
that has undergone EMT into a cluster of such
cells or, alternatively, from the mesenchymal
transformation of preexisting CTC clusters with-
in the bloodstream. The proposal that mesenchy-
mal transformation of epithelial cells is mediated
by TGF-b released from platelets (15) is sup-
ported by our observation of strong TGF-b sig-
natures in mesenchymal CTC clusters, many
of which carry attached platelets. Collective
migration of grouped cells that maintain their
cell-cell and cell-matrix connections has been
implicated in cancer metastasis (26, 27), and
may involve increased survival signals as CTC
clusters circulate in the blood (17, 28, 29). The
clinical importance of EMT as a potential bio-
marker of therapeutic resistance and as a poten-
tial drug target in breast cancer warrants further
investigation.
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Systematic Identification
of Signal-Activated Stochastic
Gene Regulation
Gregor Neuert,1,2* Brian Munsky,3* Rui Zhen Tan,1,5,6 Leonid Teytelman,1

Mustafa Khammash,4,7† Alexander van Oudenaarden1,8†‡

Although much has been done to elucidate the biochemistry of signal transduction and gene
regulatory pathways, it remains difficult to understand or predict quantitative responses. We
integrate single-cell experiments with stochastic analyses, to identify predictive models of
transcriptional dynamics for the osmotic stress response pathway in Saccharomyces cerevisiae.
We generate models with varying complexity and use parameter estimation and cross-validation
analyses to select the most predictive model. This model yields insight into several dynamical
features, including multistep regulation and switchlike activation for several osmosensitive genes.
Furthermore, the model correctly predicts the transcriptional dynamics of cells in response to different
environmental and genetic perturbations. Because our approach is general, it should facilitate
a predictive understanding for signal-activated transcription of other genes in other pathways
or organisms.

Acentral goal of systems biology is to un-
derstand and predict the complex, stochas-
tic dynamics of gene regulation (1–3).

Although biochemical studies have identifiedmany
regulatory proteins in these processes, this typi-
cally does not enable construction of quantitative-
ly predictive models of transcriptional dynamics.
One challenge lies in the fact that gene regula-
tion is a dynamic multistate process with largely
unknown reaction rates. For example, a two-state
system may represent closed and open chromatin
(4–6) or the presence or absence of a transcription
factor (7–9). Including more states or regulatory
reactions results in a combinatorial increase in the

number of possible model structures (10) and leads
to a complicated trade-off between overfitting and
predictive power.

We propose a data-driven comprehensive ap-
proach to identify and validate predictive, quan-
titative models of transcriptional dynamics through
the integration of single-cell experiments and dis-
crete stochastic analyses within a system identifi-
cation framework. We apply this approach to the
well-characterized high-osmolarity glycerol (HOG)
mitogen-activated protein kinase (MAPK) pathway
in Saccharomyces cerevisiae and focus on the
regulation of STL1, CTT1, and HSP12 (11, 12)
genes. Upon osmotic shock, the Hog1p kinase

quickly enters the nucleus (Fig. 1A, and figs. S2
to S4, and S6) (13–16) and activates STL1, CTT1,
and HSP12 gene expression (figs. S6 and S9)
(17). We find that the Hog1p translocation dynam-
ics is homogeneous (14, 15, 17), yet downstream
gene activation is heterogeneous among cells
(17). To quantify STL1 expression directly, we de-
veloped a single-molecule fluorescent in situ hy-
bridization (smFISH) (18, 19, 20) assay, which
captures the stochastic nature of mRNA transcrip-
tion with high temporal and single-molecule res-
olution (Fig. 1B) (21, 22, 23).

In addition to the kinase Hog1p, we consider
the effects of the transcription factor Hot1p and
the chromatin modifiers Arp8p and Gcn5p that
modulate STL1 transcription (17, 24). For this
system, we seek to find and validate a model that
predicts the system’s dynamic mRNA expression
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for several genes (STL1, CTT1, and HSP12) in
response to environmental and genetic perturba-
tions. We propose a range of model structures,
each with a discrete number of states, {S1, S2,…,
SN} (Fig. 2A). Each haploid cell occupies one
state at a time, and transitions among states are
discrete, stochastic events. At least two states are
required to explain bimodality, but additional
states allow for more complex mechanisms, such
as chromatin remodeling or transcription factor
binding or release (7–9, 17). Because activated
mRNA transcription and degradation rates are
constant throughout different conditions (fig. S5),
only transition rates can be variable and are as-

sumed to be constant or linearly dependent on the
kinase. After identifying the model structure and
Hog1p dependency, we validate the model struc-
ture for several mutants and different Hog1p-
dependent genes.

To choose the best number of states needed
to match STL1 gene expression dynamics, we
allow every state transition rate to be Hog1p-
dependent. For two-, three-, four-, and five-state
model structures with any parameter set, we use
the finite state projection (FSP) approach (25) to
formulate a finite set of linear ordinary differen-
tial equations that predicts the time-varying prob-
ability distributions.We adjust themodel parameters

until the FSP analysis fits the bimodal mRNA
distributions at all times (26). As expected, the fit
improves as themodel complexity increases (Fig.
2B, red line, and fig. S11). However, increased
complexity leads to greater parametric uncertain-
ty and may diminish predictive power. Applying
cross-validation analyses to replicate experiments
at 0.4 M NaCl (27), we score all models accord-
ing to their estimated predictive power (Fig. 2B,
blue line). This prediction estimate is validated
with additional experiments conducted at 0.2 M
NaCl, and we find that cross-validation provides
an excellent estimate of predictive power (Fig. 2B,
compare blue and green lines, and figs. S11 and
S12). We find that the two- and three-state models
are too simple, whereas the more complex five-
state model structure is prone to overfitting (Fig.
2B and figs. S11 and S12).

We now concentrate on the four-state mod-
el structures and determine which reactions de-
pend upon Hog1p. To identify a Hog1p-model
structure with enough flexibility to match the
data while avoiding overfitting, we allow one
or two Hog1p dependencies. We then rank the
corresponding maximum likelihoods and cross-
validate the top ranked Hog1p-model structures.
The fit improves with increasing complexity
(Fig. 2B, red line, and fig. S11), while constrain-
ing the number of Hog1p dependencies reduces
uncertainty (Fig. 2B and fig. S11). One nota-
ble feature of the identified model structure and
its corresponding parameters is that in the ab-
sence of Hog1p, a fast reaction from S2 → S1
keeps all cells in the inactive S1 state (fig. S8, red

A

Nucleus

Cytoplasm

GeneTF/CM

Kinase

P
P

Kinase

P
P

Kinase

B 0 min 4 min 8 min

15 min 20 min 30 min

Fig. 1. Quantitative analysis of single-cell stochastic gene regulation. (A) Schematic of a generic
signaling cascade in which a kinase enters the nucleus and interacts with transcription factors (TF) and
chromatin modifiers (CM) to regulate gene expression. (B) Rapid, stochastic, and bimodal activation of
endogenous STL1 mRNA expression is detected with single-molecule RNA-FISH [yeast cell: gray circle;
DAPI (4′,6-diamidino-2-phenylindole)–stained nucleus: blue; STL1 mRNA: green dots]. Scale bar: 2 mm.

Fig. 2. Identifying a maximally predictive model structure. (A) Two- and multistate model
structures that allow for kinase, transcription factor, and chromatin modifier–dependent
activation of gene expression. (B) Relative likelihoods of best fit for different model
structures at 0.4 M NaCl (red, left axis) and the resulting predictions at 0.2 M NaCl (green,
right axis). Cross-validation at 0.4 M NaCl (27) is used to quantify predictive uncertainty
(gray region, left axis) and yields excellent a priori knowledge of predictive power (compare
blue and green lines). (C) mRNA expression distributions at two NaCl concentrations (black
and blue lines) and best fit at 0.4 M (red line) and the corresponding prediction at 0.2 M
NaCl (green line). The fit and predictions correspond to the four-state structure with one
Hog1p dependency identified at 0.4 M NaCl in (fig. S7). The black arrow indicates the
similar mRNA expression levels after an osmotic shock of 0.2 and 0.4 M NaCl. The purple
star indicates the time point of gene expression deactivation.
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line). When Hog1p exceeds a certain threshold,
the gene can transition among the active S2,
S3, and S4 states (fig. S8, blue, green, and black
lines). Our final model captures all qualitative
and quantitative features of STL1 mRNA ex-
pression dynamics after a 0.4 M NaCl osmotic
shock (Fig. 2C, top). These features include a
constant time delay, t0, between Hog1p trans-
location and mRNA expression; slow activa-
tion of gene expression; transient bimodality in
RNA populations; conserved maximal mRNA
expression between different conditions; and
Hog1p-dependent modulation of gene expres-
sion duration. In addition, the model makes the
best predictions for the mRNA expression af-
ter osmotic shock with 0.2 M NaCl (Fig. 2C,
bottom).

To test the generality of this model’s predic-
tive power, we collect new data sets at 0.4 M
NaCl for several different mutant strains and
for different Hog1p-activated genes. The dif-
ferent mutant strains include a fivefold Hot1p-
overexpression strain and gene knockouts of
the chromatin modifiers ARP8 orGCN5. We also
consider two additional stress response genes:
CTT1 and HSP12. The model identified above
fits equally well to the mRNA expression dy-
namics for STL1 in the Hot1p-overexpression
strain as well as the arp8D and gcn5D mutants
(Fig. 3A and figs. S15, S18, and S19). The same
structure also fits the CTT1 and HSP12 mRNA
expression dynamics (figs. S9, S15, S18, and S19)
with relatively few parameter changes between
the different genes andmutations (table S2) (27).
The resulting model makes excellent predictions
for the dynamics of CTT1 and HSP12 mRNA

expression at 0.2 M NaCl (Fig. 3, B and C, and
figs. S16, S18, and S19). Combining the relative
changes in the rates measured for STL1 in the
mutant ARP8 strain with the rate changes for
the CTT1 and HSP12 expression measured in
wild-type strain results in a very good predic-
tion of the CTT1 and HSP12 mRNA expression
in the ARP8 mutant strain (Fig. 3C and figs. S17
to S19) (27).

Having determined that the model structure
identified above can fit and predict STL1, CTT1,
and HSP12 mRNA expression dynamics in dif-
ferentmutant strains, we examinewhich rates vary
most for each mutant and gene in comparison to
wild-type STL1 (Fig. 4A and table S2). The most
variable rates between different mutations are
the k12 and k21 transition rates, which indicate

that Hot1p, Gcn5p, and Arp8p all modulate the
transition rates into and out of the S1 state but re-
sult in different Hog1p-activation and -deactivation
thresholds (fig. S10). Other transition rates are
affected to a much lower degree.

The identifiedmodel structure and parameters
quantitatively capture and/or predict all of the
observed experimental data (Figs. 2 to 4 and figs.
S15 to S19). The model also yields several qual-
itative and quantitative insights, including (i) a
switchlike mechanism that activates each gene
and stabilizes its activity when Hog1p exceeds a
gene-specific threshold and (ii) gene-specific pro-
duction and degradation rates that are indepen-
dent of the Hog1p-kinase dynamics. The four-state
model structure is essential to explain the tem-
poral dynamics in gene expression observed in
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PredictionFig. 3. Model structure validation. (A) Combined fit of the model structure
identified (fig. S7) to different genetic mutations affecting STL1 expression
at 0.4 M NaCl: wild-type (WT) (red), Hot1p 5× (blue), arp8D (black), and gcn5D (green). (B) Model prediction of CTT1 (cyan) and HSP12 (magenta)
expression at 0.2 M NaCl. (C) Model prediction for HSP12 expression at 0.4 M in the arp8D strain.
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Fig. 4. Relating model structure to biological function. (A) Mutant and gene-specific rate changes
relative to STL1. (B) Final model, in which Hog1p, Hot1p, Gcn5p, and Arp8p regulate transitions between
states S1 and S2.
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all of the experiments. This structure describes
an Off state, S1, which is the default state in the
absence of osmotic shock, and three On states
with different transcription rates and reaction rates
between the states. Activation occurs when nu-
clear Hog1p represses the deactivation rate, k21,
subject to the interplay of gene- and mutant-
specific (de)activation thresholds (fig. S10 and
table S2). This interplay provides the main knob
by which the duration of mRNA expression is
finely tuned in response to different environmental
conditions (e.g., different salt concentrations) or
to different genetic mutations.

In this study, we have identified a single quan-
titative model to understand and predict STL1,
CTT1, andHSP12 gene expression dynamics in
response to various environmental and genetic
perturbations. We generated a large range of
possible model structures and developed a dy-
namic single-cell assay with which to discriminate
among these model structures. We combined
this experimental assay with discrete stochastic
analyses and parameter identification approaches.
Our cross-validation analyses systematically elim-
inated oversimplified and overcomplex model
structures. We eventually selected the model struc-
ture and parameters for a single best model to
predict STL1, CTT1, and HSP12 dynamics. Fur-
thermore, the identified model provides detailed
insight into the biophysical dynamics of signal-
activated gene regulation. Because the presented
experimental and computational tools are ap-
plicable to any gene or signaling pathway, this

integrated identification approach can lead to
insights into complex cellular networks for other
organisms.
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Molecular Mechanism of Action
of Microtubule-Stabilizing
Anticancer Agents
Andrea E. Prota,1 Katja Bargsten,1 Didier Zurwerra,2 Jessica J. Field,3 José Fernando Díaz,4

Karl-Heinz Altmann,2 Michel O. Steinmetz1*

Microtubule-stabilizing agents (MSAs) are efficacious chemotherapeutic drugs widely used for
the treatment of cancer. Despite the importance of MSAs for medical applications and basic
research, their molecular mechanisms of action on tubulin and microtubules remain elusive.
We determined high-resolution crystal structures of ab-tubulin in complex with two unrelated MSAs,
zampanolide and epothilone A. Both compounds were bound to the taxane pocket of b-tubulin
and used their respective side chains to induce structuring of the M-loop into a short helix.
Because the M-loop establishes lateral tubulin contacts in microtubules, these findings explain
how taxane-site MSAs promote microtubule assembly and stability. Further, our results offer
fundamental structural insights into the control mechanisms of microtubule dynamics.

Thebinding ofmicrotubule-stabilizing agents
(MSAs) such as paclitaxel (Taxol, Bristol-
Myers Squibb) to microtubules is gener-

ally thought to shift the assembly equilibrium of
tubulin toward the polymeric state and to block
cell entry into mitosis by suppressing microtu-
bule dynamics (1, 2). However, MSAs are also
known to induce microtubule polymerization un-
der conditions in which tubulin does not assem-

ble spontaneously, suggesting a role in tubulin
activation (3, 4). To provide insights into the in-
teractions of MSAs with tubulin and microtu-
bules at the molecular level, we crystallized the
complex between ab-tubulin (T), the stathmin-
like protein RB3 (R), and tubulin tyrosine ligase
(TTL) in the presence of either zampanolide
(Zampa) or epothilone A (EpoA) (Fig. 1A) and
determined the structures of the corresponding

protein-ligand complexes (T2R-TTL-Zampa and
T2R-TTL-EpoA) at 1.8 and 2.3 Å resolution, re-
spectively, by x-ray crystallography (fig. S1A
and table S1) (5). The two tubulin heterodimers
in the T2R-TTL-MSA complexes were aligned in
a head-to-tail fashion and assumed a curved con-
formation. Their overall structures superimposed
well with the ones obtained in the absence of a
MSA or of tubulin in complexwith RB3 alone (6)
[root mean square deviation (RMSD) ranging
from 0.1 to 0.6 Å over more than 650 Ca atoms],
which suggests that the binding of MSAs and
TTL does not induce major structural changes in
the T2R complex. Both Zampa and EpoA were
deeply buried in a pocket formed by predom-
inantly hydrophobic residues of helix H7; b strand
S7; and the loops H6-H7, S7-H9 [designated
the M-loop (7)], and S9-S10 of b-tubulin—this
pocket is commonly known as the taxane pocket
(Fig. 1, B to D) (8, 9).
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