Cheap clean energy for all in the 21st Century?

Rajan Gupta Theoretical Division Los Alamos National Laboratory

<u>Rajan@lanl.gov</u>

http://t8web.lanl.gov/people/rajan/

A macro view of global population 2 billion in 21st century Health **1.5B** Education people Energy in Water Transition **Job Skills**

3 billion in 18th century with less than \$2 ppp/day (*Additional 2.5B will start here*)

Energy \Leftrightarrow **development**

Global Economics and Energy

E‰onMobil

3B poor (~1B homes) need access to energy

- Cooking and potable water:
 1 liter (1/4 gal) of kerosene per day
- Light:
 - -100 watts (7 \otimes 13W florescent bulbs)
- Entertainment/Communications:
 - TV/computer at 200-500 watts

 ~ 200

Gigawatts

These additional resources would revolutionize the development of the poor

4+1 global grand challenges

- Carbon neutral fossil (coal)
- Solar PV/CSP at capital cost \$1/watt
- \cdot H₂ produced from non-fossil sources
 - Photochemical, thermal splitting of H_2O
- Closed nuclear fuel cycle to enable safe, secure, sustainable nuclear energy
- Efficient energy use, storage and transmission
- Fusion the ultimate "source"

A tale with nine parts

Outline

- 1) The energy infrastructure is huge (~\$15 trillion)
- 2) Climate Change an uncontrolled experiment
- 3) Cheap clean energy an economic opportunity
 - Alternatives have a market niche but are small today
- 4) USA lacks energy (conventional oil, gas) security
- 5) Middle East & Russia control oil and gas
- 6) Increasing competition (China, India)
- 7) Can we continue to bank on a military solution
- 8) Unconventional fuels: 2-3X pollution and CO₂

9) Energy efficiency ↔ behavior change

A mind-boggling global infrastructure (~\$15 trillion) provides modern energy/mobility to ~3.5 billion people

- Oil and gas contracts, rigs, exploration technology
- Tankers and pipelines
- Refineries, LNG facilities
- Auto industry
- 600 (+220) million cars (+trucks) running on gasoline
- Service stations and gasoline stations
- Existing coal/gas electricity generation plants

1. This cannot be changed overnight!

current and historical global energy mix

Current global energy supply is dominated by fossil fuels – oil has been the largest component of the energy mix for many decades; gas has grown strongly since the 1970's; coal has been growing in the last four years; hydro is constant and nuclear has plateaued

Source: BP Statistical Review

Global consumption is ~13 trillion watts of primary power in 2006

To sustain an adequate standard of living (4kw) for 8 billion people (population by 2025), and without improvements in efficiency, we need ~2.5 times today's energy use.

GOAL: 32 Twatts ~ 10Twatts electric

The simplest solution is

Unconstrained supplies of

- Gasoline
- Natural gas

Conventional + unconventional

Can provide all our needs for electricity, heat, transportation.

Environmental stewardship requires Carbon capture and sequestration

Fossil Fuels and Environment

In the 20th century we started to act on pollution (mercury, NOx, SOx, acid rain, soot, ...) but <u>not</u> CO₂ and the associated global climate change

CO_2 is a greenhouse gas. It forms a blanket around the earth that causes warming

http://earthobservatory.nasa.gov/Study/vanishing/ Melting of glaciers in Greenland and around the world. Is it global warming?

CO₂ cycle and warming is a non-linear phenomena

Intense storms

Increasing evidence for temperature rise due to fossil-fuel burning

Possibility of catastrophic change:

Shutdown of the thermohaline in 10s of years

Are we in the non-linear regime of CO₂ cycle/warming?

- CO₂ is the most oxidized form of carbon
 - 10-50 year cycle with terrestrial and shallow ocean (saturated)
 - 400-2000 year cycle deep ocean
- Thermal capacity of earth → we are observing response to CO₂ loading of 30-40 years back

Sequestration of $CO_2 \Rightarrow$ First capture and then store 25 gigatons CO_2 / year!

2. Climate change is the largest, costliest, most dangerous, uncontrolled experiment ever done by mankind

Clean Energy: an Economic Opportunity

- Clean electric power
- Robust electric power grids
- Fuel for Transportation
- Efficient autos/machines/appliances are increasingly value-added products.

10 Terawatts of electric power translates to a \$12billion/day market at \$0.05 kWhr Getting all three – cheap, clean and copious supply – is the challenge

- Plenty of fossil Carbon
 - Oil, natural gas, coal
 - heavy oil, shale, clathrates, …
- Fungible at \$50+/barrel (Coal-to-Liquids) Issues with fossil fuels
 - Environmental impact
 - Green house gasses

Alternates: How much and how soon?

All alternatives to fossil fuels have a market niche

- Nuclear ~400 GW ?
- Hydro ~400 GW ~600 GW

+30%/year

+30%/year

- Wind 60 GW_p
- Solar PV 4 GW_p
- Geothermal 25 GW (e+th)
- Biofuels 1 Mboe/day ?

3. But none is large enough!

Paradigm change is needed in order to provide affordable & clean energy to all!

4. Energy Security

Where do we get our oil and natural gas from? And **Emerging challenges to this** supply?

Oil is easy to move and trade

US oil consumption: Large (~25% of global) & Growing

ELA, Annual Energy Outlook 2001; "Potential Oil Production from the Coastal Plain of ANWR," - ELA Reserves & Production Division

Problems with business as usual

- USA imports 2/3 of oil it uses
- Share of imported natural gas is set to increase rapidly
- Market saturated, volatile, unstable
- Producing nations are unstable
- CO_2 emissions \rightarrow global warming

Decline in production in friendly nations

MEXICAN OIL PRODUCTION

North Sea (UK, Norway)

Peaked in 1999 at 6.05 million bbl/day.

1999-2005: average decline at 3.4% to 4.8 million bbl/day in 2005

Peak Oil

Major natural gas trade movements

Trade flows worldwide (billion cubic metres)

5. Middle East and **Russia control** conventional natural gas and oil

PHILIPPE REKACEWICZ

New pipeline from **Russia to Germany bypasses** Ukraine and Eastern Europe

BULGARIA

RUSSIA

□Kiev

DMinsk

BELARUS

Buchares

UKRAINÉ

ROMANIA

Warsaw

Moscow

Black Sea

Major gas pipelines

Source or storage/

distribution facility

Natural destination is Europe & Asia

6) The global oil (gas?) situation has been anticipated by the US and has guided its policies since WWII

Oil: key driver of foreign policy

- 1945
 - F. Roosevelt and King Abdel Aziz "oil for security"
- 1947: Truman Doctrine
 - Stop the spread of communism (Greece, Turkey, Iran)
- 1957: Eisenhower Doctrine
 - Protect friendly interests
- 1969: Nixon
 - Protect interests through surrogate friendly rulers
- 1980: Carter Doctrine
 - To protect Saudi Arabia and the free flow of oil from the Persian Gulf
- 1983: Establishment of Central Command
 - Protecting the free flow of oil from the Middle East and Central Asia

US bases in the Middle East

A very successful but costly military investment to protect the flow of oil (=prosperity)

6. Can we continue to bank on this solution?

7. Increasing competition for oil and gas

CHINA'S OIL DEMAND 1980-2004

China & India are making deals with Iran, Sudan, ...

Oil Imports 1994-2004	
USA	+4% / year
Japan	-1% / year
India	+8% / year
China	+31% / year

8) Will coal or natural gas or nuclear or solar dominate power generation?

See 2007 MIT study on the Future of Coal

Unconventionals: Large reserves

Problem: pollution, environment, CO₂

To use "coal" the US must lead the world by innovating clean coal technology for generating electricity and producing oil

Worldwide > 1 TW of new coal PP in next 20 years

FutureGen (No emissions) 10+ years away

Nuclear power: "CO₂ clean"

- Principles of nuclear fission are known
- Natural ²³⁵U is limited
- Rapid scale up requires R&D

- Closed fuel cycle
- Gen IV reactors
- Breeder reactors
 - $232 Th \rightarrow 233 U$

Fear of accidents
 Proliferation

 ➢ HEU, ²³⁹Pu

 Waste management

Not in my backyard

400 Nuclear Power Reactors

To replace 10 Terawatts by nuclear power would require 10,000 one GW plants – 1 new plant a day for 30 years. Don't have enough nuclear scientists or engineers 8) Power generation Urgent need for timely action:

Need 10-15 years to plan, build and understand costs of commercial plants

What we build today will have a lifetime of 40-70 years (through much of 21st century)

China (and soon India) will build ~1 GW coal power plants a week for next 10 years

9) While people argue about their favorite "solution" (each has drawbacks & potential), there is consensus on *energy efficiency*

A factor of ~50% improvement possible with today's technology

Short term Option: Behavior Change

Drive less and Drive fuel efficient cars

Tanzania: fruit seller flame [above]; 1-watt white LED [below] *Source: Art Rosenfeld* The US should lead the world in energy efficiency

Energy Consumption Per Capita

Cannot have cheap clean energy for all (at **tera** scale) without key S&T R&D

- Separation/capture of CO₂ from mixed gas streams
- Secure and effective long-term storage of CO₂.
 Geologic, mineralization, ...
- Hydrogen from water without using fossil energy:
 Electrolysis of water (inexpensive and efficient electrodes)
 Photochemical and/or thermo-chemical splitting of water
- PV, CSP (\$1/watt & 100+ GW/year production)
 nano and/or bio PV materials & systems integration
- Closed nuclear fuel cycle and advanced reactors

 separation of SNF, transmutation, fuel reassembly, waste
- Fusion?

No large scale (1 TW) deployment in next 20 years

No source is intrinsically good or bad or clean or dirty. It is a lifecycle systems issue

- 1) Cost
- 2) Density
- 3) Storage
- 4) Portability and mobility
- 5) Scale
- 6) Unintended consequences

The need is so large that we will exploit *all* sources. Must close the cycle, determine realistic lifecycle costs and think equity if we want cheap clean energy for all

Summary

- Need for modern energy is global
- Access should be a global right
- Environmental impact is global

To have affordable access by all <u>and</u> to mitigate environmental impacts we must address the energy challenge as a global responsibility

Energy Security

- = National Security
- = **Economic security**
- = Environmental Security
- = Future of our children

Senator Lugar: "energy is the albatross of U.S. national security"

Brookings: 13 March 2006

Industrialized nations must lead the R&D for clean and affordable energy NOW (= hope for all mankind)

The poor are most vulnerable to climate change and will not have the resources to mitigate the impacts

Hope versus Hunger As a civilization we understand the threats and we have tools to deal with them Will we grow the will and act in time?

Degree of Food deprivation

Low prevalence and low depth

Moderate prevalence and low depth or low prevalence and moderate depth

Moderate prevalence and moderate depth

High prevalence and moderate depth or moderate prevalence and high depth

High prevalence and high depth

Not assessed countries with populations under 1 million or insufficient data

Source: FIVIMS (Food insecurity and vulnerability information and mapping systems) SOFI 2000 (State of Food Insecurity in the World) http://www.fivime.net/