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Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular sys-
tems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem
crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic descrip-
tion which incorporate transitions between electronic states. Additionally, these dynamics are often
highly sensitive to quantum coherences and interference effects. Several methods exist to simulate
non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molec-
ular systems (10’s-100’s of atoms), or they are based on ad hoc schemes which may include severe
approximations due to inconsistencies in classical and quantum mechanics. We present, in detail,
an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that
involves running simple surface hopping dynamics, followed by a post-processing step which adds
little cost. The method requires only a few quantities from quantum chemistry calculations, can sys-
tematically be improved, and provides excellent agreement with exact quantum mechanical results.
Here we show excellent agreement with exact solutions for scattering results of standard test prob-
lems. Additionally, we find that convergence of the wavefunction is controlled by complex valued
phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function.
These results help in determining the range of applicability of the method, and provide a starting
point for further improvement. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4900988]

I. INTRODUCTION

Advances in theoretical methods as well as in computa-
tional power have positioned quantum chemistry as a pow-
erful tool in studying various properties of molecules and
molecular complexes.1, 2 Accurate, but numerically expen-
sive, wavefunction based approaches enable detailed descrip-
tion of electronic properties in relatively small molecules. In
contrast, efficient Density functional theory (DFT) methods
in combination with molecular dynamics (MD) allow one to
deduce valuable information on ground state properties for
molecules with hundreds of atoms in size.3 Further advances
in time-dependent density functional theory (TDDFT) have
made it possible to carry out efficient calculations for exited
states in these systems and thus predict their susceptibilities,
absorption, and emission spectra, etc.4

At present quantum chemistry faces a new frontier: Now
it aims not only at computations of the equilibrium (static)
molecular properties, but also at modeling dynamics of pho-
tophysical processes and (photo)chemical reactions in molec-
ular systems.5, 6 The latter are characterized by different re-
action pathways that lead to different reaction products. For
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example, upon absorbing a photon, a molecule may undergo
radiative relaxation processes,7 such as fluorescence,8 and
phosphorescence; non-radiative relaxation processes, such as
photodissociation9–11 or photoisomerization;12–15 charge;16–19

and energy transfer;20–22 or intersystem crossing.23–25 Such
dynamics are obviously accompanied by electronic transi-
tions, involving complex electron-phonon interaction26, 27 and
possibly many electronic states, and therefore cannot be de-
scribed within the standard adiabatic or Born-Oppenheimer
approximation. That is, while in the traditional adiabatic ap-
proximation the nuclei move along a given potential energy
surface (PES) of a molecule, description of photophysical or
photochemical processes requires accounting for the transi-
tions between different PESs. Such transitions typically occur
in the relatively small regions of the phase space where the
PESs closely approach or cross each other, so that the energy
separation between relevant PESs becomes comparable with
inverse time scales of the nuclear motion (in units of ¯), i.e.,
phonon frequencies. Thus the assumption of separation be-
tween electronic and nuclear timescales breaks down in the
vicinity of electronic PES crossings and dynamics becomes
non-adiabatic.

Several approaches exist in the literature to treat the
non-adiabatic dynamics within the framework of quantum
chemistry.28–36 The most well known of these are mixed
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quantum classical treatments, the Ehrenfest and surface hop-
ping methods. The Ehrenfest method is easy to implement.
It requires one to run a single trajectory of the nuclei, on
an average PES, with electronic populations being evaluated
on the fly.37 The simplicity of the implementation of the
method is flawed by its poor accuracy, related to its mean
field nature. Usually different electronic configurations are
associated (“entangled”) with different paths of the nuclei
and so the mean field approach becomes inadequate when
these paths are very dissimilar. In order to fix this problem,
Tully introduced a surface hopping approach, which accounts
for the trajectory branching by running multiple trajectories
that can hop between PESs.38 Fewest switches surface hop-
ping (FSSH) has become the most popular approach for prob-
lems at various scales, from molecules to nanoclusters.39–45

However, the method is build on ad hoc assumptions and,
as a result, frequently fails to properly describe correlations
between the trajectories of nuclei and electronic states. In
particularly, it does not take into account decoherence aris-
ing due to spacial separation between the components of the
nuclear wavefunctions corresponding to different electronic
states (PES) and, as a results, does not properly accounts
for the interference effects, etc.46–48 Many approaches exist
in the literature for overcoming this decoherence problem.
Some attempt to add decoherence into Tully’s surface hop-
ping procedure,47, 49–61 while others involve rigorous treat-
ments at the density matrix level, e.g., quantum classical
Liouville equation (QCLE)62–68 and the Meyer-Miller-Stock-
Thoss36, 69, 70 formalism. While these approaches all improve
upon the FSSH algorithm, they are often either too costly, lead
to complicated algorithms, or may not be accurate in certain
scenarios.

In this paper, we describe a method based on Monte Carlo
sampling of the semiclassical time-dependent wavefunction
of a molecule. Unlike common surfaces hopping approaches,
the SCMC is not ad hoc by its construction, and is able to
account for the quantum coherence effects between differ-
ent photoinduced pathways. The main idea is based on writ-
ing the full molecular wavefunction as a series of terms that
can be viewed as contributions of “partial” wavefunctions of
the system, each corresponding to a certain number of tran-
sitions (hops) between electronic PES. These partial wave-
functions can be sampled by a stochastic process similar to
that used in the surface hopping method: “on-the-fly” propa-
gation of nuclei according to the classical equations of motion
without prior knowledge of the PESs involved. The accumu-
lated phase information characterizing each classical trajec-
tory (e.g., the action along the trajectory) is further used to
perform “post-processing” evaluation of multidimensional in-
tegrals that correspond to each partial wavefunction using the
Monte Carlo technique.

The method was first reported in Ref. 71. It was shown
that the results obtained with our method are in very good
agreement with numerically exact results for three stan-
dard sample problems (the so-called Tully problems).38 Ad-
ditionally, comparison of the results for 1-D and 2-D test
problems,71 demonstrated that the convergence of the method
does not deteriorate with an increase in the number of nuclear
degrees of freedom. This is a consequence of a fact that the

stochasticity of the Monte Carlo procedure is related purely to
the non-determinism in the subspace of the electronic states
(between the hops nuclei propagate according to the classi-
cal equations of motion, i.e., deterministically). In this paper,
we present a detailed algorithmic description of the SCMC
procedure, which should make its implementation straight-
forward. Additionally, we show that the Monte Carlo proce-
dure used in our method is reasonably well convergent for the
problems involving relatively few level crossings. Finally, we
demonstrate and discuss how the convergence of the wave-
function is controlled by complex valued phase factors, the
size of the non-adiabatic coupling region, and the choice of
sampling function.

The QCLE procedure developed by Kapral et al.62–65

is similar in spirit to our method. The largest difference in
the approach presented here is that, while Kapral’s approach
involves mixed classical-quantum dynamics of the density
matrix using the Wigner-Liouville equation, our approach
involves direct calculation of the dynamics of the wavefunc-
tions. We believe our approach provides a more “straightfor-
ward” path to calculating accurate non-adiabatic molecular
dynamics, with minimal deviation from the commonly used
FSSH procedure. For example, such as FSSH, the dynamics in
our approach always follow a single PES, whereas dynamics
used to sample QCLE involve following single and averaged
PES.62 Additionally, QCLE dynamics may require branched
trajectories.63

The paper is organized as follows: In Sec. II, we will for-
mulate the problem and describe the theory behind the numer-
ical method. In Sec. III, we describe, in detail, how to carry
out the SCMC simulation, and provide an algorithm for a sys-
tem with two PES. In Sec. IV, we analyze the results of the
SCMC method when applied to Tully’s 1D test problems and
an additional three electronic levels, 1D, test problem.

II. THEORY

Consider a Hamiltonian with nuclear and electronic de-
grees of freedom

H = P̂
2

2M
+ Ĥel(R), (1)

where P̂ is the N-component nuclear momentum operator
(N is the number of independent nuclear coordinates, R
≡ (R1, . . . , RN)T), M is the nuclear mass (for simplicity of
notation we assume that all nuclear degrees of freedom have
the same mass, extension to different masses is straightfor-
ward) and Hel is the electronic Hamiltonian (which includes
electronic kinetic energy and all interactions and depends
parametrically on R). The dynamics of the nuclear degrees
of freedom can be conveniently represented in the adiabatic
basis in terms of the effective Hamiltonian (see Refs. 72 and
73 for details)

Ĥeff = (P̂ − d̂(R))2

2M
+ Ê(R). (2)

Here Ê(R) is diagonal matrix with elements being the eigen-
states of the Hamiltonian Hel and d̂(R) is the non-adiabatic
(derivative) coupling matrix, dij(R) = ¯ 〈� i(R)|∇R|� j(R)〉.
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In the absence of the non-adiabatic coupling, the PESs
are decoupled and the nuclei propagate on a potential land-
scape given by a particular Ei(R). Formally, in order to de-
scribe quantum dynamics for a system of N particles cor-
responding to Hamiltonian H0 = P̂2

2m
+ Ê(R), one needs to

solve an N + 1 dimensional Schrodinger equation (for a given
PES, i.e., Ei(R)), which is an impossible task for N � 1. How-
ever, in the classical limit, the problem reduces to solving N
coupled Newton’s equations, which is not too difficult, even
for a reasonably large number of degrees of freedom. Further-
more, in this classical or semiclassical limit, one can easily
construct a wavefunction of the nuclei by utilizing a gaussian
approximation

�i(R, t) ∼
N∏

α=1

e
− (Rα−Rα

c (t))2

2σ2
α (t)

+iP α
c (t)(Rα−Rα

c (t))+iS
i
(t)

. (3)

That is, the gaussian wavepacket with average momentum
Pc(t) is centered around positions Rc(t), is evaluated accord-
ing to the classical equations of motion, with Si(t) being the
classical action of the system produced during a time, t. For
simplicity in this paper, we assume that the dispersion of the
gaussian wavepacket corresponds to that of a free particle,
σ 2(t) = σ 2(0) + i¯t/M. While this approximation is clearly
violated for PESs with sufficient curvature, for dynamics in
realistic molecules this is practically never the case. Indeed, a
typical spread of the nuclear wavepacket is of the order of nu-
clear zero point motion associated with the vibrational ground
states of a molecule, which is at least an order of magnitude
smaller than the size of a typical electronic bond (which sets
the length scale of Ei(R)) due to large mass, M, of the nu-
clei. Furthermore, this approximation did not lead to signif-
icant deviation from exact solution in the scattering results
considered below. Thus, instead of solving a N + 1 dimen-
sional Schrodinger equation, a problem reduces to solving N
ordinary second order differential equations.

Unfortunately, for d̂ �= 0 this is no longer the case. One
way to proceed is to use the mean field approach and ne-
glect the spacial dependence of the wavefunction. Such ap-
proach is easy to implement, but it is well known that it leads
to significant errors when branching of trajectories is impor-
tant. Another approach was proposed by Pechukas in the late
1960s,74, 75 which is an attempt to apply the semiclassical ap-
proximation to the d̂ �= 0 situation. Unfortunately in such case
one can only formulate an iterative procedure (which is not
necessarily well convergent) that leads to the saddle point
(i.e., semiclassical) solution to the Schrodinger equation for
the molecule. Instead we propose a different approach: We
write down solution to the Schrodinger equation as a pertur-
bative expansion in powers of d̂,

|�(t)〉= e−iĤ0t/¯|�(0)〉 +
∫ t

0
dt1e

−iĤ0(t−t1)/¯

× (−i)

2m¯
(d̂P+Pd̂)e−iĤ0t1/¯|�(0)〉+

∫ t

0
dt1

∫ t1

0
dt2 . . . .

(4)

Equation (4) is an infinite series with second and higher order
terms being time ordered integrals and containing second and

higher orders of perturbation. Here we neglected the d̂2/2M

term, which is small (compared to the systems kinetic energy)
in the semiclassical approximation. Moreover, this term is di-
agonal and therefore it may be included in the definition of
Ĥ0 if needed.

Suppose that the state |�(0)〉 is a gaussian wavepacket lo-
calized on the PES 1. Furthermore, let us assume that the elec-
tronic subspace is two dimensional, i.e., there are only two
close PES, the remaining PESs are separated by large gaps
so that transition probabilities are infinitesimally small due to
rapid oscillations of the integrands in Eq. (4). In fact such sit-
uation is usually the case; typically only two PES cross in a
relevant region of the phase space. Then d̂ = d12(R)σ̂y , where
σ̂y is a Pauli matrix and d12 is a scalar function of R. Accord-

ing to the above discussion of the d̂ = 0 situation, the first
term in the right hand side (RHS) of Eq. (4) is just a gaussian
wavepacket that have propagated along the first PES accord-
ing to classical equations of motion.

Let us consider the second term in the RHS of Eq. (4)
which corresponds to a “piece” of the wavefunction that has
hopped once at time t1 from PES 1 to PES 2. It is clear that
the wavepacket right before the hopping event at t1 can be
approximated as a gaussian. It is reasonable to assume that
after the scattering event at t1 the wavepacket retains its gaus-
sian shape, but acquires an amplitude c12 (proportional to
d12 at Rc(t1)). Similar assumptions apply to the higher or-
der integrals. That is, we approximate the wavefunction in
Eq. (4) as

|�(R, t)〉

= N
(

e
− (R−R(0)

c (t))2

2σ2(t)
+iP(0)

c (t)(R−R(0)
c (t))+iS(0)(t)|1〉

+
∫ t

0
dt1c12

[
R(0)

c (t1)
]
e
− (R−R(1)

c (t))2

2σ2(t)
+iP(1)

c (t)(R−R(1)
c (t))+iS(1)(t)|2〉

+
∫ t

0
dt1

∫ t1

0
dt2 c21

[
R(0)

c (t1)
]
c12

[
R(1)

c (t2)
]

× e
− (R−R(2)

c (t))2

2σ2(t)
+iP(2)

c (t)(R−R(2)
c (t))+iS(2)(t)|1〉 + . . .

)
, (5)

where the normalization constant N = π−N/4[σ (t)]−N/2 and
from now on we will set ¯ = 1 unless stated otherwise. In
Eq. (5), the superscript indices for the “classical” variables,
Rc, Pc, and Sc, indicate the number of jumps. For example,
R(2)

c is a classical position for a trajectory of the nuclei with
two hops: At time t1 from PES 1 to PES 2 and back at time t2,
so that R(2)

c is a function not only of t, but also of t1 and t2.
Equation (5) is incomplete on itself: One needs to spec-

ify the c12/21[Rc(t)] as well as the value of the momentum
right after the hop. (Here we assume that neither the posi-
tion nor the dispersion of the wavepacket changes immedi-
ately after the hop, which is easy to check by a simple cal-
culation similar to the one discussed below.) For that let us
divide the time integrals in Eqs. (4) and (5) into integrals
over smaller time intervals �t, where �t is smaller than the
timescale at which the particle moves over the distance at
which potential E1,2(R) varies significantly. Let us consider
dynamics of the wavepacket at such interval �t. Assume that
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at the beginning of the interval the shape of the wavepacket
(for the nuclei) is φ1(R, 0) (which is not necessarily gaus-
sian) with electrons being in state 1. Furthermore, we assume
that the wavepacket is in the semiclassical regime: On one
hand it is sufficiently localized so that its width, σ , is smaller
than the distance at which potential E1,2(R) varies signifi-
cantly; on the other hand its momentum is well defined so
that it is much greater in magnitude than its uncertainty (σ−1).
Then the parameters c12/21[Rc(t)] and P2 (the momentum af-
ter the hop, i.e., at the PES 2) must be such that the descrip-
tions of the wavefunction in Eqs. (4) and (5) match. That
is, Eq. (4) on the time interval, �t, describes dynamics of a
wavepacket according to an effective Hamiltonian in Eq. (2),
where, within a small �t, we may determine the wavefunction

as |�ex(t)〉 = e
−itĤ

eff φ1(R, 0)|1〉 by expanding in powers of t
and setting d and E to be independent of R. Similarly, we may
evaluate the wavefunction for the gaussian approximation in
Eq. (5). Up to the second order in t, which is sufficient for our
purposes, we may write

|�g(t)〉 = (1 + c21c12t
2/2)φ1(R, t)|1〉 − ic12tφ2(R, t)|2〉,

(6)

where φ2(R, t) is a normalized wavepacket at the second PES.
The t2 term in Eq. (6) arises due to two hop contribution in
Eq. (5). Note that the wavefunction in Eq. (6) is normalized up
to O(t2). Since c12/21 and P2 = ∫

dRφ∗
2 (R, t)P̂φ2(R, t) define

occupation probabilities and system’s momentum, we require
that

〈�g(t)|σz|�g(t)〉 = 〈�ex(t)|σz|�ex(t)〉, (7)

〈�g(t)|P̂|�g(t)〉 = 〈�ex(t)|P̂ − d12σy |�ex(t)〉. (8)

Equations (7) and (8) provide the matching (boundary) con-
ditions that determine values of c12/21 and P2. Note that in the
RHS of Eq. (8) we have used the “true” momentum of the
system, which is given by its velocity MṘ = iM[Ĥeff , R]

= P̂ − d12σ̂y . The left hand side (LHS) of Eq. (8) gives
1 + 2c21c12t2, while the RHS results in 1 − 2(d12P1t)2/M2,
where P1 = ∫

dRφ∗
1 (R, t)P̂φ1(R, t). Then we obtain that

c12(R) = (d12(R) · P1)/M = d12(t)

and

c21(R) = (d21(R) · P2)/M = d21(t), (9)

with P1 being the momentum right before the hop.
Similarly, the LHS of Eq. (8) gives P1 + c21c12t2(P2

− P1), where we have assumed that t is small enough and
so the momenta P1 and P2 do not change during the evolu-
tion over the time interval t. The RHS yields P1 − d12(R)(E2
− E1)(d12(R) · P1)t2/M, so that

P2 − P1 = M(E2 − E1)d12(R)

d12(R) · P1

. (10)

Equation (10) gives a condition for the re-scaling of momen-
tum of the wavepacket which, at first glance, may seem to
be in contradiction with that proposed by Herman76 and used
by Tully38 in his surface hopping algorithm. Indeed, while in

Eq. (10) the change in the momentum at the hop is along d12,
Eq. (10) does not conserve the total energy at the hop. How-
ever, careful inspection reveals that Eq. (10) is simply the ze-
roth and first order terms in an expansion, in powers of

E2−E1

P2
1/2M

,

of the full energy conservation condition. This is, presumably,
an artifact of the short time approximation that we used in the
derivation of Eq. (10). Indeed, it is easy to check that Eq. (10)
conserves energy approximately, up to the leading order in
�E = E2 − E1. Furthermore, we have run the test problems
considered below using condition of Eq. (10) as well as using
the exact energy conservation condition at the hop and found
very good agreement between the two in a very broad range of
initial momenta. This is a consequence of a fact that the main
contribution to the integrals in Eq. (5) comes from the region
where �E is small and so the energy conservation at the hop
is satisfied. Therefore, we conclude that the two conditions
are essentially identical and in the following we will be us-
ing the Herman/Tully criterion to re-scale the wavepacket’s
momentum at the hop. In Sec. III, we will describe an effi-
cient numerical algorithm that evaluates the wavefunction in
Eq. (5) using Monte Carlo technique.

III. SCMC CALCULATION

The SCMC provides a first principles method for calcu-
lating non-adiabatic molecular dynamics, with similar cost to
surface hopping methods. The calculation occurs in two main
steps: (A) the non-adiabatic propagation of classical trajecto-
ries, and (B) the use of trajectory data to sample the integrals
in Eq. (5), with cij[Rc(t)] = dij(t). The classical propagation
is similar to standard surface hopping algorithms.29, 38, 76 For
simplicity, we assume that we have only two electronic states
to consider. Generalization to higher numbers of states is
straightforward.71 In Subsections III A and III B, we describe,
in algorithmic fashion, the surface-hopping dynamics, A, and
the Monte Carlo calculation of the time-dependent semiclas-
sical wavefunction, B. Figure 1 shows a diagrammatic map of
the algorithm.

A. Semiclassical molecular dynamics

A1: All trajectories are initialized with the same position
and momentum. Various tracked values are initialized
(see Fig. 1). We begin propagation of the nuclear
wavepackets.

A2: Begin time step. Supplied with a molecular ge-
ometry, Rc, quantum chemistry methods (e.g.,
DFT and TDDFT) are used to calculate the
electronic state energies, Ei(t), the Hellmann-
Feynman forces (electronic gradients), Fc, the
first order non-adiabatic coupling vectors (NACV),
dij (Rc) = 〈�i(Rc)| ∂

∂R
c

�j (Rc)〉, and scalars dij (t)

= 〈�i(Rc(t))| ∂
∂t

�j (Rc(t))〉 = dij (Rc) · Ṙc(t).
A3: The classical particles are propagate for one time step,

∂t, on the current adiabatic surface, i, using New-
ton/Lagrange equations of motion,

∂

∂t
Pc(t) = Fc(t) = − ∂

∂Rc

Ei(Rc(t)), (11)
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Begin Surface Hopping
k=0

Initialize Trajectory k
Rk = R(0), Pk = P(0), Sk = 0

k = 0, Dk = 1, k = 1
t = 0, mk = 0, sk = s(0)

Quantum Chemistry
Ek=Esk

(Rk)
Fk=- Esk

(Rk)/ Rk
dk=dsksk

(Rk)

Equations of Motion
t = t + t
Rk=Pk t/M + Rk

Pk=Fk t + Pk

Sk= (Pk
2
/2M - Ek) t + Sk

Pk
2
/2M + Es(Rk) > Es(Rk) ?

t > tmax?

NO

YES

k=1+k
k = N ?

YES

YES NO

NO

Calculate sksk
(Rk) sksk

(Rk)=0

k= sksk
t + k

Generate RN
RN< sksk

?

YES

NO

Dk = dk Dk

k = sksk
(t) k

mk = 1 + mk

sk = sk

Process Trajectory Data
k=0
For all m & s:
Nm,s = 0, Am,s = 0

Nmk,sk
= 1 + Nmk,sk

Amk,sk
= exp[- k] + Amk,sk

k = 1 + k , k = N ?

YES NO

For all m & s:
Am,s = (Nm,s/N) / Am,s

Cs=0

Calculate Wavefunctions
k=0

(R)= {((M )
2
/[ (M )

4
+t

2
])

0.25

exp[iPkR + (R-Rk)
2
/(

2
+it/M)]}

Cs(R)=(DkAmk,sk
/ k) exp[i(Sk-PkRk)] (R) + Cs(R)

k = 1 + k , k = N ?

YES NO

Calculate Desired Expectation Values

A1:

A2:

A3:

A4:

A5:

A6:

B1:

B2:

B3:

B4:

FIG. 1. Example for semiclassical Monte Carlo surface hopping algorithm for a two electronic state system. Green boxes – Part A (dynamics). Purple boxes –
Part B (Wavefunction calculation). Definitions are same as text.

by some numerical method, e.g., Verlet, Runga-Kutta.
The classical action along the trajectory,

S(t) =
∫ t

0
dt ′

N∑
α

P 2
α (t ′)

2Mα

− E(t ′)

=
N∑
α

∫ Rα
c (t)

Rα
c 0

dR̄α
c Pα(R̄α

c ), (12)

is calculated for subsequent use in part B. We as-
sume our propagated gaussian nuclear wavepackets are
“free,” i.e., they broaden with time, independent of the
PES.

A4: At the end of the time step, we determine whether or
not to hop to a new state, j. First, we determine whether
the hop is allowed or frustrated by, the assumed, con-
servation of energy, i.e.,

P2
c(t ′)
2M

+ Ei(Rc) ≥ Ej (Rc). (13)

If the hop is allowed the probability, γ i→j(t), is calcu-
lated. If not γ i→j(t) = 0. Unlike other surface hopping
methods,29, 38, 76 the final result is formally independent
of the choice of hopping rate, assuming that the hopping
rate is nonzero everywhere dij(t) is non-zero. However,
the choice of hopping rate is crucial to achieve rapid
convergence of the result.

A5: At each time step, the hopping probability to the new
state is added to the integral


(t) =
l=m∑
l=0

∫ t
l+1

t
l

dt ′ γs
l
→s

l+1
[Rc(t ′)]. (14)

Here, m is the number of hops over the course of the
trajectory, and tl is the time at which the lth hop occurs
(tm + 1 ≡ t, sm + 1 ≡ j). If RN < γ i→j, where RN is a
generated random number between 0 and 1, then the
trajectory hops to state j.

A6: If a hop occurs, the products

D(tm−1 . . . t0) =
m−1∏
l=0

ds
l
s
l+1

(tl), (15)

and

�(tm−1 . . . t0) =
m−1∏
l=0

γs
l
→s

l+1
(tl) (16)

are multiplied by dij(t) and γ i→j(t), respectively. The
number of hops, m, is increased by one.

The procedure is repeated for the next time step on ei-
ther the original or new state. These dynamics continue for
the desired time. Once completed, the final position, Rc(t),
and momentum, Pc(t), of the trajectory are stored. The pro-
cess is repeated for the specified number of trajectories. In
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calculations of realistic molecular systems, A2, i.e., quantum
chemistry calculation of state energies, forces, and non-
adiabatic couplings, will be the most computationally de-
manding step. However, due to the independence of the
dynamical trajectories, the loop beginning at A1 is trivially
parallelizable. This will greatly aid in the application of the
method to larger systems.

B. Post-processing

Information collected by the surface hopping dynamics
is further analyzed in the second step at negligible computa-
tional expense when compared to part A. Namely, we calcu-
late the nuclear wavefunctions,

�i(R, t) =
∑
m

∫
dmt Im

i (R, t), (17)

or probabilities, Pi = ∫
dR |� i(R, t)|2. Here t ≡ {t1, . . . tm,

t} is the set of time integration variables and
∫

dmt
≡ ∫ t

0 dtm
∫ t

m

0 dtm−1 . . .
∫ t2

0 dt1. We independently sample in-
tegrals,

∫
dmt Im

i (R, t), which differ in the number of hops,
m, and final state, i. Additionally, if there is significant sep-
aration between wavepackets, e.g., wavepackets which are
reflected or transmitted in 1D, then integrals contributing to
those wavepackets are also sampled separately. While not re-
quired formally, this consideration of spacial overlap signif-
icantly improves convergence rates with minimal loss of in-
formation. Thus, trajectories are sorted by the number of hops
and final electronic state, and grouped into spatially separated
contributors of the partial wavefunctions.

Using the standard Monte Carlo approach, the integral∫
dmt Im

i (R, t), can be expressed in terms of an expectation
value ∫

dmt Im
i (R, t) =

∫
dmt

Im
i (R, t)
ρm

i (t)
× ρm

i (t)

≈ 1

Nm
i

×
Nm

i∑
k=0

Im
i (Rk, tk)

ρm
i (tk)

. (18)

Here, k is the index of a trajectory from step 1, Nm
k is the

total number of trajectories with m hops and ending in state
i. ρm

i (tk) is the value of the probability distribution, ρm
i (t), for

the trajectory k.
The kth value of the probability distribution can be ex-

pressed as ρm
i (tk) = �m

i (t
k
)

Am
i

. Here �m
i (tk) is given by Eq. (16),

and Am
i = ∫

dmt �i(t) is the normalization coefficient for tra-
jectories with m hops finishing in state i. Am

i can be deter-
mined using statistical considerations of the stochastic pro-
cess defined by the rate γ . We consider the probability of a
single trajectory finishing in state i with m hops for all values
of t (see the supplementary material of Ref. 71),

pi =
∫

dmt �i(t)e
−


i
(t). (19)

This probability can also be expressed as an expectation
value, using the same probability distribution, ρm

i (t) = �
i
(t)

Am
i

,

from Eq. (18),

pi = Am
i

Nm
i

Nm
i∑

k=0

e−

i
(t

k
). (20)


i(ti) is given by Eq. (14). We seek the value of Am
i . Thus, we

assume the number of trajectories, Nm
i , is sufficiently large so

that we can replace pi with Nm
i /N , and rearrange

Am
i ≈ (

Nm
i

)2
[
N

Nm
i∑

k=0

e−
m
i (t

k
)

]−1

,

and

ρm
i (tk) = �m

i (tk)
N(

Nm
i

)2

Nm
i∑

k=0

e−
m
i (t

k
). (21)

B1: We first determine Nm
i and calculate the sum in Eq. (21)

for every i/m pair.
B2: We calculate each Am

i .
B3: For a given trajectory Im

i (Rk, tk) is easily calculated, see
Eq. (5), from the surface hopping data, Eqs. (11), (12)
and (15),

Im
i (Rk, tk) = Dk(tk) × ei[Si (t

k
)−Pk (t)Rk

c (t)]

×φ
(
R, Rk

c, Pk
c, t

)
, (22)

where φ is a “free” gaussian wavepacket,

φ
(
R, Rk

c,Pk
c, t

) = 4

√
M2σ 2

π [M2σ 4 + t2]
eiPk (t)Re

[R−Rk
c (t)]2

σ2+ it
M ,

(23)

with the final position and momentum of the trajectory
k, and an initial width, σ . At this point the nuclear wave
functions can be calculated by summing over all the tra-
jectories, Eq. (18).

B4: Once � i(R, t) is known, expectation values (e.g., x, P,
density matrix) can be calculated. When the number of
trajectories is low, the random error in � i(R, t) can be
reduced by normalization. However, the effect is mini-
mal in a well converged calculation.

Some notes on the case of more than 2 electronic states:
(1) The rate in Eq. (14) would be replaced with a sum over
the rates to all possible new states. (2) Eqs. (15) and (16) re-
main unchanged. (3) Determination of which state to hop to
can be determined as it is in Ref. 38. (4) For every possible
path of intermediate electronic excited states, there is an inte-
gral which must be sampled independently. Thus each distinct
path has a different probability distribution, Eq. (21).

IV. ANALYSIS OF SCMC METHOD

In order to test the SCMC procedure, we consider three
two-level models proposed by Tully.38 Figure 2 shows the en-
ergy eigenstates and NACVs of these three one-dimensional
problems. For the exact form of the Hamiltonians see Ref. 38.
For these three problems, scattering probabilities calculated
using the SCMC, FSSH, and Ehrenfest methods are com-
pared to the exact time-dependent Schrödinger equation in
Gorshkov et al.71 In Figure 3, we represent those scattering
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FIG. 2. Test problems. (Top Left) Tully Problem 1-Single avoided crossing.
(Top Right) Tully Problem 2 – Double avoided crossing. (Bottom Left) Tully
Problem 3 – Extended coupling with reflection. (Bottom Right) Three Level
Model X. Green dotted (Purple dashed/Blue dashed-dotted) line is lower (up-
per/middle) electronic eigenstate. Black (red) solid line is the non-adiabatic
coupling vector, d12(23)(x). All values are in atomic units.

results. For Problems 1 and 3: 25 000 and 10 000 trajectories
were used for the SCMC and FSSH approaches, respectively.
For Problem 2: 75 000 trajectories were used in the SCMC
calculation, while only 10 000 were used in the FSSH cal-
culation. Here we seek to provide in-depth analysis of these
results and insight into the method. All parameters and results
in this section are in atomic units.
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FIG. 3. Scattering probabilities for Tully’s problem set, using time-
dependent Schrödinger equation (black solid line), Ehrenfest method (blue
dotted line), fewest switching surface hopping (purple circles), and SCMC
method (green squares). (a) Problem 1 – Transmission on lower (inset-
upper) surface. (b) Problem 2 – Transmission on lower (inset-upper) surface.
(c) Problem 3 – Reflection on lower (inset-upper) surface. (d) Problem
3 – Transmission on upper (inset-lower) surface. Results previously reported
in Ref. 71.

Problem 3 provides a simple model problem where the
standard implementation of the FSSH quantitatively and qual-
itatively fails to reproduce the exact TD-Schrödinger result,
see Figs. 3(c) and 3(d). It is well known that this failure is
due to the lack of decoherence.38, 77 The equation of motion
for the electronic density matrix, or complex expansion co-
efficients, does not include the effect of bifurcation of nu-
clear wavepackets. Corrections can be introduced by hand
into the FSSH algorithm to correct for this problem.47, 49–61

In the SCMC approach, we do not need to propagate the elec-
tronic density matrix in order to determine hopping rates. We
find the simple hopping rate γ 1 → 2(t) = |d12(t)| leads to ac-
curate results for all of the test problems, see Figs. 3 and 4.
Thus, since we do not utilize the electronic density matrix,
we do not encounter the “over coherence” problem. The left
(right) column of Figure 4 shows the results of the SCMC
(time-dependent Schrödinger) calculation for Problem 3 with
an initial wavefunction

�(t = 0, x) =
⎛
⎝ (πσ 2)−

1
4 × exp{ikx − (x−x0)2

2σ 2 }
0

⎞
⎠ ,

R e[ 1](x)
| 1|

2
(x)x=39.8

p=29.9

| 1|
2

x>0

=0.69

R e[ 1](x)
| 1|

2
(x)x=-12.4

p=-10.0

| 1|
2
x<0

=0.12

R e[ 1](x)
| 1|

2
(x)x=39.7

p=29.9

| 1|
2
x>0

=0.70
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2
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2
x<0
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2
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2
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=0.21
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| 1|
2
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=0.19

FIG. 4. Scattered wavepackets problem 3 at t = 4059. (Left column) SCMC
method using 25 000 trajectories. (Right column) TD Schrödinger equation.
(Top (Center)) Reflected wavepacket on upper (lower) electronic eigenstate.
(Bottom) Transmitted wavepacket on lower electronic eigenstate. (Colored
solid) Wavefunction. (Black dashed) Probability density.
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with initial position: x0 = −12, momentum: k = 10, and
width: σ = √

200/k, starting on the lower eigenstate: |ψ1〉.
The snapshot is taken after the wavepacket has gone through
the interaction region with a portion being transmitted on the
lower adiabatic surface (bottom), or reflected on either the
lower (middle) or upper (top) surface. The SCMC wavepack-
ets have the same momentum, p, and positions, x, as the exact
solution, indicating that our semiclassical dynamics, i.e., as-
sumption of conservation of energy and Newtonian equations
of motion is reasonable. The transmitted wavepacket (bottom)
calculated by SCMC shows significantly less broadening than
the exact result. This is due to our “free” gaussian approxima-
tion, which ignores the increase in broadening due to the neg-
ative second derivative in the energy of the lower surface from
x = −5 → 0. In principle, this is simple to account for,78 how-
ever calculation of the second derivative of the PES would be
prohibitively expensive in a many-dimensional problem.

To test the limits of our method, we consider the three
level crossing “Model X” problem from Ref. 48 (see Ref. 48
for Hamiltonian). The PES can be seen in Fig. 2(d). We con-
sider a particle entering from negative x on the middle surface.
The particle has a well-defined momentum (plane wave for
the exact solution, σ = √

200 000/k for SCMC). The large
value of σ , as well as the multiple crossings, and possibility of
reflection makes “Model X” a very difficult problem for semi-
classical and surface hopping methods. However, with enough
trajectories, 5 × 105, the SCMC can approach the exact solu-
tion. Figure 5 shows the unnormalized scattering probabilities
for this problem, with SCMC compared to the exact solution.
The most difficult part of the exact dynamics to recover is
the period and phase of the oscillations in the transmission on

0

0.1

0.2

0 10 20 30
0

.05

0.1

0 10 20 30

0.0

0.2

0.4

0.6

0.8

0 10 20 30

k

0

0.1

0.2

0 10 20 30

k

RL

TL

RM

TU

FIG. 5. Scattering probabilities for three level crossing problem (Fig. 2(d)),
using time-dependent Schrödinger equation (purple dotted line), and SCMC
method (green solid line). (Top Left) Reflection on lower surface. (Top Right)
Reflection on middle surface. (Bottom Left) Transmission on lower surface.
(Bottom Right) Transmission on upper surface. Schrödinger equation results
were previously reported in Ref. 48.

the lower surface.48 The SCMC method correctly reproduces
this phase and period. Within the Fewest Switches framework,
careful corrections to decoherence, e.g., augmented-FSSH,79

as well as a phase correction, e.g., Shenvi phase correction,59

are required to correctly achieve the period and phase of the
oscillation.48

While the SCMC method does a good job of reproduc-
ing the exact result, it does so at the cost of a high number
of trajectories. For a problem like “Model X” significant im-
provement in the convergence could be achieved by using the
SCMC only in the vicinity of the strong NAC, then adiabat-
ically propagating wavepackets with the normalization, posi-
tion, momentum, and phase given by SCMC. This is simi-
lar, in essence, to the branching scheme recently proposed by
Herman, which significantly improved convergence in a two
crossing problem.80

We have shown how the details of the problem, number,
and nature of level crossings, can affect the number of trajec-
tories required, i.e., 2.5 × 104 for a simple avoided crossing
(∼1%−2% absolute error) with 3 × as many required for the
double avoided crossing. In Subsection IV A, we will discuss
the factors which lead to this increased cost in trajectories.

A. Role of phases

While the SCMC method does a good job of reproducing
the exact result, including when FSSH and Ehrenfest methods
fail, it does so at an increased cost in trajectories. In order to
determine the areas where SCMC is most applicable, we seek
to understand how the convergence rate is affected by differ-
ent models and parameters. First, we look at the simple single
level crossing, Problem 1. Figure 6 (Inset) shows the relative
error, δrel, in the calculated probabilities of transmission on
the upper (lower) surfaces, TU (TL), as a function of the to-
tal number of trajectories, N. For all momentums and both
probabilities, the convergence obeys an approximate power

5

15

rel(%)
2.5

7.5

5 25 5

5 25 5 50 7

0 75

N ( 1000)

k=10
k=20
k=30
k=10
k=20
k=30rel(%)

N ( 1000)
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TU

FIG. 6. Average relative error percentage (δRel) of SCMC calculation, with-
out normalization, for Problem 1 as a function of the number of trajecto-
ries (N) for k = 10, 20, and 30. Twenty calculations per data point. Filled
(Empty) Markers – Transmission probability on the upper (lower) surface.
Solid (Dashed) lines are respective fits to the data of the form δrel = a√

N
+ b.
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law of the form δRel = a√
N

+ b (see line fits). This O( 1√
N

)
dependence of the error is standard to Monte Carlo meth-
ods. For TU, we see faster convergence with increasing initial
momentum.

This k dependence can be understood by looking at the
phase in Eq. (22). Assuming a one-dimensional system with
two electronic states, we can calculate the phase for a trajec-
tory which begins on the lower surface and hops once,

F1(tf , t1)

= P2(tf )

[ ∫ t1

0
dt

P1(t)

M
+

∫ t
f

t1

dt
P2(t)

M
+ x0

]

+
∫ t1

0
dt

[
P1(t)2

2M
− E1(t)

]
+

∫ t
f

t1

dt

[
P2(t)2

2M
− E2(t)

]
.

(24)

Since all trajectories have the same final and initial times, we
can subtract off any term which does not depend on the time
or position of the hop. Additionally, if we assume that the
initial momentum, k, is large enough that we do not have any
reflection, and tf is large enough that P2(tf) is a constant, we
can rewrite Eq. (24) as a relative phase that depends on the
position of the hop,

F̃1(x1) =P2f

∫ x1

x0

dx

[
1 − P2(x)

P1(x)

]

+
∫ x1

x0

dx

[
P1(x) − P2(x)2

P1(x)

]
. (25)

With the same considerations we can write the relative phase
for a trajectory with two hops,

F̃2(x1, x2) = P1f

∫ x2

x1

dx

[
1 − P1(x)

P2(x)

]

+
∫ x2

x1

dx

[
P2(x) − P1(x)2

P2(x)

]
. (26)

In Figure 7, we can see that the number of oscillations,
which must be sampled, is reduced in the one (a) and (b) and
two (c)–(f) hop integrals when we go from the low momen-
tum, k = 10, to the high momentum k = 30. Indeed for inte-
grals of all numbers of hops the number of oscillations will
decrease with an increasing momentum. The “smoother” in-
tegrands associated with higher momentum are easier to sam-
ple via Monte Carlo methods. For the TL in Figure 6, the ef-
fect competes with constant error sources, due to, e.g., the
free gaussian approximation, which appears as an increasing
relative error with decreasing average probability (probabil-
ity of TL decreases with increase k). This leads to the non-
monotonic k dependence.

When going from a single (Problem 1) to double (Prob-
lem 2) crossing systems the integrated area of |d12(x)| in-
creases from 1.57 to 2.60. The number of trajectories required
to sample an integral with m hops will approximately scale
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FIG. 7. Relative Phases, Problem 1, for single (a) and (b), Eq. (25), and dou-
ble (c)–(f), Eq. (26), hop trajectories for k = 10 (left) and k = 30 (right).
(a) and (b) Black solid – |d12(x)|, Purple dotted – d12(x) × Re[F̃1(x)], Green
dashed – d12(x) × Im[F̃1(x)]. (c) and (d) Color map of

∣∣d12(x1)d21(x2)
×Re[F̃2(x1, x2)]

∣∣. (e) and (f) Color map of
∣∣d12(x1)d21(x2)×Im[F̃2(x1, x2)]

∣∣.∫
dx |d12(x)| � 1.57.

with
∫

dx |d12(x)| as

1

m!

[ ∫
dx |d12(x)|

]m

. (27)

However, integrals with more hops, generally, will contribute
less to the total wavefunction. Additionally, oscillations due
to the phases, Eqs. (25) and (26), increase for Problem 2 (see
Fig. 8). These two, not independent, effects result in a much
slower convergence rate for Problem 2 as compared to Prob-
lem 1 or 3. It was shown in Ref. 71 that ∼3 times the number
of trajectories is required to obtain similar precision for Prob-
lem 2 as for Problems 1 and 3.

B. Choice of hopping rate

In principle, the hopping rate, γ i→j, is arbitrary. It is sim-
ply the choice of a probability distribution for sampling the
integral, Eq. (5). A better probability distribution leads to less
samples being required to accurately calculate the correct re-
sult. The closer the probability distribution is to the abso-
lute value of the normalized integrand, the better the sam-
pling. If we knew the normalization factor for each integrand
Im
i , then we would not need to run simulations. Even if we

could make a good estimate of these normalization factors,
we would have to run separate sets of trajectories, with differ-
ent hopping rates, to sample different outcomes. Additionally,
it is not clear, in general, how to include the complex phases
into a probability distribution, and it is difficult to know the
phases in Eq. (22) a priori. However, by choosing γ i→j(t)
= |dij(t)| we can at least include the factor D(t) into the prob-
ability distribution. D(t) provides bounds and amplitude to
the integrands in Eq. (5). While there are methods to improve
sampling of complex valued integrands, e.g., stationary phase
approximation,81, 82 they emphasize sampling in the same
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region as D(t), i.e., regions with small �E between PES. This
leads to minimal or no improvement. Investigating other hop-
ping rate choices, which would effectively include the effects
from the phases, is an ongoing project.

One choice which may come to the readers mind, is the
fewest switches hopping rate from Tully,38

γ FS
i→j (t) = 2Im[aji(t)Vji] − 2Re

[
aji(t)dji

aii(t)

]

= 0 if < 0,

with

∂

∂t
aji(t) =

∑
k

[
i(ajk(t)Vki − Vjkaki(t))

+ ajk(t)dki − djkaki(t)

]
. (28)

Here a is the electronic density matrix. Figure 9 shows the rel-
ative error of the SCMC calculation for the different hopping
rates, γ FS

i→j and dji. In both the cases where FSSH method
works (Problem 1 – Fig. 9(a)), and when the FSSH method
fails (Problem 2 – Fig. 9(b)), the error is extreme (see Fig. 9(b)
inset) if the results are unnormalized, and still high even when
normalized (Fig. 9). There is a problem with using γ FS

i→j . After
one surface hop, the returning hop is frustrated, for a time, due
to the resulting negative sign in γ FS

i→j . This leads to regions of
vanishing hop probability in trajectories with more than one
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(b) Problem 2, Transmission probability on the lower surface with normaliza-
tion for k = 15, 30, and 50. (b) – (inset) Averaged relative error percentage of
unnormalized results. Filled markers are for γ 1 → 2 = |d21|. Empty markers
are for γ1→2 = γ FS

1→2. Solid (Dashed) lines are respective fits to the data of
the form δrel = a√

N
+ b.

hop. Even without the phases this would, in principle, lead to
erroneous results.

Additionally, when the integrals are unevenly sampled
without consideration of the phases, as they are when using
γ FS

i→j , the sensitive constructive/destructive behavior of the
phases leads to the large error. We believe there will always
be situations where any ad hoc hopping rate will lead to poor
convergence due to the imperfect accounting of the phases.
Thus, while we have repeatedly referred to the SCMC proce-
dure as surface hopping with a post-processing step, it should
not be blindly applied to any surface hopping procedure, such
as FSSH. However, it remains to be seen if other surface hop-
ping probabilities do provide a good probability distribution
for Monte Carlo sampling. The difference in the result before
(Fig. 6 and inset of Fig. 9(b)) and after (Figs. 9(a) and 9(b))
normalization tells us how well the method is working. If the
change is minimal (compare Figs. 6 and 9(a)), the SCMC pro-
cedure is working well for the system. If the change is large
(compare Fig. 9(b) body and inset), the SCMC procedure is
failing.
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V. CONCLUSION

The semiclassical Monte Carlo method provides an ap-
proach, which is not ad hoc, for calculating non-adiabatic
dynamics in extended molecular systems. It is based on an
expansion of the full molecular wavefunction into partial
wavefunctions corresponding to the number of transitions be-
tween electronic states. The procedure involves standard sur-
face hopping dynamics with an additional post-processing
step (calculation of the wave functions from collected data).
While in the surface hopping method the hopping probability
controls all of the dynamics; in SCMC it is primarily inter-
ference between trajectories with different (or similar) phases
that determines the final result. For this reason, the SCMC
method does not suffer from the same “over coherence” prob-
lem as the FSSH approach.

Some notes on the applicability of this method: (1) While
the phases lead to difficulty in sampling for small momen-
tum, for higher momentums the sampling becomes easier. (2)
Additionally, we believe that convergence rate does not in-
crease with increased number of system coordinates.71 (3) In-
creasing the number of crossing regions increases the num-
ber of trajectories required for sampling, see Eq. (27), due
to an increase in the area of non-adiabatic coupling and an
increase in the number of oscillations due to the phases. (4)
While it has been shown that, in some systems, FSSH ap-
proach requires complete coupling, i.e., the quantum mechan-
ical electronic dynamics requires calculation of NACV for all
combinations of states ( 1

2Ns[Ns − 1] NACV calculations),83

the SCMC method with a hopping rate of |di, j(t)| requires
only partial coupling (Ns − 1 NACV calculations). When
Ns becomes large the calculation of NACVs can become the
bottleneck of the calculation. Thus improved scaling in Ns
may make up for the additional trajectories needed for sam-
pling the wavefunction. (5) Alternatively, one could utilize
this method only in the vicinity of non-negligible NAC, in
essence attacking the multi-crossing problem one crossing at
a time. We leave development of such a procedure, with com-
parison to full SCMC and TD-Schrödinger calculations, as
well as continued efforts in improving convergence rates, and
application of the SCMC approach to realistic systems for fu-
ture work.
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