. We have
analyzed the convergence with respect to initial guess, con-
dition number �preconditioning� and numerical noise. This
analysis clearly indicates a potential for reduced complexity
calculations of large systems. However, there remain several
open questions: �1� The search space for the excitation spec-
trum corresponding to the dimensions of the Liouville opera-
tor L in the RPA eigenvalue problem scales quadratically,
O�N2�, with system size. Unless the initial guess is highly
accurate, we can expect the number of iterations required to
reach convergence to increase with system size. This would
obviate linear scaling complexity. �2� Unfortunately, the con-
struction of a highly accurate initial guess is computationally
very expensive. For example, building the Koopman’s guess
would typically require a diagonalization of the Fockian
which scales as O�N3�. A reduced complexity technique
for finding a good initial guess or accurate
preconditioning55,57,59,89,90 remains an unsolved, important
challenge, though many efficient constructions may be pos-
sible. �3� The stability of the Wilkinson shift under sparse
linear matrix algebra has not been fully investigated, though
the stability under noisy conditions indicates that this is not a
problem. �4� While we have not performed any systematic
studies of more complex arrangements beyond the linear
chain, we have no reason to believe that the numerical ro-

bustness for ill-conditioned matrices arising from linear
chains would not be transferable to other ill-conditioned
problems.

In conclusion, the molecular-orbital-free scheme based
upon a well-established variational characterization of the
RPA excitation spectrum exhibits most of the necessary fea-
tures required for an efficient linear scaling implementation.
While further work remains, we believe this technique will
become highly valuable for determination of large-scale ex-
cited state properties.

ACKNOWLEDGMENTS

We would like to express our gratitude to Professor C. J.
Tymczak, Dr. Richard L. Martin, Dr. Antonio Redondo, Dr.
Kimberly W. Thomas, Dr. Eddy M. Timmermans, and Dr.
Valéry Weber for many helpful discussions. M.J.L. gratefully
acknowledges the support of a LANL Director’s Postdoctoral
Fellowship. This work was sponsored by the Laboratory Di-
rected Research and Development program at Los Alamos
National Laboratory under the auspices of Los Alamos Na-
tional Security, LLC, for the National Nuclear Security Ad-
ministration of the U.S. Department of Energy under Con-
tract No. DE-AC5206NA25396.

1 S. Goedecker, Rev. Mod. Phys. 71, 1085 �1999�.
2 P. A. M. Dirac, Proc. Cambridge Philos. Soc. 26, 376 �1930�.
3 J. Frenkel, Wave Mechanics, Advanced General Theory �Clarendon, Ox-
ford, 1934�.

4 J. Heinrichs, Chem. Phys. Lett. 2, 315 �1968�.
5 D. J. Thouless, The Quantum Mechanics of Many-Body Systems, Pure
and Applied Physics, Vol. 11, 2nd ed. �Academic, New York, 1972�.

6 P. Ring and P. Schuck, The Nuclear Many-Body Problem, Texts and
Monographs in Physics, Vol. xvii �Springer-Verlag, New York, 1980�.

7 R. McWeeny, Methods of Molecular Quantum Mechanics, Theoretical
Chemistry, 2nd ed. �Academic, San Diego, 1989�.

8 A. Szabo and N. Ostlund, Modern Quantum Chemistry Introduction to
Electronic Structure Theory �Dover, Mineola, 1996�.

9 E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 �1984�.
10 A. Dreuw and M. Head-Gordon, Chem. Rev. �Washington, D.C.� 105,

4009 �2005�.
11 D. Bohm and D. Pines, Phys. Rev. 82, 625 �1951�.
12 D. Pines and D. Bohm, Phys. Rev. 85, 338 �1952�.
13 P. Nozieres and D. Pines, Nuovo Cimento 9, 470 �1958�.
14 H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 �1959�; an excel-

lent discussion and historical overview may be found in Cook’s book,
Ref. 23.

15 R. Zwanzig, Physica �Amsterdam� 30, 1109 �1964�.
16 K. Sawada, K. A. Brueckner, N. Fukuda, and R. Brout, Phys. Rev. 108,

507 �1957�.
17 M. Baranger, Phys. Rev. 120, 957 �1960�.
18 R. A. Ferrell and T. T. Quinn, Phys. Rev. 108, 570 �1957�.
19 D. J. Thouless, Nucl. Phys. 22, 78 �1961�.
20 R. A. Ferrell, Phys. Rev. 107, 1631 �1957�.
21 J. Goldstone and K. Gottfried, Nuovo Cimento 13, 849 �1959�.
22 D. J. Rowe, Nucl. Phys. 80, 209 �1966�.
23 D. B. Cook, Handbook of Computational Quantum Chemistry �Oxford

University Press, New York, 2005�.
24 I. Tamm, in I. E. Tamm Selected Papers, edited by B. M. Bolotovskii and

V. Y. Frenkel �Springer-Verlag, New York, 1991�, pp. 157–173; An En-
glish translation of the original paper: Ref. 25.

25 I. Tamm, J. Phys. �USSR� 9, 449 �1945�.
26 S. M. Dancoff, Phys. Rev. 78, 382 �1950�.
27 D. J. Thouless, Nucl. Phys. 22, 78 �1961�.
28 H. Appel, E. K. U. Gross, and K. Burke, Phys. Rev. Lett. 90, 043005

�2003�.
29 S. Coriani, S. Høst, B. Janík, L. Thøgersen, J. Olsen, P. Jørgensen, S.

Reine, F. Pawlowski, T. Helgaker, and P. Salek, J. Chem. Phys. 126,
154108 �2007�.

FIG. 7. �Color� Convergence of the first eigenvalue for 
�104 for random
noise in the range, �� � �10−8 ,10−4� using initial guess vectors derived
from Koopman’s theorem.

064114-7 MO-free algorithm for excited states J. Chem. Phys. 129, 064114 �2008�

Downloaded 30 Jul 2009 to 192.12.184.2. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1103/RevModPhys.71.1085
http://dx.doi.org/10.1016/0009-2614(68)80084-3
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1021/cr0505627
http://dx.doi.org/10.1103/PhysRev.82.625
http://dx.doi.org/10.1103/PhysRev.85.338
http://dx.doi.org/10.1007/BF02725103
http://dx.doi.org/10.1103/PhysRev.115.786
http://dx.doi.org/10.1016/0031-8914(64)90102-8
http://dx.doi.org/10.1103/PhysRev.108.507
http://dx.doi.org/10.1103/PhysRev.120.957
http://dx.doi.org/10.1103/PhysRev.108.570
http://dx.doi.org/10.1016/0029-5582(61)90364-9
http://dx.doi.org/10.1103/PhysRev.107.1631
http://dx.doi.org/10.1007/BF02726371
http://dx.doi.org/10.1016/0029-5582(66)90837-6
http://dx.doi.org/10.1103/PhysRev.78.382
http://dx.doi.org/10.1016/0029-5582(61)90364-9
http://dx.doi.org/10.1103/PhysRevLett.90.043005
http://dx.doi.org/10.1063/1.2715568


30 A. F. Izmaylov, E. N. Brothers, and G. E. Scuseria, J. Chem. Phys. 125,
224105 �2006�.

31 H. J. Xiang, J. L. Yang, J. G. Hou, and Q. S. Zhu, Phys. Rev. Lett. 97,
266402 �2006�.

32 V. Weber, A. M. N. Niklasson, and M. Challacombe, J. Chem. Phys. 123,
044106 �2005�.

33 C. Y. Yam, S. Yokojima, and G. Chen, J. Chem. Phys. 119, 8794 �2003�.
34 H. Larsen, P. Jørgensen, J. Olsen, and T. Helgaker, J. Chem. Phys. 113,

8908 �2000�.
35 S. Nomura, T. Iitaka, X. Zhao, T. Sugano, and Y. Aoyagi, Phys. Rev. B

56, R4348 �1997�.
36 S. Yokojima and G. H. Chen, Chem. Phys. Lett. 300, 540 �1999�.
37 T. Iitaka and T. Ebisuzaki, Phys. Rev. E 61, R3314 �2000�.
38 S. Yokojima and G. H. Chen, RIKEN Rev. 89, 77 �2000�.
39 J. Kussmann and C. Ochsenfeld, J. Chem. Phys. 127, 204103 �2007�.
40 X. Andrade, S. Botti, M. A. L. Marques, and A. Rubio, J. Chem. Phys.

126, 184106 �2007�.
41 C. Ko, D. K. Malick, D. A. Braden, R. A. Friesner, and T. J. Martinez, J.

Chem. Phys. 128, 104103 �2008�.
42 D. Rocca, R. Gebauer, Y. Saad, and S. Baroni, J. Chem. Phys. 128,

154105 �2008�.
43 A. M. N. Niklasson and M. Challacombe, Phys. Rev. Lett. 92, 193001

�2004�.
44 V. Weber, A. M. N. Niklasson, and M. Challacombe, Phys. Rev. Lett. 92,

193002 �2004�.
45 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 �1964�.
46 W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 �1965�.
47 M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76,

1212 �1996�.
48 A. Graham, Kroneker Products and Matrix Calculus With Applications

�Halstead/Wiley, New York, 1981�.
49 G. H. Golub and C. F. Van Loan, Matrix Computations �Johns Hopkins

University Press, Baltimore, 1983�.
50 M. Benzi and M. Tuma, Comput. Methods Appl. Mech. Eng. 190, 6533

�2001�.
51 S. Tretiak and S. Mukamel, Chem. Rev. �Washington, D.C.� 102, 3171

�2002�.
52 G. F. Bertsch and K. Yabana, in Introduction to Modern Methods of

Quantum Many-Body Theory and Their Applications, edited by A. Fab-
rocini, S. Fantoni, and E. Krotscheck �World Scientific, Hackensack,
2002�, Vol. 7, pp. 1–48.

53 A. Fabrocini, S. Fantoni, and E. Krotscheck, Introduction to Modern
Methods of Quantum Many-Body Theory and Their Applications, Series
on Advances in Quantum Many-Body Theory, Vol. 7 �World Scientific,
Hackensack, 2002�.

54 J. van den Eshof and G. L. G. Sleijpen, SIAM J. Matrix Anal. Appl. 26,
125 �2004�.

55 V. Simoncini and L. Elden, BIT 42, 159 �2002�.
56 J. van den Eshof, G. L. G. Sleijpen, and M. B. van Gijzen, J. Comput.

Appl. Math. 177, 347 �2005�.
57 V. Simoncini and D. B. Szyld, Numer. Linear Algebra Appl. 14, 1

�2007�.
58 A. Muta, J. I. Iwata, Y. Hashimoto, and K. Yabana, Prog. Theor. Phys.

108, 1065 �2002�.
59 Y. Notay, SIAM J. Matrix Anal. Appl. 24, 627 �2003�.
60 R. Zwanzig, J. Chem. Phys. 33, 1338 �1960�.
61 M. Karplus and H. J. Kolker, J. Chem. Phys. 39, 1493 �1963�.
62 P. W. Langhoff, S. T. Epstein, and M. Karplus, Rev. Mod. Phys. 44, 602

�1972�.
63 R. McWeeny, Proc. R. Soc. London, Ser. A 235, 496 �1956�.
64 A. H. R. Palser and D. E. Manolopoulos, Phys. Rev. B 58, 12704 �1998�.
65 A. M. N. Niklasson, Phys. Rev. B 66, 155115 �2002�.
66 D. J. Thouless and J. G. Valatin, Nucl. Phys. 31, 211 �1962�.
67 P. Ring and P. Schuck, The Nuclear Many-Body Problem, Texts and

Monographs in Physics, Vol. xvii �Springer-Verlag, New York, 1980�,
Appendix D, p. 606.

68 I. Antoniou, M. Gadella, and Z. Suchanecki, Int. J. Theor. Phys. 37, 1641
�1998�.

69 J. H. Wilkinson, The Algebraic Eigenvalue Problem �Clarendon, Oxford,
1965�.

70 E. Polak and G. Ribiére, Rev. Fr. Inform. Rech. Oper. 3, 35 �1969�.
71 B. T. Polyak, Zh. Vychisl. Mat. Mat. Fiz. 9, 807 �1969�.
72 P. O. Löwdin, J. Chem. Phys. 18, 365 �1950�.
73 R. Lehoucq and D. Sorensen, in Templates for the Solution of Algebraic

Eigenvalue Problems: A Practical Guide, edited by Z. Bai, J. Demmel, J.
Dongarra, A. Ruhe, and H. v. d. Vorst �SIAM, Philadelphia, 2000�, pp.
43–45.

74 B. J. Verhaar, Nucl. Phys. 21, 508 �1960�.
75 G. L. G. Sleijpen and J. van den Eshof, Linear Algebr. Appl. 358, 115

�2003�.
76 J. van den Eshof and G. L. G. Sleijpen, Appl. Numer. Math. 49, 17

�2004�.
77 R.-C. Li, BIT 44, 585 �2004�.
78 G. E. Brown, J. A. Evans, and D. J. Thouless, Nucl. Phys. 24, 1 �1961�.
79 G. E. Brown, Unified Theory of Nuclear Models �North Holland, Amster-

dam, 1964�.
80 D. J. Rowe, Rev. Mod. Phys. 40, 153 �1968�.
81 M. Challacombe and E. Schwegler, J. Chem. Phys. 106, 5526 �1997�.
82 W. A. Goddard, T. H. Dunning, W. J. Hunt, and P. J. Hay, Acc. Chem.

Res. 6, 368 �1973�.
83 S. Huzinaga and K. Hirao, J. Chem. Phys. 66, 2157 �1977�.
84 C. Flindt, M.S. thesis, Technical University of Denmark, 2004.
85 T. Chassaing, Ph.D. thesis, Universität Zürich, 2005.
86

LAPACK—Linear Algebra Package, 2006, http://www.netlib.org/lapack.
87 D. Luenberger, Introduction to Linear and Nonlinear Programming, 2nd

ed. �Addison-Wesley, Reading, 1984�.
88 J. Nocedal and S. Wright, Numerical Optimization, Springer Series in

Optimization Research, 2nd ed. �Springer, New York, 2006�.
89 L. Bergamaschi, G. Pini, and F. Sartoretto, Numer. Linear Algebra Appl.

7, 99 �2000�.
90 V. Simoncini, SIAM �Soc. Ind. Appl. Math.� J. Numer. Anal. 43, 1155

�2005�.

064114-8 Lucero et al. J. Chem. Phys. 129, 064114 �2008�

Downloaded 30 Jul 2009 to 192.12.184.2. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.2404667
http://dx.doi.org/10.1103/PhysRevLett.97.266402
http://dx.doi.org/10.1063/1.1944724
http://dx.doi.org/10.1063/1.1613634
http://dx.doi.org/10.1063/1.1318745
http://dx.doi.org/10.1103/PhysRevB.56.R4348
http://dx.doi.org/10.1016/S0009-2614(98)01444-4
http://dx.doi.org/10.1103/PhysRevE.61.R3314
http://dx.doi.org/10.1063/1.2794033
http://dx.doi.org/10.1063/1.2733666
http://dx.doi.org/10.1063/1.2834222
http://dx.doi.org/10.1063/1.2834222
http://dx.doi.org/10.1063/1.2899649
http://dx.doi.org/10.1103/PhysRevLett.92.193001
http://dx.doi.org/10.1103/PhysRevLett.92.193002
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevLett.76.1212
http://dx.doi.org/10.1016/S0045-7825(01)00235-3
http://dx.doi.org/10.1021/cr0101252
http://dx.doi.org/10.1137/S0895479802403459
http://dx.doi.org/10.1023/A:1021930421106
http://dx.doi.org/10.1016/j.cam.2004.09.024
http://dx.doi.org/10.1016/j.cam.2004.09.024
http://dx.doi.org/10.1143/PTP.108.1065
http://dx.doi.org/10.1137/S0895479801399596
http://dx.doi.org/10.1063/1.1731409
http://dx.doi.org/10.1063/1.1734470
http://dx.doi.org/10.1103/RevModPhys.44.602
http://dx.doi.org/10.1103/PhysRevB.58.12704
http://dx.doi.org/10.1103/PhysRevB.66.155115
http://dx.doi.org/10.1016/0029-5582(62)90741-1
http://dx.doi.org/10.1023/A:1026632322820
http://dx.doi.org/10.1063/1.1747632
http://dx.doi.org/10.1016/0029-5582(60)90073-0
http://dx.doi.org/10.1016/S0024-3795(01)00480-3
http://dx.doi.org/10.1016/j.apnum.2003.11.010
http://dx.doi.org/10.1023/B:BITN.0000046798.28622.67
http://dx.doi.org/10.1016/0029-5582(61)91011-2
http://dx.doi.org/10.1103/RevModPhys.40.153
http://dx.doi.org/10.1063/1.473575
http://dx.doi.org/10.1021/ar50071a002
http://dx.doi.org/10.1021/ar50071a002
http://dx.doi.org/10.1063/1.434130
http://dx.doi.org/10.1137/040605333

