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Abstract The analytical solution of temperature distributions for an incompressible oscillating laminar flow between two 
parallel plates with constant wall temperature is derived, where the viscous dissipation effect is considered. A thermal lattice 
Boltzmann method (LBM) is then adopted to simulate the incompressible and compressible oscillating flow and heat transfer for 
a broad range of Stokes number and Reynolds number. Both the velocity and temperature simulation results for incompressible 
flow show good agreements with the analytical solutions. For the compressible flow, the simulation results show that all fluid 
particles only oscillating within a respective narrow distance, and the fluid temperature changes with fluid expanding or 
deflating.  
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INTRODUCTION* 

Oscillating flow exists in extensive engineering 
applications, such as biomedical engineering [1], 
MEMS and regenerative heat engines [2]. In 
oscillating flow, the flow direction changes 
periodically and the net mass flow rate is zero in 
each period, therefore analyses of oscillating flow 
and its heat transfer characteristics are more difficult 
than that of unidirectional flow.  

A literature survey on oscillating flow and heat 
transfer shows that the heat transfer investigation in 
such flows is almost undeveloped due to its 
complexity though the oscillating flow behavior has 
been studied greatly both experimentally and 
theoretically. Xiao [3] presented the analytical 
solutions for temperature distributions in 
compressible oscillating flows under linearization 
assumption. However in many cases, for example, 
high Prandtl number oscillating flow, the effect of 
viscous dissipation on the temperature distribution 
in oscillating flow can not be neglected. The 
analytical solution of temperature distribution in an 
incompressible laminar oscillating flow with viscous 
dissipation has not been developed up to now.  

Most numerical simulations of oscillating flow 
and heat transfer were based on conventional CFD 
methods [4, 5]. Recently, the lattice Boltzmann 
method has been rapidly developed, which provides 
an alternative promising numerical approach for 
flow and heat transfer studies. Cosgrove et al. [6] 
adopted LBM to study the flow transition from 
laminar to turbulent in oscillating channel flow. 
Additionally, the LBM has also successfully 
modeled sound waves [7] and acoustic streaming 
[8].  

This paper investigates the oscillating flow and 
heat transfer theoretically and numerically in 
consideration with the viscous dissipation effect.  

1. ANALYTICAL SOLUTION OF 
TEMPERATURE DISTRIBUTION 

Considering the incompressible, laminar 
oscillating flow between two parallel plates with a 
constant wall temperature Tw, as shown in Fig. 1, the 
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fluid is driven only by a sinusoidal pressure gradient 
along x-direction. 

 
Fig. 1 Schematic diagram of the problem 

0/ i tdp dx p e ω− =  ,                        (1) 
where ω is the oscillating angular frequency. 
Under linearization assumption, the velocity 
distribution was given by Pozrikidis [9], 
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where Real denotes the real part of the expression, 
2 /µ ν ωδ =  is the viscous penetration depth. The 

Stokes number Λ=b/δµ and the Reynolds number 
Reδ=uxmaxδµ/ν, based on the viscous penetration 
depth δµ are used for characterizing the dominant 
features of the oscillating flow. uxmax is the velocity 
amplitude of oscillating flow.  

The energy equation for a periodically oscillating 
flow under linearization assumption can be written 
as 
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The temperature solution can be expressed in the 
form of truncated infinite series if the initial 
temperature of fluid is equal to the wall temperature. 
The temperature distribution of the incompressible 
laminar oscillating flow in consideration with 
viscous dissipation is derived as, 
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2 2(cosh cos ) (sinh sin )C = Λ Λ + Λ Λ . 
The detailed deriving process is not given here 

due to the space limitation. 

2. LATTICE BOLTZMANN MODELS 

The lattice Boltzmann model implemented in the 
current investigation is the double-species LBE 
model proposed by He et al. [10]. The macroscopic 
density and velocity fields are simulated using the 
density distribution function, and the temperature 
field is simulated using the thermal energy 
distribution function. The evolution equation for 
density distribution function is  
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The evolution equation for the thermal energy 
distribution function is  
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where  
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G is the external force acting on unit mass. qi 
represents the effects of viscous dissipation. In the 
simulation, the macroscopic density ρ, velocity u， 
internal energy ε, heat flux φ, kinematic viscosity ν 
and thermal diffusivity ζ are 
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2 c RTmζ τ= .                            (16) 
In Eq. (13), D is the dimension number. The D2Q9 
model is adopted, and the lattice velocity is 

3 mc RT= , here Tm is the fluid average temperature. 
The equilibrium distribution fi

eq and gi
eq expressions 

can be found in Ref. [10]. Using the Chapman– 
Enskog expansion, the Boltzmann equation recovers 
the correct continuity, momentum and energy 
equations. 

The non-slip boundary condition with 
second-order accuracy for the velocity boundary on 
the walls proposed by Inamuro et al. [11] and the 
thermal boundary conditions by D’Orazio and Succi 
[12] are adopted. The periodic boundary conditions 
are used at inlet and outlet boundaries. 

3. RESULTS AND DISCUSSION 

3.1 Incompressible Flow 

Considering that the pressure gradient is uniform 
in the domain but changes with time at a cosine 
function, as Eq. (1). The fluid average temperature 
Tm=313K, the average pressure pm=101kPa and the 
average density ρm=1.13kg/m3, the kinetic viscosity 
ν is 1.69×10-5m2/s and the thermal diffusivity ζ is 
2.41×10-5m2/s. Two cases listed in Table 1 are 
investigated. 

TABLE 1 parameters for the simulated cases 
case number 1 2 

pressure gradient 
amplitude(Pa/m) 

104 104 

angular 
frequency(rad/s) 

400π 400π 

space step(m) 4.976×10-6 1.244×10-6 
time step(s) 9.591×10-9 2.398×10-8 
Grid number 5×59 5×224 

Stokes number 0.8941 8.4866 

3.1.1 Velocity and Temperature Distributions 

The reference velocity un and reference 
instantaneous temperature Tb are defined 
respectively as 

2
0 / 2nu p b µ= .                          (17) 
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Therefore, the time-average bulk temperature,  
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The dimensionless temperature Θ is defined as 
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   (a)                     (b) 

Fig. 2 Analytical and LBM solutions of velocity (a) and 
temperature (b) distribution across the channel of at 
different time, case 1, Λ=0.8941 

Figs. 2 and 3 show good agreements between the 
analytical solutions given by Eq. (2) and Eq. (4) and 
LBM simulation results of velocity and temperature 
distributions. Both velocity and temperature 
oscillate periodically, and the oscillating period of 
temperature is half of that of velocity. The fluid 
temperature is higher than wall temperature all the 
times since the viscous dissipation always heats the 
fluid. 

  
   (a)                     (b)    

Fig. 3 Analytical and LBM solutions of velocity (a) and 
temperature (b) distributions across the channel of at 
different time, case 2, Λ=8.4866 

The maximum temperature locates at certain 
place near the walls. Such phenomenon is called 
“annular effect”, which is caused by the velocity 
annular effect via viscous dissipation. Another factor 
influencing the annular effect is the Stokes number 
Λ. As illustrated in Fig. 2, when Λ<1, the annular 
velocity effect can not be observed obviously but 
temperature annular effect obviously exists. The 
velocity annular effect is less sensitive to Λ than that 
of temperature. The velocity and temperature 
variationa along the y-direction mainly locate near 
the walls for the current linearization cases. For the 
case of large Λ, as shown in Fig. 3, the flow is in 
slug flow near the center region and the effect of 
viscous dissipation on temperature in the central 
region can be neglected. 

 
3.1.2 Heat Transfer Characteristics 

The instantaneous local Nusselt number, Nu, is 
defined as 
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where 4b is the hydraulics diameter of the parallel 
channel and φw is the wall heat flux. The variations 
of the instantaneous local Nusselt numbers with 
time for cases 1 and 2 are shown in Fig. 4. It is seen 
that oscillating period of Nusselt number is half of 
that of velocity. For small Λ case, such as case 1, the 
Nu varies more sharply and the value is larger than 
that of case 2, the reason is that, for Λ<1, the two 
viscous penetration layers on the upper and bottom 
walls disturb each other, therefore, the thermal 
resistance is reduced.  

 
  (a)                       (b) 

Fig.4 The instantaneous local Nusselt number of case 1 (a) 
and case 2 (b) 

3.2 Compressible Flow 

The pressure gradient is a function of time and 
position,  

0/ cos(2 / ) cos( )dp dx p x tπ λ ω− = ,             (22) 
When the plate length L is equal to one 

wavelength, the velocity and pressure at inlet are 
same as those at outlet. Therefore, the periodic 
boundary conditions can be applied at inlet and 
outlet. In the simulation, the aspect ratio of the 
channel is L/2b=15.5 and p0 is 106Pa/m, f=3.61MHz. 
The  high frequency aims to satisfy the 
linearization assumption and to decrease the 
computing grids number.  

3.2.1 Velocity Field 

The velocity profiles at different time and 
positions are shown in Fig. 5. For the case of high 
frequency and low pressure oscillating amplitude, 
fluid particles only oscillates back and forth within a 
very narrow region in x-direction. At a certain time, 
the velocities at different x-position may have 
different direction and values. At the standing points, 
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which locate at x=L/4 and x=3L/4, the fluid particles 
keep static all the time. 

 
Fig. 5 velocity vectors field across the whole channel at 

different times 

3.2.2 Temperature Field 

The dimensionless temperature defined by Eq. 
(19) at certain x-position also oscillates with the 
same frequency as that of the pressure gradient, as 
shown in Fig. 6. The temperature oscillation is 
unlike that of the incompressible flow where the 
fluid temperature is always higher than the wall 
temperature affected by viscous dissipation. This 
temperature oscillating phenomenon is caused by 
compressibility effect.  

 
Fig.6 The temperature distribution at x=449 at different time 

4. CONCLUSION 

The analytical solution for the temperature 
distribution in laminar incompressible oscillating 
flow between two parallel constant-wall- 
temperature plates with viscous dissipation is 
derived under complete linearization assumption. 
The thermal lattice Boltzmann method is used to 
simulate oscillating flow and heat transfer for a 
broad range of Λ and Reδ. Good agreements have 

been obtained between the analytical and numerical 
solutions. The simulation results show that the 
Stokes number Λ is an important factor affecting the 
Nu. For the compressible flow case, the simulation 
results show that all fluid particles only oscillating 
within a respective narrow distance. The fluid 
temperature changes with fluid expanding or 
deflating. The current simulation showed that the 
thermal LBM is suitable for simulating 
compressible oscillating flow and heat transfer. 
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