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Abstract

This paper analyzes the phase distribution effects on the effective thermal conductivity (ETC) of multi-phase microgranular porous media using
mesoscopic statistics based numerical methods. A multi-parameter random generation-growth method, quartet structure generation set (QSGS),
is developed for replicating microstructures of multi-phase granular porous media based on the macroscopic statistical information, such as the
volume fractions and the phase interactions. The phase distribution characteristics and the interphase connections are controlled by adjusting the
related parameters. Then the energy transport equations through porous media are solved by a lattice Boltzmann method developed by us with
multi-phase conjugate heat transfer considered. The results indicate that a smaller average particle size could lead to a larger effective thermal
conductivity of two-phase porous media for a certain porosity. For the anisotropic media, if the larger directional growth probability is along
the direction of temperature gradient, the effective thermal conductivity in the parallel direction is enhanced as a result, and that in the vertical
direction will be weakened. For multi-phase porous media, the degree of phase conglomeration is determined by the phase interactions. A larger
liquid–liquid interaction leads to a higher degree of liquid phase conglomeration and therefore a larger effective thermal conductivity of the porous
media.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The thermal properties of porous media have been of great
interests recently due to their applications in science and en-
gineering, such as material design, geophysical exploration,
biological and medical engineering [1–8]. Most previous the-
oretical models for predicting the effective thermal conductiv-
ities (ETC) are based on the network combinations of Series
and Parallel models [9–12] or on the uniform phase assumption
[12]. Although these models are easy to use because of their
simple dependence on phase fractions, the effects of phase dis-
tribution and multi-phase interaction on the effective thermal
conductivities are yet ignored. A full numerical determination
of thermal properties of porous media generally includes two
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steps: Acquiring the structure and phase distribution informa-
tion into consideration and then solving the relevant set of local
energy transport equations.

Several methods have been proposed to generate microstruc-
tures of multi-phase materials in the past decade. Tacher et al.
[13] presented a discrete reduced distance method to generate
spherical/elliptical two-phase granular porous media. Based on
Tacher’s work, Pilotti developed a grains sedimentation algo-
rithm [14]. Both Tacher’s and Pilotti’s methods generate porous
media with random size and locations, however, neither can
deal well with the connections between grains. Therefore nei-
ther is suitable for the heat transfer problems which are ex-
tremely sensitive to connections. Recently, the reconstruction
process has been widely used in generating random two-phase
[15,16] and multi-component [17,18] porous materials based
on the digital microtomographic information and statistical cor-
relation functions [19]. This kind of reconstruction method is
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more suitable for non-fluidic or single-fluid systems but not
for multiple fluid systems. Mohanty [20] therefore generated
unsaturated porous media using a Monte Carlo annealing al-
gorithm based on the law of lowest interfacial energy. How-
ever, one can notice from the available data and images that
the lowest-energy law is, but not always, the rule dominating
the phase distributions of porous media where random factors
may play more important roles, especially in micro porous me-
dia [18]. Wang et al. [21,22] proposed a multi-parameter ran-
dom generation-growth method, termed quartet structure gener-
ation set (QSGS), to replicate randomly distributed multi-phase
granular porous media based on the cluster growth theory [7,
23] and then investigated the thermal conductivity of isotropic
porous media.

To solve the relevant set of local energy transport equations,
the traditional partial differential equation (PDE) solvers, such
as finite difference method (FDM) and finite element method
(FEM), have been applied for the first steps [24–26]. How-
ever, such traditional PDE solvers demand huge or often un-
acceptable computational resources when the porous structure
becomes complicated, especially when the fluid–solid conju-
gate heat transfer problem is considered [27,28]. Meanwhile the
stochastic methods for representing the perturbations in porous
media have gained much attention recently [29,30]. Shoshany
et al. [31] and Barta and Dieska [32] modeled the thermal
conductivity of porous materials using the Monte Carlo meth-
ods to reflect the structural fluctuations during the process.
Zhang et al. [33,34] developed a randomly mixed material
model (RMM) for predicting the effective thermal conductiv-
ity of moist porous media. Qian et al. [35] proposed a two-
dimensional five-speed (D2Q5) lattice Boltzmann model to
simulate the effective thermal conductivity of porous media,
while neglecting the solid–fluid conjugate heat transfer, which
actually plays a critical role in thermal transport in porous me-
dia [36,37].

Following our previous work, we develop the QSGS fur-
ther for generating microstructures of multi-phase porous me-
dia with emphasis on the parameter effects on phase distribu-
tions. After the microstructures of porous media are generated,
the thermal conduction equations are solved by a lattice Boltz-
mann method with multi-phase conjugate heat transfer effects
considered. The phase distribution effects on the ETC of micro-
granular porous media are thus analyzed.

2. Numerical methods

2.1. Randomly generation-growth algorithm for generating
porous structures

Before the generation, one needs to determine which phase
is the non-growing phase and then the rests are growing phases.
In the present paper, we call the non-growing phase the first
phase, and the growing phase as the nth phase, where n = 2
to N , the total number of phases in the system. Without los-
ing generality, the discrete phases are normally taken as the
growing phases. For example, rocks and water are the grow-
ing phases in unsaturated sands, while the gas is the growing
phase for the polyurethane foams.

The QSGS for generating porous structures includes six
steps [21]:

(i) Randomly locate the cores of the first growing phase in a
grid system based on a core distribution probability, cd ,
whose value is no greater than the volume fraction of the
phase. Each cell in the grid will be assigned a random num-
ber by a uniform distribution function within (0,1). Each
cell whose random number is o greater than cd will be cho-
sen as a core.

(ii) Enlarge every element of the growing phase to its neighbor-
ing cells in all directions based on each given directional
growth probability, Di , where i represents the direction.
Again for each growing element, new random numbers will
be assigned to its neighboring cells. The neighboring cell in
direction i will become part of the growing phase if its ran-
dom number is no greater than Di .

(iii) Repeat the growing process of (ii) until the volume frac-
tion of the first growing phase reaches its given value P 2

(if the growing phase is gas, P 2 is more often expressed as
the porosity ε).

(iv) As to the next growing phase, there are two cases to
consider depending on its interaction with the existing
phase(s). If this phase is an equivalent discrete phase as the
existing growing phase, such as multi-component mixture,
it grows from separate seeds, which is very similar as the
first growing phase described in (i–iii). Otherwise, we have
to consider the constraint by and interaction with the ex-
isting phase(s). For such cases, the nth phase (n > 2) will
grow based on a phase interaction growth probability, In,m

i ,
which represents the growth probability of the nth phase on
the mth phase along the ith direction;

(v) Stop the nth phase growth once its volume fraction reaches
the given value P n.

(vi) Repeat the next phase growth as described in (iv) and (v)
until n = N . The spaces not occupied at the end represent
the non-growing phase.

Thus, there are four parameters (cd , Di , P n, I
n,m
i ) control-

ling the microstructures of generated porous media based on
the generation process. The core distribution probability cd is
defined as the probability of a cell to become a core of the
first growing phase on which growth or expansion of the first
phase originates. The value of cd indicates the number density
of growing cores for the first growing phase, to reflect the sta-
tistical distribution of the first growing phase throughout the
system. The cd value thus also controls the degree of structure
details of a system; a smaller cd leads to a finer description
of the microstructures including particle/pore shapes and inter-
particle/pore connections, etc. However a small cd value will
also decrease the statistical particle numbers for a given grid
size and thus increase the computation fluctuation.

The directional growth probability Di is defined as the prob-
ability for a yet to be occupied cell to merge into a neighboring
cell in the ith direction to become part of the growing phase. An
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Fig. 1. Eight growth directions of each point for 2D systems.

appropriate arrangement of the directional growth probabilities
may lead to an isotropic structure. In other words, the growth
probabilities can be adjusted to control the degree of anisotropy.
For two-dimensional cases, each square cell has eight growing
directions to its neighbors, as seen in Fig. 1. There are four
main directions (1, 2, 3, 4) and four diagonal directions (5, 6, 7,
8). To obtain an isotropic structure in such systems, we set both
the main directional growth probabilities D1–4 and the diagonal
directional growth probabilities D5–8 into respective constant
in each group, and the both constants in a fixed ratio. For in-
stance, by designating the probabilities ratio, D1–4:D5–8 = 4,
we get the directional growth probability consistent with the
equilibrium density distribution function for isotropic materials
[38,39].

For multi-phase porous media systems (n > 2), the interac-
tions between different discrete phases become even more com-
plex, and we have to consider the effects of such interactions
during the phase growth. Such effects are important especially,
for instance, in unsaturated porous media soaked by a liquid that
wets other phases in the system differently. In such systems, the
growth order of the various phases is important. Generally the
solid phase is selected as the first growing phase and then the
liquid phase grows under the influences of phase interactions.
The phase interaction growth probability, I

n,m
i , i.e., the growth

probability of nth phase on the surface of mth phase along the
ith direction, is hence introduced to account for this influence
by assigning different values to I

n,m
i for different materials. The

value of the phase interaction growth probability I
n,m
i could be

determined by analyzing the scanned pictures of phase distrib-
utions or by calculating from the wetting properties directly.

Comparing with the existing generation methods, the QSGS
may have following merits: (i) The generation-growth process
is very close to the natural formation process of most real
porous media which grow outward from cores. Therefore the
generated microstructure is more realistic. (ii) Each of the pa-
rameters in the algorithm has a distinct physical significance,
instead of an empirical determination. (iii) It deals well with
multi-body connection problems. (iv) The stochastic and statis-
tical features of system are determined before the treatment by
the physical laws, instead of other way around as in many exist-
ing methods, thus facilitating smoother tackling of the physical
problems in a more realistic setting (the material is already there
before modeling). (v) The method is efficient without turning to
any iteration process. The algorithm is straightforward in three-
dimensional and/or multi-phase cases, and suitable for parallel
computing.

2.2. Lattice Boltzmann algorithm for solving energy equations

The lattice Boltzmann method (LBM) is intrinsically a
mesoscopic approach based on the evolution of statistical dis-
tribution on lattices, and has achieved considerable success
in simulating fluid flows and associated transport phenom-
ena [40–43]. The most important advantages of the LBM are
the easy implementations of multiple inter-particle interactions
and complex geometry boundary conditions [44–46], and the
conservation laws can hold automatically in general without ad-
ditional computational efforts [47]. The LBM thermal models
have been developed recently [48,49]. Here we introduce our
previous lattice Boltzmann algorithm for fluid–solid conjugate
heat transfer [37], and adapt it for effective thermal conductiv-
ity predictions.

For a pure thermal conduction in porous media with no phase
change, no heat source and no convection, the temperature evo-
lution equation for each phase is generally written as

(1)

gα(r + eαδt , t + δt ) − gα(r, t) = − 1

τn

[
gα(r, t) − g

eq
α (r, t)

]
,

which is actually a simplified form for multi-phase conjugate
heat transfer by eliminating the convection and heat source
terms [37]. The equilibrium distribution of the evolution vari-
able, gα , for the two-dimensional nine-speed (D2Q9) model is

(2)g
eq
α =

{0, α = 0,

T /6, α = 1,2,3,4,

T /12, α = 5,6,7,8,

the microscopic velocity

(3)eα =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0,0), α = 0,

(cos θα, sin θα)c,

θα = (α − 1)π/2, α = 1,2,3,4,√
2(cos θα, sin θα)c,

θα = (α − 5)π/2 + π/4, α = 5,6,7,8,

and the dimensionless relaxation time

(4)τn = 3

2

kn

(ρcp)nc2δt

+ 0.5,

where the subscript n still represents the nth phase, δt the time
step, k the thermal conductivity, and c a pseudo sound speed
whose value can take any positive value theoretically only to
insure τ values within (0.5, 2) [42]. To meet the requirement of
temperature and heat flux continuities at phase interfaces, we
have to assume identical volume thermal capacities (ρcp) for
different phases; the conjugate heat problem between different
phases is thus solved and these assumptions will not affect the
effective thermal conductivity calculated [36]. The temperature
and the heat flux are then calculated by

(5)T =
∑

gα,
α
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(6)q =
(∑

α

eαgα

)
τn − 0.5

τn

.

For the isothermal boundary treatment, we follow the
bounce-back rule of the non-equilibrium distribution proposed
by Zou and He [50]:

(7)gα − g
eq
α = −(

gβ − g
eq
β

)
,

where the subscripts α and β represent two opposite directions
respectively, and the equilibrium distribution can be calculated
using the local boundary temperatures.

For the insulated boundary, we have tried the Neumann
boundary treatment [37] and let the boundary temperature gra-
dient equal to zero. However heat flux leak will result along
the insulated surfaces. Therefore a specular reflection boundary
condition is implemented here

(8)gα = gβ.

After the temperature field is solved, the ETC, keff, can fi-
nally be determined as

(9)keff = L
∫

q dA


T
∫

dA
,

where q is the steady heat flux through the media cross-section
area dA between the temperature difference 
T with a dis-
tance L.

3. Validations

To validate the present methods for calculating the effec-
tive thermal conductivity of micro porous media, this section
compares the numerical results with the existing theoretical so-
lutions and experimental data.

3.1. Theoretical solutions

First we validate the numerical solver by calculating the
effective thermal conductivities for two basic structures of
double-component materials: the Parallel mode and the Series
mode (see Fig. 2). Assuming the thermal conductivity of each
component is k1 and k2, respectively, the simple theoretical so-
lutions give the effective thermal conductivities as (k1 + k2)/2
for the Parallel mode and 1/(1/2k1 + 1/2k2) for the Series
mode.

Table 1 lists the calculated effective thermal conductivities
comparing with theoretical solutions for different values of
k2, k1 is kept constant as 1.0 W/m K while k2 changes from
2.0 to 1000 W/m K. The results show the deviations are no
greater than 0.02% for the Parallel mode and 0.25% for the
Series mode, which indicates good accuracy of the present nu-
merical solver.

3.2. Experimental data

Second we combine the QSGS for generating random multi-
phase structure with the LBM solver for solving the energy
transport equations together, and then predict the effective ther-
mal conductivity of heterogeneous materials. The numerical
results are compared with two experimental cases.

Consider a two-phase composite, Cu/solder where the Cu
particles are uniformly dispersed in the solder mass. The solder
is selected as the non-growing (first) phase and the Cu particles
are the growing (second) phase. The component thermal con-
ductivities are kCu = 398.0 W/m K and ksolder = 78.1 W/m K.
Fig. 3 shows the predicted effective thermal conductivities as
a function of Cu volume fraction, P2(ε), which are compared

Table 1

k1:k2 Mode Theoretical
value
(W/m K)

Numerical
value
(W/m K)

Deviation
(%)

1:2 Parallel 1.500 1.500 0.000
Series 1.333 1.332 0.075

1:10 Parallel 5.500 5.500 0.000
Series 1.818 1.814 0.220

1:100 Parallel 50.50 50.50 0.000
Series 1.980 1.975 0.250

1:500 Parallel 250.5 250.5 0.000
Series 1.996 1.991 0.250

1:1000 Parallel 500.5 500.4 0.020
Series 1.998 1.993 0.250
(a) Parallel mode (b) Series mode

Fig. 2. Two basic structures for validation.
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with the experimental data from [51]. The phase distribution
details are unknown so that we have to make common-sense
estimates. The parameters used in present QSGS are cd = 0.01
and D1–4:D5–8 = 4:1. The numerical results agree with the ex-
perimental data pretty well.

The unsaturated porous media are then studied which in-
volve three phases in one system. Customarily, the porosity,
ε, is defined as the total volume fraction of the fluids. The
degree of saturation, S, is defined as the liquid volume frac-
tion within the fluids. Therefore the solid phase, the liquid
phase, and the gas phase have the volume fractions of (1 − ε),
εS, and ε(1 − S), respectively. Fig. 4 shows the predicted ef-
fective thermal conductivities versus the degree of saturation
S for moist porous brick sands in both frozen and unfrozen
states. The numerical results are compared again with the ex-
perimental data [52,53]. The QSGS parameters are cd = 0.01,
D1–4:D5–8 = 4:1, ε = 0.52 and I

3,2
i = I

3,3
i for each i direc-

tion. The thermal conductivities used in the simulations are,

Fig. 3. Comparisons between predictions and experimental data for Cu/solder
material. The experimental data is from Ref. [51]. The parameters are
kCu = 398.0 W/m K and ksolder = 78.1 W/m K.

Fig. 4. Comparisons between predicted and experimental effective ther-
mal conductivities of unsaturated porous sands in frozen and unfrozen
states. The experimental data is from Refs. [52,53]. The parameters are
ε = 0.52, ks = 2.85 W/m K, kw = 0.5924 W/m K, kg = 0.0249 W/m K, and
kice = 2.38 W/m K.
ks = 2.85 W/m K, kw = 0.5924 W/m K, kg = 0.0249 W/m K,
and kice = 2.38 W/m K [53,54]. A 200×200 grid is used in the
simulations, yielding the random fluctuation within 3%. Once
again, good agreements are obtained with the experimental data
for both frozen and unfrozen cases.

4. Results and discussion

This section will focus on the phase distribution effects on
the effective thermal conductivity of microgranular porous me-
dia by changing parameter values for the microstructure. Re-
cently the three-dimensional effects have been analyzed on the
ETC of granular porous media and it was found that most ex-
perimental data measured by the hot probe and the hot agreed
with the two-dimensional predictions [22]. Since the hot probe
and the hot wire are still most popular measurement methods
for the ETC of granular porous media, our simulations in the
present work focus on two-dimensional cases.

4.1. Pore/particle size effects

Several researchers have reported that the effective thermal
conductivities of porous media may differ for different average
pore/particle sizes by their experiments even though the com-
ponents and the porosities of the media are same [55–58]. For
the solid–air porous system, a finer solid particles medium often
led to a higher effective thermal conductivity at a same porosity
[57,58]. This phenomenon can hardly be explained by the ex-
isting theoretical model for ETC, and few analyses have been
found to focus on the mechanism so far.

Here we control the average pore/particle size by changing
the values of cd . A greater value of cd leads to a smaller average
size of pores/particles for a certain porosity ε. Fig. 5 demon-
strates two generated structures at ε = 0.5 where (a) has a ten
times higher cd than (b) does. The structure for a higher cd

looks more uniform and has a higher surface-to-volume ratio.
The noisy surfaces of the generated structure could be regarded
as a typical feature of natural granular porous media. The there-
fore complexities of structure may increase greatly computa-
tional costs of any classical PDE solvers, however, do not affect
the computational efficiency of the LBM calculations much.

After the porous structures are generated for different val-
ues of cd , the particle size effect on ETC of porous media is
then investigated. Fig. 6 shows the predicted ETC versus solid
volume fraction (1 − ε) for two different values of cd . The ther-
mal conductivities of the components are ks = 3.0 W/m K and
kg = 0.025 W/m K. The theoretical solutions for Parallel mode
and Series mode are also compared in the same figure. The re-
sults show that the ETC’s of random porous media are between
the values of Parallel mode and Series mode, and a larger aver-
age particle size leads to a lower ETC of porous media for all
range of porosity except 0 and 1. The largest difference between
ETCs for different values of cd occurs when the solid volume
fraction is within 0.5–0.8. Thus we keep the solid volume frac-
tion at 0.5 and change the value of cd . The predicted ETCs for
different values of cd are then shown in Fig. 7, which indicates
the ETC value increases with the core distribution possibility.
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(a) cd = 0.1ε (b) cd = 0.01ε

Fig. 5. Structures for different values of cd at a same porosity ε = 0.5. The directional parameters are set as D1–4:D5–8 = 4:1. The dark is gas and the white is
solid.
Fig. 6. ETC versus solid volume fraction for different values of cd .

Fig. 7. ETC versus value of cd at ε = 0.5.

Since the particle average volume is inversely proportional to
the value of cd , the result means the ETC of porous media de-
creases monotonically with the particle average size.

To discuss the mechanism why a smaller average particle
size leads to a higher ETC of porous media, we give the tem-
perature fields for different structures in Fig. 8. The top and
bottom boundaries are isothermal so that the temperature con-
tours should be a series of uniform parallel lines for a ho-
mogeneous material. The temperature contours in the porous
materials have been disturbed by the heterogeneous phase dis-
tributions, as shown in Fig. 8. However we still find that a larger
value of cd results in smoother temperature contours which
are closer to those for homogeneous materials. Based on the
uniformity principle of temperature gradient [59], the porous
structure generated by a larger value of cd deserves a higher
ETC.

4.2. Anisotropy effects

Most previous work has focused on the isotropic porous me-
dia. A few researchers generated anisotropic porous material
by ellipse groups with different axis length or orientation angles
[13]. Here we can achieve anisotropic phase distributions easily
based on the QSGS process by varying values of the directional
growth probability, Di . No additional efforts are needed to deal
with the inter-particle connections. Fig. 9 shows the generated
structures for different ratio values of Dx :Dy , where Dx is the
horizontal main directions (directions 1 and 3 in Fig. 1) and Dy

is the vertical main directions (directions 2 and 4 in Fig. 1). The
growth probabilities in the four diagonal directions are always
set as a quarter of minimum of those in the main directions. The
other parameters are cd = 0.01, ε = 0.5 and the grid used is
200 × 200. The generated microstructures show quite different
characteristics for different values of directional growth prob-
abilities. The anisotropy increases with the Dx :Dy ratio. The
directional growth probability corresponds to the macro struc-
ture statistical information, and can thus be determined by the
measurement data from real porous structures.

After the anisotropic microstructures are generated, we
change the Dx :Dy ratio from 0.01 to 100 and predict the ef-
fective thermal conductivity along the y direction. Fig. 10
shows the numerical results where ε = 0.5, cd = 0.01ε, ks =
3.0 W/m K, and kg = 0.025 W/m K. The results indicate that
the effective thermal conductivities along the y direction de-
crease monotonically with the Dx :Dy ratio. For a given poros-
ity, the effective thermal conductivity is enhanced along the
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(a) cd = 0.1ε (b) cd = 0.01ε

Fig. 8. Temperature contours for different values of cd .

(a) Dx :Dy = 1:1 (b) Dx :Dy = 10:1
Fig. 9. Microstructures of anisotropic porous media with different directional growth probabilities with cd = 0.01, ε = 0.5. The dark is gas and the white is solid.
direction with higher growth probability and meanwhile weak-
ened along the direction with lower growth probability.

4.3. Phase interaction effects

When a porous medium contains more than two phases,
usually the multi-phase interaction effects on the material prop-
erties have to be considered. For a three-phase porous system
involving gas, liquid and solid, the simplest case is to generate
the liquid phase with a uniform phase interaction growth proba-
bility, i.e., I

l,l
i :I l,s

i = 1 with l representing the liquid phase and
s the solid phase. This hypothesis is based on a strong wetting
effect caused by a strong liquid–solid attractive potential, and
will result in a uniform liquid film attached on the solid grains
as shown in Fig. 11a. The smaller is the I

l,l
i :I l,s

i ratio, the more
uniform is the liquid film (see Fig. 11b). Such structures can
be found in some multi-components composite materials [17].
However for the unsaturated sandstones or glass assembles, the
wetting characteristic of water may be different. Both the low-
est interface energy law [20] and the measured images [60] have
Fig. 10. ETC of anisotropic porous media for different directional growth prob-
abilities.
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(a) I
l,l
i

:I l,s
i

= 1:1 (b)I l,l
i

:I l,s
i

= 1:10

(c) I
l,l
i

:I l,s
i

= 10:1 (d)I l,l
i

:I l,s
i

= 100:1
Fig. 11. Microstructures of three-phase porous media with different phase interaction growth probabilities. The gray is solid particles, the white is liquid, and the
dark is gas. The solid is isotropic with cd = 0.01ε. The porosity ε(P2) = 0.5, and the liquid volume fraction Pl = 0.25.
shown that the water in sandstones or glass assembles tends
to be in conglomeration rather than in films on the solid sur-
faces due to the weak wetting properties. Here we reproduce
the water distributions similar to those in sandstones or glass
assembles by changing the values of I

l,l
i :I l,s

i ratio, as shown in
Figs. 11c and 11d. Now Fig. 11 compares the water distribu-
tions in the porous media for different phase interaction growth
probabilities. The solid phase distributions are isotropic with
the volume fraction ε = 0.5 and the core distribution proba-
bility cd = 0.01ε. The water volume fraction is 0.25 and the
I

l,l
i :I l,s

i ratio changes from 10:1 to 1:100. A greater value of

the I
l,l
i :I l,s

i ratio means a weaker liquid–solid interphase attrac-
tive potential and a weaker wetting interface, i.e., the liquid will
be more aggregative as a result.

The phase interaction growth probability effects on the ETC
of multi-phase porous media are thus studied. Assuming an
unsaturated sandstone case where the solid particle volume
fraction is ε = 0.5 with cd = 0.01ε, the water volume frac-
tion is Pl = 0.3, and the component thermal conductivities are
ks = 3.0 W/m K, kl = 0.1 W/m K, and kg = 0.025 W/m K, re-
spectively. Fig. 12 shows the predicted ETC for different liquid-
solid phase interaction growth probabilities. The results indi-
cate that the ETC of multi-phase porous media increases with
the degree of liquid phase conglomeration. The calculated ETC
changes little when the I
l,l
i :I l,s

i ratio is less than 1, and increases

remarkably when the I
l,l
i :I l,s

i ratio is greater than 10.

5. Conclusions

To model and analyze the phase distribution effects on the
effective thermal conductivity of multi-phase porous media, we
have developed the quartet structure generation set (QSGS) for
generating different kinds of multi-phase granular porous struc-
tures and the lattice Boltzmann method (LBM) for solving the
energy transport equations efficiently with multi-phase conju-
gate effects considered. The numerical algorithms have been
validated by a series of comparisons with existing theoretical
solutions and experimental data.

The phase distribution characteristics were controlled by the
parameters of QSGS and the effective thermal conductivities
for various distributed porous media were then calculated by
the LBM. The results showed that a smaller average particle
size could lead to a better uniformity of phase distribution and
a larger surface-to-volume ratio, both of which would result in
a more uniform temperature gradient field for same tempera-
ture differences. Therefore the smaller is the average particle
size, the larger is the effective thermal conductivity for a cer-
tain porosity, which agrees with the existing experimental phe-
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Fig. 12. ETC of three-phase porous media for different liquid–solid phase inter-
action growth probabilities. The parameters are: ε = 0.5, cd = 0.01ε, Pl = 0.3,
ks = 3.0 W/m K, kl = 0.1 W/m K, and kg = 0.025 W/m K.

nomena. The anisotropy of porous media is controlled by the
directional growth probability. If the larger directional growth
probability is along the direction of temperature gradient, the
ETC in this direction will be enhanced. As a result, the ETC
in the vertical direction will be weakened. For three or more
phase porous media, the degree of phase conglomeration is de-
termined by the phase interactions, such as wetting properties.
A larger liquid–liquid interaction leads to a higher degree of liq-
uid phase conglomeration. The numerical results showed that
the ETC of multi-phase porous media increases with the degree
of liquid phase conglomeration.
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