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Abstract 
 

Micro- and nanoscale gas flows are analyzed theoretically and numerically. The analyses 

of gas flow similarity show that the gas flows at different scales can be similar only when the 

gas is treated as a prefect gas. If the gas density is so high that the density effect can not be 

ignored, the three dimensionless parameters, Re, Ma, and Kn, which characterize the micro 

gas flow, are independent of each other and can not be equal for flows at different scales, so 

the similarity breaks down. The critical density for the similarity failure can be analytically 

determined for each kind of gas. The analytical results were validated by numerical 

simulations. High density, high Knudsen number gas flows were modeled using a generalized 

Monte Carlo method based on the Enskog theory which considers both the density effect on 

the collision rate and the molecular repulsive and attractive interactions for a Lennard-Jones 

gas. The predicted transport coefficients agree better with experimental data than previous 

predictions. The simulation results show that when the gas density is higher than the critical 

density, the denseness effect alters the flow velocity and temperature fields from the direct 

simulation Monte Carlo results. Higher densities lead to greater deviation. 

 
Keywords: micro gas flow; denseness effect; similarity; DSMC; Lennard-Jones fluid 
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Nomenclature 

a    Local sound speed (m/s) 

va    Attraction strength in van der Waals equation (J2/mol2 Pa) 

D   Self-diffusion coefficient (m2/s) 

tE    Relative translational energy (J) 

k    Boltzmann constant (J/K) 

Kn    Knudsen number 

l    Characteristic length (m) 

m    Molecular mass (kg) 

rm    Reduced molecular mass (kg) 

Ma   Mach number 

n    Number density (m-3) 

p    Pressure (Pa) 

r    Intermolecular separation (m) 

R    Universal gas constant (J/mol·K) 

Re   Reynolds number 

T    Gas temperature (K) 

*T    Dimensionless temperature: /kT ε  

U    Local mean velocity (m/s) 

mv    Mean molecular speed (m/s) 

Greek symbols 

*α    Scattering coefficient for a soft-sphere model 

jα    Model parameters 

χ    Correction factor for enhanced collisions 

η    Molecular volume ratio defined as 32 / 3nπ σ  



Wang, Lan and Li, submitted to Int. J Heat Mass Transfer 

 4

γ    Specific heat ratio 

ζ    Number of rotational degrees of freedom 

λ    Molecular mean free path (m) 

µ    Dynamic viscosity (kg/m·s) 

ν    Kinetic viscosity (Pa·s) 

ρ    Density (kg/m3) 

σ    Molecular diameter (m) 

Tσ    Total collision cross section (m2) 

ε    Molecular potential well depth (J) 

rotε    Molecular rotational energy (J) 

(1,1)Ω , (2,2)Ω  Integrals for calculating the transport coefficients 

(...)Γ    Gamma function 

BΓ    Scattering probability based on Boltzmann theory 

'Γ    Enhanced scattering probability in a dense gas 

Subscripts 

c     Critical state  

1    case 1 

2    case 2 
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1. Introduction 

The development of high-speed flight at high altitudes has created renewed interest in rarefied gas 

flows. Rarefied gas flows differ from classical gas dynamics in that the continuum hypothesis is no 

longer valid; therefore, the continuum hypothesis cannot be used to analyze rarefied gas flows. 

Rarefied gas flows are characterized by the Knudsen number, which is defined as the ratio of the 

molecular mean free path to a characteristic geometric length or a length over which very large 

variations of a macroscopic quantity may take place, 

l
Kn λ

= ,        (1.1) 

where λ  is the molecular mean free path and l  is the characteristic length. 

Flow regimes are classified based on the Knudsen number as [1]:  

 continuum flow ( 0.001Kn ≤ ) 

 slip flow ( 0.001 0.1Kn< < ) 

 transition flow ( 101.0 << Kn ) 

 free molecular flow ( 10≥Kn ). 

In recent years, Micro/Nano-Electro-Mechanical Systems (MEMS/NEMS) have been rapidly 

developed for important applications in navigation, spaceflight and industry [2]. Microscale flow 

systems have been developed as an important part of MEMS/NEMS [3,4]. The characteristics of these 

microscale flows differ greatly from those of macroscale flows. For example, at normal temperatures 

and pressures, velocity slip and temperature jumps, which are called rarefied gas effects, occur on the 

wall surfaces in microchannels [1]. Rarefied gas flows and microscale gas flows also exhibit many 

other similar phenomena. Previous works have shown that traditional simulation and analysis methods 

used for rarefied gas flows are effective for analyzing most microscale gas flows [5]. Various studies 

have analyzed the similarities between microscale gas flows and macroscale rarefied gas flows [1,5-7]. 

Gad-el-Hak [1] also used this similarity to analyze many microchannel flows. 

Although the Knudsen number of a micro gas flow may be of the same magnitude as that of a 
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rarefied gas flow, they actually come from different phenomena. In microchannel, large Knudsen 

numbers are caused by the small characteristic length, while in rarefied gas flows, the large Knudsen 

number is due to the large molecular mean free path. Therefore, they result from different mechanisms 

despite their similar phenomena. Wang & Li [8] reported that similarity holds only if the gas can be 

treated as an ideal gas. They then studied the fluid characteristics of high Knudsen number, high 

density gas flow in micro- and nanochannels with a consistent Boltzmann algorithm (CBA) [9,10] and 

the Enskog simulation Monte Carlo (ESMC) method [11]. These numerical results showed that 

similarity broke down at high gas densities. However, neither the CBA nor ESMC methods are 

completely accurate for these flows. The CBA method changes the gas transport coefficients from real 

values at high densities. The ESMC method is hardly able to simulate the van der Waals force effects 

on the flows. Thus, a new efficient numerical method for the high Knudsen number, high density gas 

flows is urgently necessary.  

This paper provides systematic analyses and simulations of gas flows in micro- and nanoscale 

channels. The analyses provide the conditions when micro/nano gas flows are similar with rarefied gas 

flows. Then a Monte Carlo method is used to provide correct predictions of high Knudsen number, 

high density gas flows. The characteristics of such flows are then investigated based on the results. 

2. Theoretical Analysis 

2.1  Similarity of perfect gas 

Both micro gas flows and rarefied gas flows have three dimensionless numbers that characterize 

the flows: the Reynolds number, Re , the Mach number, Ma , and the Knudsen number, Kn . However, 

these three parameters are not independent in rarefied gas flows but are related by [7], 

2
MaKn
Re

πγ
= .       (2.1) 

Several researchers have used this relationship for rarefied gas flows in microscale gas flow 

analyses [1,5,6]. However, this relationship has limited applications in micro gas flows. Wang & Li [8] 

applied this relationship to microscale flows to show that Eq. (2.1) is based on a relationship between 
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the viscosity and the mean free path. With gas kinetic theory, when the gas molecules are treated as 

smooth rigid sphere with only a repelling force, the kinetic viscosity can be simply related to the 

molecular mean free path as:  

1
2

mvν λ= ,        (2.2) 

where mv  is the molecular mean speed which is somewhat higher than the sound speed a : 

8
mv a

πγ
= .        (2.3) 

With this assumption for Eq. (2.2), if the gas is a perfect gas, the three dimensionless numbers are 

not independent. As a result, gas flows at different scales can be similar (if other similarity conditions 

are also satisfied such as similar geometries and boundary conditions). Therefore, for such conditions, 

micro gas flows can be assumed to be similar to rarefied gas flows. Since rarefied gas flows have been 

studied extensively due to their important applications in astronautics and aeronautics, many theories 

and much experimental data can be used for micro gas flow analysis by the similarity [8]. 

2.2  Similarity failure in dense gas flows 

However, the perfect gas assumption does not always hold in micro gas flows. When the gas 

density is high or the temperature is low, intermolecular attractions become significant as the 

denseness effect changes the gas flow characteristics. According to Enskog’s theory, the gas molecular 

mean free path in a dense gas,λ , is given by [12]: 

2 1[ 2 ]nλ π χσ −= ,       (2.4) 

where χ  is the enhanced collision correction factor, which is a function of the gas density, which 

will be determined later. The dynamic viscosity, 'µ , including the density effect, is related to µ  for a 

perfect gas by: 

' 1[( ) 0.8 0.7614( )]µ µ η ηχ ηχ−= ⋅ + + ,     (2.5) 

where 32 / 3nη π σ=  represents the molecular volume ratio. From classical thermodynamic theory, 
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the sound speed in a dense gas is enhanced by: 

1/ 2
' 2 241 8 (8 3 )

5
da a
d
χηχ η χ
η

⎡ ⎤
= + + +⎢ ⎥

⎣ ⎦
.      (2.6) 

In perfect gas flow, since Kn , Ma  and Re  are not independent, if two of these numbers in 

two flows at different scales are equal, then the other one must also be equal. The two flows at 

different scales are then similar as a result. However, in dense gas flows this relationship does not 

hold. 

For convenience, assume Re  and Ma  are equal in the two systems: 

21 ReRe = ,        (2.7) 

and 

21 MaMa = .        (2.8) 

Then, from Eqs. (2.4)-( 2.6), 

222
1

22

222

111
1

11

111

]7614.08.0)[(]7614.08.0)[( ηχηχη
ρ

ηχηχη
ρ

++
=

++ −−

lUlU
, (2.9) 

1 2
1/ 2 1/ 2

2 2 2 21 2
1 1 1 1 1 2 2 2 2 2

4 41 8 (8 3 ) 1 8 (8 3 )
5 5

U U
d dT T
d d
χ χη χ η χ η χ η χ
η η

=
⎡ ⎤ ⎡ ⎤
+ + + + + +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

. (2.10) 

The Knudsen numbers are 

1

12
111

1

1
1

])(2[
l

n
l

Kn
−

==
σηχπλ

,            (2.11) 

2

12
222

2

2
2

])(2[
l

n
l

Kn
−

==
σηχπλ

.     (2.12) 

Dividing Eq.( 2.11) by Eq.( 2.12) gives 

111

222

2

1

χη
χη

l
l

Kn
Kn

= .       (2.13) 

Then from Eqs. (2.9) and (2.10): 
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Substituting Eqs. (2.14) and (2.15) into Eq. (2.13) leads to: 

1/ 2
2 2 1

1 1 1 1 2
11 2 2 2 2

1/ 2 2
2 1 1 1 12 2 2 2

2 2 2 2

41 8 (8 3 )
5 [1 0.8 0.7614( ) ]

[1 0.8 0.7614( ) ]41 8 (8 3 )
5

d
T dKn

Kn T d
d

χη χ η χ
η η χ η χ

η χ η χχη χ η χ
η

⎡ ⎤
+ + +⎢ ⎥ + +⎣ ⎦= ⋅ ⋅

+ +⎡ ⎤
+ + +⎢ ⎥

⎣ ⎦

 

(2.16) 

If the dense gas flows at different scales are similar, 1Kn  should be equal to 2Kn . Therefore the 

right hand side of Eq. (2.16) must be equal to unity. Because of the nonlinear nature of the right hand 

side of Eq. (2.16), the equation was evaluated numerically for various conditions at 21 TT = . 

The numerator and denominator of the right hand side of Eq. (2.16) are functions of the gas 

number density: 

])(7614.08.01[)38(
5
481 2

2222

21
12

1
2
1111 χηχη

η
χχηχη ++⎥

⎦

⎤
⎢
⎣

⎡
+++=

d
df ,  (2.17) 

])(7614.08.01[)38(
5
481 2

1111

21
22

2
2
2222 χηχη

η
χχηχη ++⎥

⎦

⎤
⎢
⎣

⎡
+++=

d
df  (2.18) 

where 1 2, [0,1)η η ∈ . Defining f  as the difference between 1f  and 2f , if f  is equal to zero, then 

1f = 2f  and, therefore, 21 KnKn = . Fig. 1 shows the sign function of the absolute value of f  for 

various values of 1η and 2η  which are proportional to the gas densities. The result indicates that 

21 ff =  ( 21 KnKn = ) only when 1 2η η= . A detailed data analysis also validated this result. Thus, the 

characteristic lengths must be the same if the two dense gas flows are similar. If 21 ηη ≠  (namely 
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21 ll ≠ ), 21 KnKn ≠ . Therefore, the three dimensionless parameters in dense gas flows at different 

scales can not be equal, and the two flows can not be similar. 

[Insert Figure 1 here] 

The high gas density affects the gas characteristics such as the viscosity and the sound speed 

which then affect the dimensionless parameters. Therefore, a critical density can be specified so 

that for densities below this critical density, the perfect gas assumption and the similarity between 

gas flows holds. The critical density can be calculated based on Eqs (2.4)-(2.6) for a specified 

deviation of 5%. For nitrogen gas as an example, the critical density for the perfect gas 

assumption is: 

04.5cρ ρ≈         (2.19) 

where 0ρ  is the density at standard state using the gas parameters in Hirschfelder et al. [13]. Eq. 

(2.19) indicates the denseness effect must be considered when the microscale flow density is larger 

than 4.5 times the standard state density. Critical values for several often gases are listed in Table 1. 

The results show that larger molecular diameter leads to a smaller critical density with (SO2) having a 

critical density less than 3 times the standard state density, while the value for (He) is larger than 13 

times the standard state density. 

[Insert Table 1 here] 

3. Numerical Simulations 

Numerical simulations were performed to validate the theoretical analyses. A hard sphere model 

of the direct simulation Monte Carlo (DSMC) method was used to verify the similarity of gas flows 

that are perfect gases. For the high density, high Knudsen number gas flows, we used a new Monte 

Carlo method, generalized Enskog Monte Carlo (GEMC), to simulate the dense gas flows in micro- 

and nanochannels. 

3.1  Direst simulation Monte Carlo method 

The DSMC method is a molecular-based statistical simulation method for rarefied gas flows 
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introduced by Bird [14]. The method numerically solves the dynamic equations for the gas flow using 

thousands of simulated molecules. Each simulated molecule represents a large number of real 

molecules. Assuming molecular chaos and a rarefied gas, only binary collisions need be considered, so 

the molecular motion and the collisions are uncoupled if the computational time step is smaller than 

the physical collision time. Interactions with boundaries and with other molecules conserve both 

momentum and energy. The macroscopic flow characteristics are obtained by statistically sampling the 

molecular properties in each cell. At the beginning of the calculation, the simulated particles are 

uniformly distributed in the cells. In each time step, all particles move according to their individual 

velocities, interact with the boundaries and are then indexed. A number of collision pairs are selected 

in each cell using the no-time-counter (NTC) method for the collision calculations. These steps are 

repeated with increased sample sizes until the statistical errors are small. The DSMC method can 

simulate non-equilibrium and unsteady gas flows. A steady-state flow field is obtained with a 

sufficiently long simulation time. 

The variable hard sphere (VHS) model [14] incorporates the hard-sphere scattering law for 

collisions and treats the molecular cross-sections as functions of the relative translational energy 

during the collision. In the VHS model, the gas molecules are actually treated as hard spheres with 

only a repelling force, which is consistent with the perfect gas assumption. The time step used in 

DSMC method should be less than the mean collision time and the cell (or subcell) size should be less 

than the mean free path in the simulated situation. Violation of this condition may produce solutions 

that are not physically realistic [15-17]. 

The wall temperature was all assumed to be equal. When the simulated particle collides with the 

wall, the diffuse reflection model is used to determine the reflection. In this model, the emission of 

molecules impinging on the wall is not correlated with the pre-impingement state of the molecules. 

The outgoing velocity is randomly assigned according to a half-range Maxwellian distribution 

determined by the wall temperature. This is also known as the full thermal and momentum 

accommodation method [18,19]. We use freesteam boundary conditions at both inlet and outlet of a 

channel [14,20]. 



Wang, Lan and Li, submitted to Int. J Heat Mass Transfer 

 12

3.2  Generalized Enskog Monte Carlo method  

Dense gas flows have two distinctive characteristics that require a different type of analysis from 

rarefied gas flows: the collisions are much more frequent and the van der Waals force can not be 

ignored. Alexander et al. [21] developed a consistent Boltzmann algorithm (CBA) to expand the 

DSMC method to dense gases and even liquids by introducing an additional displacement after the 

molecular collisions. This modification adapts the gas properties described by the van der Waals 

equation instead of by the equation of state (EOS) for a perfect gas. This method has been applied to 

model gas-liquid interface characteristics [22], and micro and nanoscale non-ideal gas flows [9,10]. 

However, the additional displacement changed not only the EOS but also the gas transport 

characteristics. As a result, when the ratio of the gas molecular volume to the whole volume is 

relatively high, the gas transport characteristics become unrealistic and the predictions fail [23-25,11]. 

Other method was developed based on Enskog dense gas theory. Enskog developed the Enskog 

equation (EE) for hard spheres to incorporate finite-density effects. His two significant changes were 

the finite distance between the centers of a colliding pair and the increased the collision frequency due 

to excluded volume effects [26]. Montanero et al. [27-29] then developed an Enskog simulation Monte 

Carlo (ESMC) method which extended Bird’s DSMC for a hard sphere fluid at finite densities. 

However, the ESMC methods did not include attractive interactions between molecules, therefore, the 

transport properties predicted by the ESMC methods did not agree well with the experimental data or 

the theoretical values [11]. 

This paper uses a generalized Enskog Monte Carlo method (GEMC) developed by Wang & Li 

[30]. The method employs the Lennard-Jones (L-J) potential between molecules with a generalized 

collision model introduced into the Monte Carlo method. The method also considers the finite density 

effects on the molecular collision rate and transport properties to obtain an equation of state for 

nonideal gases. The resulted transport properties agree better with experimental data and theoretical 

values than previous methods for dense gas flow predictions. The main idea is described as follows 

and the details can be found in Ref [30]. 

In actual gases the force between two molecules is repulsive at small distances and weakly 
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attractive at larger distances. This behavior is most simply described by the Lennard-Jones (6-12) 

potential [12] 

12 6

( ) 4r
r r
σ σϕ ε

⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

,      (3.1) 

where σ  denotes the low-velocity diameter and ε  is the depth of the potential well, which are 

constants characteristic of the chemical species of the colliding molecules, and r  is the 

inter-molecular separation. This potential has been found to be adequate for a number of nonpolar 

molecules. Many efforts have been made to establish collision models to include the Lennard-Jones 

potential in the molecular interaction process [31,32]. These models have defined the total collision 

cross section as 

2

j

tT
j

E ωσ α
σ ε

−
⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ ,              (3.2) 

where Tσ  is the total collision cross section, tE  denotes the relative translational energy, the 

parameters jω  are related to the Lennard-Jones potential [31], and jα  are determined from the 

transport property data, depending on whether the interaction is between like or unlike molecules. 

The coefficients of viscosity and self-diffusion of a simple gas, to the first approximation, are 

expressed as functions of temperature by [12]  

( )1/ 2

2 (2,2)

5
16

mkTπ
µ

πσ
∗

⎛ ⎞
= ⎜ ⎟

⎜ ⎟Ω⎝ ⎠
,       (3.3) 

( )1/ 2

2 (1,1)

2 /3
16

rkT m
D

n
π
πσ

∗

⎛ ⎞
= ⎜ ⎟

⎜ ⎟Ω⎝ ⎠
,      (3.4) 

where m is the particle mass, k is the Boltzmann constant, n is the number density and (1,1)∗Ω and 

(2,2)∗Ω  are integrals for calculating the transport coefficients for the Lennard-Jones potential [13]. For 

a L-J gas model with a total collision cross section given by Eq. (3.1), the self-diffusion and viscosity 

integrals are 
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(1,1)
**

1 (3 )
( 1)

j
j j T ωα ω

π α
∗ −Ω = Γ −

+ ∑ ,     (3.5) 

*
(2,2)

** * (4 )
( 1)( 2)

j
j j T ωα α ω

π α α
∗ −Ω = Γ −

+ + ∑ ,    (3.6) 

where *α  denotes the scattering coefficient for a soft-sphere model, * /T kT ε= , and (...)Γ  

denotes the gamma function. These parameters can be determined by numerical fitting using the data 

of (2,2)∗Ω  tabulated in, Table I-M of Hirschfelder et al. [13]. Such a significant job has been found in 

the GSS model [32,33]. We are here employing Fan’s results of the parameter values: 1α  = 3.962, 

2α  = 4.558, 1ω  = 0.133, 2ω  = 1.25 and * 1.5α = . These values are generally suitable for simple 

nonpolar gases. 

Based on the Enskog equation for dense gases [26], when a gas is so dense that the covolume of 

the molecules is comparable with the total system volume, the molecules can no longer be treated as 

point particles. Therefore, the common position of two colliding molecules in the Boltzmann equation 

should be replaced by the actual positions of the centers of two tangent spheres. The collision 

frequency is influenced by corelational effects that depend on the density at the point of contact. 

A modified higher scattering probability due to the reduced volume occupied by the molecules is  

' 3(1 4 / 3) BnπσΓ = − Γ  .      (3.7) 

However, the scattering probability is lowered again by the particles screening each other. A 

particle might not be available for scattering with another particle because there might be a third 

particle in between. This effect leads to a reduction of the scattering probability by a factor 

( )31 11 /12nπσ− . With this factor, the modified scattering probability is 

'
BχΓ = ⋅Γ ,                (3.8) 

where 
1 11 8( )

1 2
ηχ η
η

−
=

−
. 

This result can, however, be trusted for low orders of n , since four particle configurations have 
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not been considered. The expression up to third order is [26]: 

2 3( ) 1 0.625 0.2869 0.1103χ η η η η= + + + .    (3.9) 

In the standard Enskog theory, the pressure in a dense gas is  

[ ]1p knT ηχ= + .       (3.10) 

However, Enskog preferred a different procedure based on the close relation between ( )η χ⋅  

and the compressibility. He observed that, if the hard sphere molecules are surrounded by weak 

attractive fields of force, the equation of state would be modified to the following form 

[ ]2 1vp a knTρ ηχ+ = + ,      (3.11) 

where va  denotes the strength of the attraction, which is independent of the temperature and 

dependent on the gas properties [34] 

2 227
64

c
v

c

R Ta
p

= ,       (3.12) 

where R  denotes the gas constant, cT  the critical temperature, and cp  the critical pressure. 

Thus GEMC method solves the Enskog equation for a dense gas statistically while keeping the gas 

transport properties in good agreement with experimental data. The transport coefficient viscosity 

from this method is compared with predictions from other methods and experimental data [13] in Fig. 

2-a which shows the viscosity changes with temperature at low or moderate gas densities. The GEMC 

method gives much better agreement with experimental data at both lower and higher temperatures 

than the Boltzmann theory or the viscosity-temperature power law used in the variable hard sphere 

(VHS) model in the DSMC or ESMC methods. The viscosity changes with density below 150×105 Pa 

pressures are shown in Fig. 2-b. The GEMC predictions agrees well with the experimental data and the 

Enskog theory, while the CBA and DSMC methods deviate from the experimental data at high gas 

densities. Therefore, the GEMC method gives the best agreements with experimental data over a large 

of temperatures and densities. 

[Insert Figure 2 here] 
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4. Simulation Results and Discussion 

4.1  Similarity of perfect gas flows 

When a gas is treated as a perfect gas, flows at different scales will be similar. This analytical 

result was numerically validated by the DSMC simulations in the variable hard sphere model. 

[Insert Figure 3 here] 

The physical model is shown in Fig. 3. The channel aspect ratio was set to 5 for all cases. The 

computational grid contained rectangular cells (100×60) with four subcells (2×2) per cell. The 

working fluid was nitrogen with the properties listed in Table 2. Table 3 lists the conditions for the 

four subsonic channel flows. The channel height, H , was varied from one meter to ten nanometers. 

The freestream temperature, T∞ , as well as the temperatures of both walls, were set at 300 K. The 

Knudsen number and Mach number of the incoming gas flow were unity and 0.57 for all cases. Over 

105 molecules were used in each simulation with over 106 times steps for each case. 

[Insert Table 2 here] 

[Insert Table 3 here] 

The temperature and x-direction velocity profiles at the inlet and outlet are compared in Fig. 4 and 

Fig. 5 for the four cases. The macroscale rarefied gas flow and the microscale dense gas flow both 

have the same velocity slips and temperature jumps as long as the Knudsen numbers are equal. The 

velocity and temperature profiles were also almost the same for the different scales with the 

differences in the curves caused by statistical fluctuations. 

[Insert Figure 4 here] 

[Insert Figure 5 here] 

4.2  Denseness effects 

Table 4 lists the conditions for the three cases used to study the effect of gas density on the 

subsonic flow in micro- and nanochannels. The aspect ratio, /L H , was 5.0 for all three cases 

with uniform rectangular cells (100×60) used in the analysis. The freestream velocity, u∞ , and the 
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temperature, T∞ , were imposed as the boundary conditions at the inlet. The temperatures of both 

walls were the same as the freestream gas temperature. 

[Insert Table 4 here] 

[Insert Figure 6 here] 

[Insert Figure 7 here] 

Figs. 6 and 7 show the GEMC results for the velocity and temperature profiles at the inlet and 

outlet for various channel sizes and 05.0=Kn . For comparison, the DSMC results with the perfect gas 

assumption are also plotted in the figures. The results show that when the gas density is not high (case 

1, 0/ 1.186 4.5cρ ρ = < ), the GEMC results almost overlap the DSMC results with the fluctuations 

in the profiles coming from statistical variations. When the gas density is moderately high (case 2, 

0/ 11.88 4.5cρ ρ = > ), the perfect gas assumption breaks down and the GEMC results begin depart 

from the DSMC results. As the density increases (case 3, 0/ 118.7cρ ρ = ), the deviations between the 

GEMC results and the DSMC results increases significantly. Note that the abnormal temperature 

distributions near the wall surfaces predicted by the CBA method do not occur [9]. These results 

indicate that when the density is larger than the critical density, cρ , the denseness effect on the flow 

and heat transfer characteristics must be considered. 

5. Conclusions 

The theoretical and numerical analyses of micro- and nanoscale gas flows show that:  

1) Microscale gas flows will be similar to normal-scale rarefied gas flows only when the gas is a 

perfect gas. When the gas is so dense that the density affects the gas characteristics, then the three 

dimensionless parameters are independent of each other, and the dimensionless parameters for the two 

different scale flows can not be equal, meaning that the two flows can not be similar. 

2) The critical densities for which similarity fails were determined analytically with different 

gases having different critical densities. A large molecular diameter leads to a smaller critical density. 
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For the most commonly used gases, nitrogen and air, the critical densities are both about 5 times that 

of the standard state using the molecular parameters in Hirschfelder et al.’s book. 

3) The analytical results were validated by numerical calculations. The dense gas flow was 

properly simulated using a generalized Enkog Monte Carlo (GEMC) method which considers both the 

high-density effect on the collision rate and the molecular repulsive and attractive interactions for a 

Lennard-Jones fluid. The predicted transport coefficients agree better with experimental data than the 

previous methods. The simulation results show that when the gas density is higher than the critical 

density, the velocity and temperature fields differ from the predictions of the DSMC method with large 

differences at very high densities. 
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Tables 

Table 1  Critical densities for various gases 
Gas Type 

0/cρ ρ  Gas Type 
0/cρ ρ  

SO2 2.72 NO 5.33 
CO2 3.49 NH3 5.47 
CH4 3.81 O2 5.51 
N2O 3.82 Ar 5.58 
N2 4.47 H2 8.53 
Air 4.71 Ne 10.27 
CO 4.82 He 13.04 

where the molecular parameters were taken from Hirschfelder et al. (1954 Table. 
8.4-1). 

Table 2  Properties of 2N  
m (kg) ζ refd (m) refT (K) ω  

4.65×10-26 2 4.17×10-10 273 0.74 

where m  is the gas molecular mass, ζ  is the number of 
internal degrees of freedom, dref is the reference molecular 
diameter, Tref is the reference temperature and ω is the viscosity 
temperature index. 

 
 

Table 3  Simulation conditions for Subsonic Channel Flow  
(Kn=1, Ma=0.57, T∞=300 K, Tw=300K) 

Case H(m) n∞ Ntotal Nsample 
1 1 1.29×1018 101133 1011050 
2 1×10-3 1.29×1021 101253 1005050 
3 1×10-6 1.29×1024 101552 1010050 
4 1×10-8 1.29×1026 101329 1010050 

where H is the height of the computational domain, n∞ is the gas molecular 
number density of the inlet flow, Ntotal represents the total number of simulated 
particles and Nsample is the number of time steps. 

 
 

Table 4  Simulation conditions for density effect 
(Kn=0.05, u∞=200 m/s, T∞=300 K, Tw=300 K) 

Cases H (µm) n∞ 0/ ρρc
Ntotal Nsample 

1 1 2.59×1025 1.186 57042 500000 
2 0.1 2.59×1026 11.88 57117 301050 
3 0.01 2.59×1027 118.7 99687 257050 
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Figure Captions 

 

Fig. 1  Variation of the Knudsen number ratio for dense gases as represented by f as 

functions of the molecular densities of the two gases, 1η and 2η  

Fig. 2  Viscosities predicted by the present method compared with experimental data and 

other models. (a) viscosity versus temperature at low or moderate gas densities; (b) 

viscosity versus density below 150 ×105 Pa. The CBA method uses vdWd σ= . 

Fig. 3  Schematic of the physical problem. 

Fig. 4  Inlet and outlet x-direction velocity profiles at Kn=1.0 and Ma=0.57 

Fig. 5  Inlet and outlet temperature profiles at Kn=1.0 and Ma=0.57 

Fig. 6  Inlet and outlet velocity distributions for Kn=0.05 

Fig. 7  Inlet and outlet temperature distributions for Kn=0.05 
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Figure 1, Wang, Lan and Li, Int. J. Heat Mass Transfer 
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Fig. 1  Variation of the Knudsen number ratio for dense gases as represented by f as functions of the molecular 

densities of the two gases, 1η and 2η  
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Figure 2, Wang, Lan and Li, Int. J. Heat Mass Transfer 
 
 

 
(a) viscosity versus temperature at low or moderate gas densities. 

 
(b) viscosity versus density below 150 ×105 Pa. The CBA method uses vdWd σ= . 

Fig. 2  Viscosities predicted by the present method compared with experimental data and other 
models. 
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Figure 3, Wang, Lan and Li, Int. J. Heat Mass Transfer 
 

 

 

 

Fig. 3  Schematic of the physical problem 
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Figure 4, Wang, Lan and Li, Int. J. Heat Mass Transfer 
 
 
 
 

 
(a) Inlet 

 
(b) Outlet 

Fig. 4  Inlet and outlet x-direction velocity profiles for Kn=1.0 and Ma=0.57 
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Figure 5, Wang, Lan and Li, Int. J. Heat Mass Transfer 
 
 
 
 

 
(a) Inlet 

 
(b) Outlet 

Fig. 5  Inlet and outlet temperature profiles for Kn=1.0 and Ma=0.57 
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Figure 6, Wang, Lan and Li, Int. J. Heat Mass Transfer 
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(a) Inlet 
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(b) Outlet 

Fig. 6  Inlet and outlet velocity distributions for Kn=0.05 
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Figure 7, Wang, Lan and Li, Int. J. Heat Mass Transfer 
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(a) Inlet 
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(b) Outlet 

Fig. 7  Inlet and outlet temperature distributions for Kn=0.05 


