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Abstract: Owing to the inherently random and discrete nature of genes, RNAs and proteins within living cells,
there can be a wide range of variability both over time in a single cell and from cell to cell in a population of
genetically identical cells. Different mechanisms and reaction rates help shape this variability in different ways,
and the resulting cell-to-cell variability can be quantitatively measured using techniques such as time-lapse
microscopy and fluorescence activated cell sorting (or flow cytometry). It has been shown that these
measurements can help to constrain the parameters and mechanisms of stochastic gene regulatory models. In
this work, finite state projection approaches are used to explore the possibility of identifying the parameters
of a specific stochastic model for the genetic toggle switch consisting of mutually inhibiting proteins: LacI and
lcI. This article explores the possibility of identifying the model parameters from different types of statistical
information, such as mean expression levels, LacI protein distributions and LacI-lcI multivariate distributions.
It is determined that although the toggle model parameters cannot be uniquely identified from
measurements that track just the LacI variability, the parameters could be identified from measurements of
the cell-to-cell variability in both regulatory proteins. Based upon the simulated data and the computational
investigations of this study, experiments are proposed that could enable this identification.
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1 Introduction
A key issue facing modellers of gene regulatory systems is that
rare chemical components (e.g. genes, RNA molecules and
proteins) can lead to large amounts cellular variability [1–7].
This variability has attracted much recent attention, and it
is well established that different system mechanisms will
affect variability in different manners. In some systems,
variability enhances dynamic signals via stochastic focussing
[8]; in other cases, it may cause or enhance resonant
fluctuations [9]; some other network topologies may result
in stochastic switching [10–13]; and in many systems
deleterious variability may be repressed [14].

There are a number of well-established experimental
techniques in which fluorescent markers are used to
highlight the molecular variability of single cells [15]. The
most common of these techniques is flow cytometry [16],
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which enables researchers to perform hundreds of millions
of controlled single cell experiments all at the same time.
For this technique, cell strains can be engineered to express
fluorescent proteins such as green, yellow or cyan
fluorescent protein ( g fp, yfp, c fp), all of which can be
measured in a fraction of a second for each cell. Different
cultures of the same cell strain can be perturbed with
different inputs, at different levels and at different times. A
researcher can measure a million cells in a minute and test
40 or more different conditions in a single hour. And,
unlike population level and/or in vitro techniques for
measuring biological parameters (gels, immunoblotting
etc.), the cells can be grown naturally throughout the
experiment and measurements are made on individual
living cells.

The more recently discovered technique of single molecule
fluorescence in situ hybridisation (FISH) [17] allows
IET Syst. Biol., 2010, Vol. 4, Iss. 6, pp. 356–366
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researchers to tag and count specific mRNA populations in
individual fixed cells. With automated imaging techniques
it is possible to count mRNA molecules in thousands of
individual cells, thereby obtaining precise distributions
under carefully controlled experimental conditions. Flow
cytometry and FISH-based single cell microscopy are
highly complementary approaches to study variability.
Whereas cytometry with fluorescent proteins can measure
post-translational activity, single cell microscopy with FISH
mRNA markings can measure pre-translational regulation.
Although flow cytometry allows for the measurement of
more individual cells, single cell microscopy allows for more
precise measurements of individual cells.

Using either or both experimental approaches, the measured
variability in gene expression offers a surprisingly rich source of
information about system parameters and dynamics. This vast
amount of data is often far more complicated to analyse, and
in many computational studies, cell-to-cell variability has
been viewed as a computational nuisance – a viewpoint that
is not helped by the term ‘noise’, which is frequently attached
to this variability. If one does not include intrinsic variability
in a model, then one cannot hope to capture certain cellular
behaviours. However, in many cases, the inclusion of model
stochasticity results in an explosion of computational
complexity. For many other cases, the intrinsic variability of
gene regulation can be analysed techniques such as kinetic
Monte Carlo (KMC) algorithms [18] and stochastic
differential equation approaches [19]. In turn, these KMC
approaches have been improved with various sampling
approaches [20, 21], t leaping approaches [22] and time scale
separation schemes [23, 24]. In a different direction, many
researchers have sought to directly solve for the evolution
of probability distributions using various techniques such
as linear noise approximations [25, 26], moment closure
[27, 28] and matching [29] techniques, moment generating
functions [30], spectral methods [31] and finite state
projection (FSP) approaches [32–35]. At present, none of
these approaches suffices to handle all systems, and there
remains much work to be done to improve our computational
capabilities. However, as these tools develop, it becomes more
possible to overcome the obstacle of intrinsic noise and gain
significant benefits from analytical studies.

When it is possible to overcome the obstacles presented by
cellular variability, the inclusion of system stochasticity can
reveal a wealth of additional information regarding the
dynamics of biochemical networks. Analyses of how
variability is affected by different regulatory architectures
provide a new tool with which to compare and contrast
different possibilities for evolutionary design [36].
Alternatively, when this design is not known a priori, analyses
of cellular variability may help to discover it [37–39]. For
example, different logical structures such as AND or OR
gates can be discovered in two component regulatory systems
by examining the stationary transmission of the cell variability
through the network [37], or correlations of different aspects
of cell expression at many time points can reveal different
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causal relationships between genes within a network [38].
Similarly, measuring and analysing the statistics of gene
regulatory responses in certain conditions can help to identify
system parameters and develop quantitative, predictive models
for certain systems [40, 41].

In this article, we use computational analyses to demonstrate
the usefulness of combining stochastic analyses and single cell
measurements to identify gene regulatory models. We follow
a similar approach to that in [42] in that we will apply FSP –
[32, 34, 35] tools to conduct stochastic analyses and
parameter identification for the genetic toggle switch from
[42, 43]. In the following section, we provide a brief
background on previous analyses of the toggle switch, and we
discuss the application of FSP analysis tools to this system.
Then, in Section 3 we use these tools and simulated data to
determine the types of additional experiments that are
necessary to fully identify the parameters of the toggle model.
Finally, in Section 4 we summarise our findings and make a
few concluding remarks.

2 Background
The toggle switch, composed of the mutually inhibiting
genes lacI and lcI, was first constructed and presented in
[42] and then extended in [43] to be used as a sensor of
environmental influences, such as radiation or external
chemical signals. This switch is a construction of two
genes, each of whose protein, lcI or LacI, inhibits the
production of the other (see Fig. 1a). With exposure to
ultraviolet (UV) light or mitomycin C (MMC), damage to
DNA initiates a global response, known as the SOS
response, which up-regulates RecA coproteases and
increases the degradation of lcI. As a result, different
amounts of UV or MMC change the trade-off between lcI
and LacI molecules. The output of the mechanism is GFP,
which is also controlled by the same promoter as lacI and is
assumed to be expressed at the same level as LacI.
Depending upon environmental conditions, the system
exhibits a bias towards one phenotype or another (i.e. it
either has a high level of LacI and GFP and is highly
fluorescent or it has a high level of lcI and is not
fluorescent). A vast number of models have been proposed
to describe this and other toggle switches, including
deterministic [43] and stochastic versions [13, 44, 45] to
name a few. This study considers a particular stochastic
model similar to that in [13] and aims to determine the
types of experimental data necessary to determine the
model parameters. To explore these requirements, we use
simulated data of the type that can be measured using flow
cytometry experiments such as those conducted in [43]

The stochastic model of the toggle switch is composed of
four non-linear production/degradation reactions given by

R1 ; R2 ; R3 ; R4

∅ � lcI ; lcI � ∅ ; ∅ � LacI ; LacI � ∅
(1)
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Figure 1 A stochastic model for the genetic toggle switch

a Basic schematic of the toggle model comprised of two inhibitors: lcI inhibits the production of LacI and vice versa. In the model, the
synthesis rates of lcI and LacI are non-linear functions of their counterparts. Environmental influences (UV radiation) increase the
degradation rate of lcI and affect the tradeoff between the two regulators
b–d Marginal probability distributions of LacI as simulated with parameters sets #0 and #3 from Table 1. The degradation parameter du is
the only parameter that changes between the panels B–D
The rates of these reactions, w(lcI, LacI, L) =
[w1(lcI, LacI, L), . . . , w4(lcI, LacI, L)] depend upon the
populations of the proteins, lcI and LacI, as well as the set
of non-negative parameters, {k(0,1)

lcI , aLacI, hLacI, k(0,1)
LacI , alcI,

hlcI, dLacI, dlcI}, according to

w1 = k(0)
lcI +

k(1)
lcI

1 + aLacI [LacI]hLacI
, w2 = dlcI[lcI]

w3 = k(0)
LacI +

k(1)
LacI

1 + alcI[lcI]hlcI
, w4 = dLacI[LacI]

In the model, the lcI degradation parameter, dlcI, takes on
different values depending upon environmental influences
such as UV radiation, whereas the remaining nine parameters
are assumed to be independent of environmental conditions.
Thus, the full parameters set is represented by

L = {k(0,1)
lcI , aLacI, hLacI, k(0,1)

LacI , alcI, hlcI, dLacI},

{dlcI(0), dlcI(6), dlcI(12)} [ {R9
≥0, R3

≥0}

At present there is insufficient evidence to define every
parameter of the toggle switch model, and the current study
relies upon simulated data in an effort to determine what
additional experiments are necessary. To generate these data,
we have chosen a reference parameter set as follows (see (2))
8
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where the notation N corresponds to the integer number of
molecules of the relevant reacting species. These parameters
have been chosen partially to match values in the literature
and partially to match the qualitative behaviours of the
measured fluorescence histograms from [43] (i.e. the model
expresses a small amount of LacI at low UV levels, a large
amount of LacI at higher UV levels and has a bimodal
distribution at intermediate UV levels – see Fig. 1). In the
context of the current study, the most important of these
parameters are the half-lives of LacI and lcI, which
effectively set the timescale of the system’s transient
responses. Since both proteins are extremely stable and
have half-lives that are much longer than the cell division
time, dlcI(0) and dLacI(0) have both been set to match a
dilution half live of 30 min. (cell division time). The
cooperativity of lcI binding, hlcI is chosen to be 3 to
reflect the three binding sites of lcI to the PL promoter.
The cooperativity of LacI binding, hLacI is set to 2.1 as
identified in [40]. The remaining parameters have been
chosen to match the qualitative behaviour of the system as
measured in [43] at the different levels of UV radiation.

At this point, no attempt has yet been made to fit the
quantitative values of these parameters for the current
model. For such a fit to provide much insight, one would
first need to calibrate for background fluorescence and
allow for the extrinsic variability in gfp fluorescence as
explored in [40]. This would require far more experimental
data than is currently available for this system. With the
k(0)
lcI = 6.8 × 10−5 s−1, k(1)

lcI = 1.6 × 10−2 s−1, aLacI = 6.1 × 10−3 N−hLacI

k(0)
LacI = 2.2 × 10−3 s−1, k(1)

LacI = 1.7 × 10−2 s−1, alcI = 2.6 × 10−3 N−hlcI

hLacI = 2.1 hlcI = 3.0 dLacI = 3.8 × 10−4 N−1 s−1

dlcI(0) = 3.8 × 10−4 N−1 s−1, dlcI(6) = 6.7 × 10−4 N−1 s−1, dlcI(12) = 1.5 × 10−3 N−1 s−1

(2)
IET Syst. Biol., 2010, Vol. 4, Iss. 6, pp. 356–366
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use of 96- and 384-well plate auto-samplers, today’s flow
cytometry equipment is capable of providing this additional
information for little additional experimental cost, and the
acquisition of this data will not be a limiting step in the
identification process.

2.1 Stochastic analysis of the toggle
switch

By assuming that cells constitute a well-mixed environment,
one can model biochemical populations with a jump-Markov
process. As mentioned above, there are numerous approaches
to analyse such processes, and many researchers are actively
involved in developing new approaches. For the purpose of
this examination, the choice of method does not matter, so
long as it provides an accurate and efficient solution. Because
the FSP [32–35, 46] approach provides a direct accuracy
guarantee on the solution of the master equation, it is a
natural choice with which to conduct this investigation. In
this subsection, we provide a brief background on the use of
the FSP approach for the modelling of the toggle switch.

Under the reactions presented in the preceding section, the
joint probability density of having i molecules of LacI and j
molecules of lcI evolves according the set of linear ordinary
differential equations

dpi, j(t, L)

dt
=−

∑4

k=1

wk(i, j, L)pi, j(t, L)+w1( j, L)pi−1,j(t, L)

+w2(i + 1, L)pi+1,j(t, L)+w3(i, L)pi, j−1(t, L)

+w4( j + 1, L)pi, j+1(t, L)

which is typically known as the (chemical) Master Equation
[25]. Because the toggle reaction rates, w1 and w2, are non-
linear, the master equation has no known closed-form
solution, but the FSP approach [32, 34] allows us to
approximate the solution to any pre-specified degree of
accuracy. Given the infinitesimal generator matrix, A(L),
the initial probability distribution, P(0), and a chosen error
tolerance, 1 . 0, we can systematically find a finite
projection system

Ṗ
FSP

(t, L) = AJ (L) · PFSP (t, L)

such that

PJ (t, L)

PJ ′(t, L)

[ ]
− PFSP (t, L)

0

[ ]∣∣∣∣∣
∣∣∣∣∣
1

≤ 1, and

PFSP(0) = PJ(0) (3)

where the index vector J denotes the set of states included in
the projection, PJ is the corresponding probabilities of those
states, and AJ is the corresponding principle submatrix of A
[32, 34].
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For this study, we have chosen the projection set, J, to
include all states that satisfy: i ≤ N1, j ≤ N2 and
(i − 3)(j − 3)2 ≤ N3, where the values of N1, N2 and N3 are
allowed to increase until the projection error, 1, is less than
10−6. The actual expansion is carried out as described in
[46], where the values of N1, N2 and N3 are increased
depending upon the dominant directions of probability
leakage out of the current projection space (see Section 2.1
of [46] for more details). For the reference parameter set the
final projection space is defined by the triplet
(N1, N2, N3) = (90, 90, 18, 400) for the case with 0 J/m2

UV radiation, (N1, N2, N3) = (50, 110, 17 600) for the case
with 6 J/m2 UV radiation and (N1, N2, N3) =
(30, 110, 12 800) for the case with 12 J/m2 UV radiation.
Other parameter sets require different projection spaces to
reach the desired error tolerance, and the projection space is
expanded and contracted during each parameter search.

2.2 Fitting the toggle model to simulated
data

In most cases, the full joint probability distribution is not
measured, and only an expected value or marginal
distribution is to be considered. To explore how different
quantities of information may lead to different
identification results, we consider identification strategies
using five such statistical quantities:

1. only the mean level of LacI, denoted as mLacI,

2. the mean levels of LacI and lcI, denoted as
m{LacI,lcI} := {mLacI, mlcI},

3. the marginal distribution of LacI, denoted as fLacI,

4. the marginal distributions of LacI and lcI, denoted as
f{LacI,lcI} := { fLacI, flcI} and

5. the full joint distributions of LacI and lcI, denoted as
full P.

Each of these is naturally represented as a linear projection
of the full distribution. For example, the mean level of LacI
and the marginal distribution of LacI are given by

mLacI(L, t) =
∑1

i=0

∑1

j=0

ipi, j(L, t) and

fLacI(L, t) =
∑1

j=0

pi, j(L, t)

Equivalently, one could write each of the statistical quantities
(1)–(5) above in matrix form as y(L, t) = CP(L, t), where
the output matrix C depends upon the statistical quantity
to be considered. We note that if all of the reaction rates
were affine linear, then the mean behaviours of mLacI and
mlcI would be equivalent to the deterministic mass action
359

& The Institution of Engineering and Technology 2010



36

&

www.ietdl.org
kinetics model of the same system. Because the toggle model
has non-linear production terms, this equivalence does not
hold. It is also important to note that the toggle switch
gives rise to a relatively complicated bimodal distribution,
which is not adequately be described with a small number
of statistical moments, so low order moment based
approaches such as those in [25–29] should be expected to
yield incorrect results for this model.

With the FSP solution approach in hand, the
identification procedure is relatively simple – we find the
parameter arguments, L∗, that minimises the difference
between the measured statistical quantity, ỹ(t), and the
numerical solution of that quantity, y(L, t)

L∗ := arg min
L

|ỹ(t) − y(t, L)|p (4)

More specifically, because we will frequently be comparing
probability distributions, we use the one-norm (i.e. p = 1)
difference for a number of reasons: First, the FSP approach
(3) directly computes the exact one-norm error in the
solution of the master equation, which then provides exact
bounds on the one-norm difference between a measured
and predicted distributions. Second, the one-norm of any
probability distribution is exactly one and the one-norm
difference between two distributions lies between zero for a
perfect match and two for a perfect mismatch. Finally, in
our experience one-norm optimisations provide
distributions that better match the full qualitative shape of
measured distributions, whereas other norms (such as the
Euclidian norm) apply too much importance to peaks of
these distributions, independent of how much probability
measure is contained in those peaks.

In this study, we begin each minimisation in (4) with the
same initial guess (see equation at the bottom of the page)

and then update this guess with iterations of gradient-based
and simulated annealing searches until the objective
function has decreased by at least two orders of magnitude.
In the numerical studies presented here, it is known a
priori that the ‘true’ parameter set gives an exact match and
satisfies this criteria for any p-norm. If the optimisation
terminates at a much different parameter set, then the
identification is not unique for the data set ỹ. In more
realistic practice, local minima must be discarded by using
multiple, randomly generated initial parameter guesses. In
that case, an optimal parameter set would be considered to
be unique if the given solution yields the smallest achieved
value for the objective function and if that parameter has
0
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been repeatedly found during independent optimisation
procedures.

3 Results
The model in the previous section and the parameters in (2)
have been used to numerically generate the joint probability
distribution of the numbers of LacI and lcI molecules. We
have assumed an initial condition of zero molecules of each
species, and have solved the master equation for the
distribution at times of {1, 2, 3, 4, 5} hours later. In this
section, we consider each of the five identification strategies
listed above and examine how successful each approach may
be for this identification. For each strategy, we first
consider the identification using the relevant data at 5 h
only and later with the same information at all five time
points. Each identification strategy results in a parameter
set that captures the relevant data to within a one-norm
difference of 10−1, and Tables 1 and 2 list the relative
values of these identified parameters. In most cases, the
identification is insufficiently constrained, and the
identified parameter set is not unique (i.e. it is different
than the original parameter set). For these, the parameter
set may match some portions of the simulated data, but not
others. Table 3 tabulates these differences for the ten
different parameter sets. We note that the numbers in
Tables 1–3 should be viewed as qualitative results as the
identified parameters sets {1–4, 6, 7} depend upon the
initial guess and are not unique.

3.1 Identification from a single time point

Table 1 lists the relative values of the identified parameters
compared to their actual values (reference set #0). These
parameters have been identified from different statistical
quantities taken from the simulated data at a time of 1 h.
The following subsections discuss the corresponding
success or failures in these identification attempts.

3.1.1 Identification using mean level of LacI at
t ¼ 5 h: In many modelling endeavours, researchers
concentrate their efforts solely on matching the mean
behaviours of the observable systems. In other situations,
there are often good reasons for this choice. First, most
experimental measurements are taken at the population level
using lysed cells, and data on the cell-to-cell variability is not
available. Second, if one is only interested in the mean level
behaviour, then it is often possible to utilise deterministic
models, which are typically more computationally tractable.
These reasons are far less compelling in this situation. When
all measurements are taken using flow cytometry or another
k(0)
lcI = 10−4 s−1, k(1)

lcI = 10−2 s−1, aLacI = 10−2 N−hLacI

k(0)
LacI = 10−3 s−1, k(1)

LacI = 10−2 s−1, alcI = 10−3 N−hlcI

hLacI = 3, hlcI = 3, dLacI = 10−4 N−1 s−1

dlcI(0) = 10−4 N−1s−1 dlcI(6) = 10−3 N−1 s−1 dlcI(12) = 10−3 N−1 s−1
IET Syst. Biol., 2010, Vol. 4, Iss. 6, pp. 356–366
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Table 1 Parameter sets for the stochastic toggle model, which have been identified from different data sets at a fixed time of
5 h

Parameter Units Set 0: Ref. Set Relative parameter values

set 1: mLacI set 2: m{LacI,AcI} set 3: fLacl Set 4: f{LacI,AcI} Set 5: full P

k(0)
lcI s−1 6.8 × 10−5 3.1 5.3 8.9 3.2 1.0

k(1)
lcI s−1 1.6 × 10−2 6.3 × 10−1 7.6 × 10−1 5.0 × 10−1 9.1 × 10−1 1.0

k(0)
LacI s−1 2.2 × 10−3 3.0 × 10−1 9.0 × 10−1 5.6 × 10−1 8.0 × 10−1 1.0

k(1)
LacI s−1 1.7 × 10−2 2.8 × 10−1 6.5 × 10−1 5.7 × 10−1 8.0 × 10−1 1.0

dLacI N−1s−1 3.8 × 10−4 2.2 × 10−1 6.7 × 10−1 5.6 × 10−1 8.0 × 10−1 1.0

dlcI(0) N−1s−1 3.8 × 10−4 2.9 × 10−1 6.1 × 10−1 6.7 × 10−1 9.5 × 10−1 1.0

dlcI(6) N−1s−1 6.7 × 10−4 5.9 × 10−1 7.2 × 10−1 7.2 × 10−1 9.7 × 10−1 1.0

dlcI(6) N−1s−1 1.5 × 10−3 1.0 1.2 5.9 × 10−1 9.5 × 10−1 1.0

aLacI N−hLacI 6.1 × 10−3 1.2 2.1 7.1 × 1022 5.9 × 10−1 1.0

alcI N−hlcI 2.6 × 10−3 1.9 × 10−1 5.4 × 10−1 4.0 × 10−3 4.8 × 10−1 1.0

hLacI – 2.1 1.2 9.0 × 10−1 1.3 1.1 1.0

hlcI – 3.0 1.1 1.1 1.7 1.1 1.0

For parameter sets 1–5, the table lists the relative parameter values. The five different data sets correspond to (1) the mean
level of LacI, (2) the mean levels of LacI and lcI, (3) the marginal distribution of LacI, (4) the marginal distributions of LacI and
lcI, and (5) the full joint distribution of LacI and lcI. The model responses for each of these parameter sets are shown in
Figs. 2–5
Table 2 Parameter sets for the stochastic toggle model, which have been identified from different data sets at all of five
different measurement times: {1, 2, 3, 4, 5} h

Parameter Units Set 0: Ref. Set Relative parameter values

Set 6: mLacI Set 7: m{LacI, lcI} Set 8: fLacI Set 9: f{LacI,lcI} Set 10: full P

k(0)
lcI s−1 6.8 × 10−5 7.7 × 10−7 1.0 9.9 × 10−1 1.0 1.0

k(1)
lcI s−1 1.6 × 10−2 1.3 9.7 × 10−1 1.0 1.0 1.0

k(0)
LacI s−1 2.2 × 10−3 1.5 1.1 1.0 1.0 1.0

k(1)
LacI s−1 1.7 × 10−2 9.6 × 10−1 9.6 × 10−1 1.0 1.0 1.0

dLacI N−1 s−1 3.8 × 10−4 1.0 9.8 × 10−1 1.0 1.0 1.0

dlcI(0) N−1 s−1 3.8 × 10−4 5.1 × 10−1 9.7 × 10−1 1.0 1.0 1.0

dlcI(6) N−1 s−1 6.7 × 10−4 7.5 × 10−1 9.9 × 10−1 1.0 1.0 1.0

dlcI(12) N−1 s−1 1.5 × 10−3 8.3 × 10−1 1.0 1.0 1.0 1.0

aLacI N−hLacI 6.1 × 10−3 5.7 × 10−1 9.2 × 10−1 1.0 1.0 1.0

alcI N−hlcI 2.6 × 10−3 5.2 × 10−1 5.7 × 10−1 1.0 1.0 1.0

hLacI – 2.1 1.2 1.0 1.0 1.0 1.0

hlcI – 3.0 1.0 1.1 1.0 1.0 1.0

Five different data sets are as listed in Table 1. For parameter sets 6–10, the table lists the relative parameter values
Syst. Biol., 2010, Vol. 4, Iss. 6, pp. 356–366 361
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Table 3 Goodness of fit for each parameter set and each subset of considered data

Parameter set # One time point at 5 h All time points at {1, 2, 3, 4, 5}h

mLacI m{LacI,lcI} fLacI f{LacI,lcI} full P mLacI m{LacI,lcI} fLacI f{LacI,lcI} full P

1 ,10−3 1.42 0.78 2.4 2.2 3.2 8.1 10 16 15

2 ,10−3 ,10−3 0.91 1.8 1.3 0.59 1.1 5.5 9.4 6.7

3 0.004 1.4 0.015 1.3 1.4 0.81 8.8 3.9 11.4 8.5

4 0.007 0.017 0.024 0.043 0.072 0.61 1.3 1.4 2.1 1.6

5 ,10−3
,10−3

,10−3
,10−3

,10−3 0.002 0.006 0.007 0.012 0.010

6 0.002 1.7 0.68 2.7 2.3 0.023 7.6 2.8 11.2 11.2

7 0.001 0.006 0.18 0.28 0.19 0.011 0.046 0.72 1.1 0.78

8 ,10−3 0.001 ,10−3 0.001 0.001 ,10−3 0.005 ,10−3 0.005 0.008

9 ,10−3
,10−3

,10−3
,10−3

,10−3
,10−3

,10−3
,10−3

,10−3
,10−3

10 ,10−3 ,10−3 ,10−3 ,10−3 ,10−3 ,10−3 ,10−3 ,10−3 ,10−3 ,10−3

Parameter sets correspond to the ten different fits found by using different amounts of the simulated data (see Tables 1 and
2). The different columns show how well each parameter set fits different aspects of the simulated data – the metric used is
the one norm difference between the model with the true parameter set and the identified parameter set. For the mean
values, the metric refers to relative difference (i.e. d ¼ |mmodel 2 mdata|/mdata)
single cell technique, data on cell-to-cell variability is readily
available. It would be a waste to ignore this information.
Furthermore, because of strong non-linearities in the LacI
and lcI production rates, the corresponding deterministic
model fails to capture the mean behaviour of the true
stochastic system (results not shown).

We first explore if it is possible to identify the unknown
parameters from the mean LacI level, mLacI, at all three UV
radiations levels and at a time of 5 h. Although it is not
difficult to find a set of 12 parameters that match the mean
level of LacI under the different levels of UV radiation,
these parameters are not unique. Indeed, we find that
parameter set #1 in Table 1 matches the mean LacI
expression levels as can be seen in Fig. 2a. However, the
same parameter set gives a very poor prediction for the
2
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mean level of lcI as shown in Fig. 2b and Table 3. Thus,
it is clear that the mean level of lacI is insufficient to
identify the model parameters.

3.1.2 Identification using mean levels of LacI and
lcI at t ¼ 5 h: We next consider the possibility of
identifying all 12 parameters from the mean level of both
LacI and lcI for all three UV levels and at a time of five
hours after induction. Once again it is easy to find that
parameter set #2 in Table 1 matches these mean levels for
both species, as can be seen in Figs. 2a and b. On the
other hand, closer inspection of the marginal probability
distributions of LacI and lcI reveals that this parameter set
provides a poor prediction for the marginal distributions of
the two chemical species, especially at low levels of UV
induction (see Figs. 3a, b, d and e and Table 3).
Figure 2 Mean levels for the toggle model

a Mean levels of LacI at 5 hours after induction with 0, 6 and 12 J/m2 ultraviolet radiation
b Mean levels of lcI at 5 hours after induction with 0, 6 and 12 J/m2 ultraviolet radiation
c Legend: five different parameter sets have been used, where each set captures a different portion of the system response as listed in
Table 1
IET Syst. Biol., 2010, Vol. 4, Iss. 6, pp. 356–366
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Figure 3 Marginal probability densities for the toggle model for five different parameter sets as listed in Table 1 (see
Fig. 2c for legend)

a–c LacI distributions at 5 h after induction with 0, 6 and 12 J/m2 UV radiation
d– f lcI distributions at 5 h after induction with 0, 6 and 12 J/m2 UV radiation
3.1.3 Identification using marginal distribution of
LacI at t ¼ 5 h: As discussed in [40], if one utilises
information of the cell-to-cell variability, then it becomes
possible to better distinguish between models and parameter
sets. With this in mind, we have attempted to conduct the
identification from the marginal distribution of LacI at 5 h
after induction with the different levels of UV radiation.
Parameter set #3 in Table 1 has been found to match this
marginal distribution. However, we once again discover that
the identification is not unique, which suggests that data
regarding the variability of a single protein (i.e. the kind of
data taken in [43]) is not sufficiently rich for complete
identifiability. On the other hand, closer inspection of
Table 2 reveals a fixed ratio of about 0.6 between many of the
parameters from set #3 and the true parameter set. This
suggests that the identification has drastically narrowed the
space of possible parameter sets, but more information is
needed to provide a unique parameter set for the proposed
model. For example, we see that parameter set #3 gives poor
prediction for the mean and marginal distribution for lcI as
can be seen in Fig. 2b and Figs. 3d– f and Table 3. Thus, any
additional measurements of lcI would help to further
constrain the model.

3.1.4 Identification using marginal distribution of
both LacI and lcI at t ¼ 5 h: Parameter set #4 has been
identified from the simulated data using the marginal
distributions of both species at all UV radiation levels and at
the time of five hours after induction. Now the identified set
correctly matches the mean and marginal distributions of
LacI and lcI as shown in Figs. 2 and 3. However, there still
remains a slight discrepancy between the full joint
Syst. Biol., 2010, Vol. 4, Iss. 6, pp. 356–366
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distribution as computed with the reference parameter set
and the same joint distribution as computed with parameter
set #4 (see Table 3).

3.1.5 Identification using the full joint LacI/lcI
distribution at t ¼ 5 h: Table 3 shows that the joint
distribution predicted by parameter sets #1–4 are different
than the joint distribution found with the reference
parameter set, suggesting that use of this full distribution
would go a long way to further constraining the model. In
our final attempt to identify the full parameter set from a
single time point, we have conducted the identification
based upon the full joint distribution of LacI and lcI at the
time of 5 h. In this case, it appears that identification of the
parameters is indeed possible, and all of the parameters are
identified within a very small distance of their actual values.
As an aside, it is interesting to note that the optimisation
problem that uses the full distribution is much more easily
solved than that which utilised only the marginal
distributions. In these studies the identification based upon
the whole distribution took less than an hour and converged
to a much lower value than that based upon marginal
distributions, which took several days. A full exploration of
how these different data sets lead to better conditioning of
the optimisation procedure is left for future work.

3.2 Identification from multiple time
points

From above and from [40], it is clear that more statistical
information provides a better chance for a system’s
identifiability. Similarly, it is equally important to conduct
that identification using different time points, preferably
363

& The Institution of Engineering and Technology 2010



36

&

www.ietdl.org
Figure 4 Mean level dynamics for the toggle model for five different parameter sets

a Mean level of LacI versus time after induction with 0, 6 and 12 J/m2 UV radiation
b–d Mean level of lcI versus time after induction with 0, 6 and 12 J/m2 UV radiation
e Legend: five different parameter sets have been used, where each set captures a different portion of the system response as listed in
Table 2
during the system’s transient response [40]. In the preceding
subsection, we have attempted the identification based upon
a single time point that occurred 5 h after induction. We
note that the degradation rates of LacI and lcI in the
absence of UV radiation correspond to a half life of 30 min
(i.e. the cell division time) and even faster with UV
radiation. Thus, since the identification is being conducted
after ten such half lives, we are likely missing much of the
system’s transient dynamics. We have therefore redone the
identification using measurements at each hour after
induction.

Table 2 lists the relative values of the identified parameters
as found using this more detailed information. For a
comparison of the system dynamics with the different
parameter values, Fig. 4 shows the responses of the mean
LacI and lcI levels. From the figure, it is clear that
parameter set #6 matches the response of LacI over time
(panel A), but not that of lcI (squares in panels D–F).
Furthermore, Fig. 4 and Table 3 show that parameter set
#7 matches the mean dynamics of both proteins, but is
insufficient to complete the identification. On the other
hand, we note that with the additional time points, the
marginal distribution of LacI (parameter set #8) does a
much better job of obtaining the correct parameter values
for the parameters. Finally, even when the full distribution
is used to identify the parameters, the use of multiple time
points considerably improves the approach – yielding more
precise results and making the identification much less
sensitive to unbiased measurement errors.
4
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4 Conclusions
Many gene regulatory systems are characterised by small
numbers of regulatory molecules, and therefore result in a
large amount of variability both over time for single cells and
from cell to cell in a clonal population. This variability is
measurable with a number of experimental approaches,
including time lapse fluorescence microscopy which can
record the fluctuations of individual living cells and flow
cytometry which allows for the rapid measurement of large
populations of individual cells. To fully access the information
available from these measurement techniques, it is necessary
to utilise quantitative stochastic models which can capture
these behaviours. FSP [32] type solutions are ideal for these
types of analyses because they specifically compute the
transient dynamics of cell-to-cell probability distributions –
precisely the types of information measurable with flow
cytometry. By combining flow cytometry measurements with
FSP approaches, it becomes easier to constrain gene
regulatory models and even completely identify models and
parameters for natural and synthetic circuits [40].

Similarly, computational analyses of stochastic gene
regulatory models can help researchers to determine the types
of experiments necessary to provide better understanding of a
given system. In this work, we have used FSP-based
computational studies to explore the possibility of identifying
parameters for a particular model of the genetic toggle switch
[42, 43]. Our numerical studies have revealed that different
identification strategies will produce varying degrees of
IET Syst. Biol., 2010, Vol. 4, Iss. 6, pp. 356–366
doi: 10.1049/iet-syb.2010.0013



IE
d

www.ietdl.org
success. As summarised in Table 3, each successive addition of
more statistical information can help to further constrain the
space of allowable parameters – eventually leading to a single
unique point for this model. For example, parameters can be
found to match the mean (or marginal distribution) of one
protein but not the other. Similarly, models can be found
that match the mean behaviours of the system, but which do
not match the marginal distributions of one or more species.
Finally, models can be found to match the marginal
distributions of both species, but which do not match the
full joint distribution of both species. However, for this
particular model, only one set of parameters is capable of
matching the full joint distribution at the time of 5 h.
Similarly, if one uses more experimental time points, then
this also can further constrain the model and lead one to
arrive at better models and more useful sets of parameters. In
particular, we predict that if one could measure both LacI
and lcI populations in large numbers of individual cells at a
time resolution of about an hour, then one could in principle
fully identify the parameters for the proposed model of the
gene toggle switch. We note that models of greater
complexity such as those including additional parameters
related to transcription, translation, oligomerizaytion and
other kinetics will require more measurements for complete
identification.

The necessary experimental measurements for the
identification of the current model could be obtained by
reengineering the toggle switch to express two different
fluorescent proteins: one controlled by the same promoter as
LacI and the other controlled by the same promoter as lcI.
With an auto-sampler and multiple frequency fluorescence
detectors, these new constructs can then be automatically
measured with a time resolution of less than 10 min – even
including many samples from independent colonies.
Furthermore, background fluorescence levels can be calibrated
out of the data using mutants lacking one or both of the
reporter proteins, and extrinsic noise can be decreased using
forward and side scatter information (or even flow cytometry
images) to restrict measurements to cells with similar shapes,
sizes and densities. In turn, such a carefully constrained and
identified quantitative model could be used to predict
switching behaviour under different environmental conditions
as well as help direct the modification of the circuit to meet
other synthetic design objectives.
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