
A Multiple Time Interval Finite State

Projection Algorithm for the Solution to the

Chemical Master Equation

Brian Munsky and Mustafa Khammash

Department of Mechanical and Environmental Engineering
University of California, Santa Barbara

Abstract

At the mesoscopic scale, chemical processes have probability distributions that
evolve according to an infinite set of linear ordinary differential equations known as
the chemical master equation (CME). Although only a few classes of CME prob-
lems are known to have exact and computationally tractable analytical solutions,
the recently proposed Finite State Projection (FSP) technique provides a system-
atic reduction of the CME with guaranteed accuracy bounds. For many non-trivial
systems, the original FSP technique has been shown to yield accurate approxima-
tions to the CME solution. Other systems may require a projection that is still too
large to be solved efficiently; for these, the linearity of the FSP allows for many
model reductions and computational techniques, which can increase the efficiency
of the FSP method with little or no loss in accuracy. In this paper, we present a
new approach for choosing and expanding the projection for the original FSP al-
gorithm. Based upon his approach, we develop a new algorithm that exploits the
linearity property of super-position. The new algorithm retains the full accuracy
guarantees of the original FSP approach, but with significantly increased efficiency
for some problems and a greater range of applicability. We illustrate the benefits of
this algorithm on a simplified model of the heat shock mechanism in E. coli.

Key words: Chemical Master Equation, Stochastic Gene Regulatory Networks,
Markov Processes

Email addresses: brianem@engr.ucsb.edu (Brian Munsky),
khammash@engr.ucsb.edu (Mustafa Khammash).

Preprint submitted to Elsevier 10 April 2007

1 Introduction

When studying processes at the mesoscopic level, researchers often assume
that they evolve according to a continuous time, jump Markov process. In
this regime, individual trajectories may not adequately describe the dynam-
ics, and one may prefer to explore the evolution of the system’s probability
distribution. For chemical reactions at this scale, this probability distribution,
P(t), has been shown to evolve according to the infinite dimensional linear
ordinary differential equation,

Ṗ(t) = AP(t), (1)

which is generally known as the chemical master equation (CME) [1].

Although master equations, such as the CME, have been explicitly solved for
some simple examples [2,3], computationally tractable, closed-form solutions
are not known for most non-trivial systems. This lack of analytical solutions
has helped drive computational research in kinetic Monte Carlo (KMC) al-
gorithms to simulate system dynamics. Gillespie’s stochastic simulation al-
gorithm (SSA) is one such algorithm developed specifically for processes de-
scribed by the CME [4]. In the SSA each reaction is simulated using two
pseudo-random numbers; the first tells when the next reaction will occur, and
the second determines which reaction it will be. The SSA is considered to be
exact in that given an ideal random number generator, its realizations will
provide an unbiased sampling of the probability distribution that evolves ac-
cording to the CME. In this sense, each SSA run provides a detailed example
of how the system might evolve over time. In some cases, a few runs of the
SSA provide a sufficient description of the system’s dynamics, and it is not
necessary to solve the CME. In other cases, when one is interested in accu-
rately computing the probabilities of certain rare events, another approach
may be desired. In terms of solving the CME, the SSA is still exact but now
only in the sense that, if one were to conduct the SSA an infinite number of
times, the collected statistical data would converge to the exact solution to
the CME. However, in this regard the SSA suffers in that the convergence
rates for KMC routines are very slow; cutting the error in half requires four
times the number of simulations.

Since a single simulation may contain huge numbers of individual reactions,
the unmodified SSA may take a long time. Researchers have greatly improved
efficiency of the SSA through various approximation schemes. Some of these
approximations are made by separating the fast dynamics from the slow [5–
9]. During short periods of time, the fast dynamics dominate, and the slow
dynamics may be ignored. For long periods of time, one averages out the fast
dynamics in order to emphasize the slow dynamics. Other approximations are
made by discretizing the time interval into τ leaps and approximating the

2

dynamics over those subintervals [10–15]. Both approximation types, system
partitioning and τ leaping, have been very successful in increasing the scope
of problems to which KMC schemes such as the SSA may be applied.

We recently developed the Finite State Projection algorithm as an additional
tool for the analysis of jump Markov processes [16]. The FSP method approx-
imates the solution to the CME without random number generation. This
approach is based upon linear systems theory and works by projecting the
intractable infinite dimensional master equation onto a solvable finite dimen-
sional space. The FSP result comes in the form PFSP (tf) = Φ(tf , t0)P(t0),
where Φ(tf , t0) is an operator that acts on distributions at the time t0 and
yields approximate distributions at the time tf . One advantage of the FSP
solution is that Φ(tf , t0) is not linked to a specific initial probability distri-
bution and can be applied to any initial distribution P(t0). Another, perhaps
more important, strength of the FSP is that it provides strict lower and upper
bounds on the accuracy of Φ(tf , t0)P(t0) for any P(t0) [16].

Previous implementations of the FSP method have been very successful for
some biologically inspired systems [16,17], but for many problems the projec-
tion remains too large to solve efficiently, and further model reductions are
needed. While some of these reductions come from performing minimal real-
izations [18] or using Krylov subspace methods [19], others are inspired from
similar reductions applied to the KMC algorithms. For example, in [20,21],
we use perturbation theory to significantly reduce the dimension of the FSP
equations without noticeable detriment to the method’s accuracy. This re-
duction, which is based upon partitioning the system dynamics according to
time-scale separations, closely parallels similar reductions to KMC algorithms
in [6–8].

Fig. 1 illustrates the basic concept behind the current approach to improve
the FSP method. Over a given time interval, a system is likely to exhibit
to a number of different configurations or states. In order to retain accu-
racy, an FSP solution for such a system must include one ODE for each of
these configurations. Longer time intervals mean that more configurations
and more equations will be necessary. By subdividing the time interval into
shorter intervals, one may save significant computational effort by solving a
few smaller dimensional ODEs rather than a single large dimensional ODE.
Recently, Burrage et. al have utilized this benefit of solving the FSP problem
over a set of small time intervals in their Krylov-based FSP algorithm [19].
Their approach is more efficient than the original FSP in that they no longer
solve for the full operator Φ(tf , t0), but instead restrict their efforts to directly
computing PFSP (tf) = Φ(tf , t0)P(t0). In this paper, we take a very different
approach. Rather than sacrifice the original FSP’s ability to handle different
initial distributions, as must be done in order to use the Krylov reductions
in [19], we will instead exploit this flexibility. By restricting all time intervals

3

Specified Initial
Condition (t=0)

Distribution
at t=6τ

Solution Path Projection Required for
1-step Solution

(0,τ]

(2τ,3τ]

(3τ,4τ]

(4τ,5τ]

(5τ,6τ]

(τ,2τ]

Projections Required
for each time step

(a) (b)

(c) (d)

(0,τ]

(2τ,3τ]

(3τ,4τ]

(4τ,5τ]

(5τ,6τ]

(τ,2τ]

Leaps between each
time step

Fig. 1. Schematic of the Multiple Time Interval FSP method. (a) We are given a
Markov process that begins at a known initial point in the configuration space.
As the probability distribution evolves, it follows a long path in the configuration
space such that at time t6 the distribution is supported in a region far from the
initial condition. (b) In order to find a sufficiently accurate FSP solution for all
times in the interval [0, 6τ], the FSP must include not only the initial condition and
the final distribution, but also all points along the path. (c) To save computational
effort, one can discretize the time interval into smaller intervals and find overlapping
projections that need only satisfy the accuracy requirements during those shorter
periods of time. Here the final distribution of each time interval (shown in grey)
becomes the initial distribution for the next time interval (shown in black). (d) The
end result is a discrete map taking the distribution from one instant in time to the
next.

to the same length, τ , time invariance of the CME guarantees that much of
Φ(τ) = Φ(t + τ, t) can be reused from one time interval to the next.

4

The outline of the remainder of this article is as follows: Section 2 provides
greater background details on the original FSP approach, and introduces a new
approach to automatically choosing and expanding the projection necessary
to achieve a desired accuracy. In Section 3 we illustrate how the linearity of
the FSP allows us to efficiently deal with initial probability density vectors
that contain many non-zero elements; this approach essentially allows one to
efficiently compute the operator Φ(τ) a few columns at a time rather than
all at once. In Section 4 we introduce a multiple time interval version of the
FSP and prove that it retains the same accuracy guarantees of the original
FSP method. Section 5 then demonstrates the use of this algorithm with an
example from the field of systems biology. Finally, in Section 6, we conclude
with remarks on the advantages of these approaches over the original FSP and
outline a few directions for future work on this topic.

2 The Finite State Projection Method

Although the finite state projection (FSP) method presented here is valid for
any continuous time, jump Markov process, we present it in the context of the
chemical master equation.

We consider a system of N chemically reacting species. The non-negative pop-
ulations of the N molecular species jointly define a unique configuration of the
system, x := [ξ1, ξ2, . . . , ξN]T . By fixing a sequence x1,x2, . . . of elements in NN

we can define the ordered configuration set as X := [x1,x2, . . .]T . Suppose
that there are M possible reaction types, where each reaction is a transition
from one configuration to another: xi → xj = xi + νµ. In this notation, νµ is
the directional transition on the configuration set (or stoichiometry) of the µth

reaction type. Furthermore, let aµ(xi)dt be the infinitesimal probability that
a system beginning in configuration xi at time t will transition to the config-
uration xi + νµ in the time interval (t, t + dt). Typically, aµ(xi) is referred to
as the propensity function of the µth reaction [1].

Let pi(t) denote the probability that the system will have the configuration
xi at time t. Under the assumptions that the system is continually well-mixed
and kept at constant volume and temperature, one can show that the system
evolves according to a discrete state, continuous time jump Markov process,
whose distribution, P = [p1, p2, . . .]

T , evolves according to the linear ordinary
differential equation known as the chemical master equation (CME) [1]:

Ṗ(t) = AP(t). (2)

In the CME, the infinitesimal generator matrix, A, contains information re-
garding every transition that the system can undergo from one configuration

5

to another. The ordering of A is determined by the enumeration of the config-
uration set X. Each ith diagonal element is negative with a magnitude equal
to the sum of the propensity functions of reactions that leave the ith config-
uration. Each off-diagonal element, Aij, is positive with magnitude aµ(xj) if
there is a reaction µ ∈ {1, . . . ,M} such that xi = xj + νµ and zero otherwise.
In other words:

Aij =

−∑M

µ=1(aµ(xi))

aµ(xj)

0

for (i = j)

for all j such that (xi = xj + νµ)

Otherwise

. (3)

Like any generator matrix, the definition of A guarantees that all diagonal
elements are non-positive; all off-diagonal elements are non-negative; and all
columns sum to zero. When the set X has a finite number of members, one
can in principle compute the solution P(tf) = Φ(tf)P(0), where the operator
Φ(tf) is given by Φ(tf) = exp(Atf). However, when the set X is infinite
or extremely large, the corresponding solution is unclear or vastly difficult
to compute. For these cases, we devised the Finite State Projection (FSP)
method [16].

To best review the FSP method and present our current work, we must first
introduce some convenient notation. Let J = {j1, j2, j3, . . .} denote an index
set to which the usual operations (

⋃
,

⋂
, etc.) and relations (⊂, ⊆, etc.) ap-

ply. Let J ′ denote the complement of the set J . If X is an enumerated set
{x1,x2,x3, . . .}, then XJ denotes the subset {xj1 ,xj2 ,xj3 , . . .}. Furthermore,
let vJ denote the subvector of v whose elements are chosen according to J ,
and let AIJ denote the submatrix of A such that the rows have been chosen
according to I and the columns have been chosen according to J . For example,
if I and J are defined as {3, 1, 2} and {1, 3}, respectively, then:

a b c

d e f

g h k

IJ

=

g k

a c

d f

 .

For convenience, let AJ := AJJ . We will also use an embedding operator,
DJ{.} as follows. Given any vector v and its J indexed subvector vJ , the
vector DJ {vJ} has the same dimension as v and its only non-zero entries are
the elements of vJ distributed according to the indexing set J . Finally, we will
use the vector ei to denote a vector with a one in the ith location and zeros
elsewhere. With this notation we can restate the following two theorems from
[16]:

Theorem 1 If A ∈ Rn×n has no negative off-diagonal elements, then for any

6

index set, J ,
[expA]J ≥ exp(AJ) ≥ 0. (4)

Theorem 2 Consider any Markov process in which the distribution evolves
according to the linear, time-invariant ODE:

Ṗ(t) = AP(t).

If for some finite index set J, ε > 0, and tf ≥ 0,

||exp(AJtf)PJ(0)||1 ≥ 1− ε, (5)

then
DJ {exp(AJtf)PJ(0)} ≤ P(tf), (6)

and
||P(tf)−DJ {exp(AJtf)PJ(0)}||1 ≤ ε. (7)

Using the current notation, these theorems have been strengthened slightly
from their original form, but their proofs are easily found with slight modi-
fication to those presented in [16]. To explain the intuition behind these two
theorems, Fig. 2(top) illustrates a two-dimensional lattice corresponding to a
two-species chemical reaction. The original FSP [16] includes a small subset of
the configuration points, within the rectangle, and projects the remainder to
a single absorbing point as shown in Fig. 2(bottom-left). The master equation
for this new finite dimensional Jump Markov process is given by: ṖFSP

J (t)

Ġ(t)

 =

 AJ 0

−1TAJ 0

 PFSP

J (t)

G(t)

 , (8)

where the initial conditions are given as

PFSP (t0) = PJ(t0) and G(t0) = 1TPJ ′(t0) = 1− 1TPJ(t0).

The solution to this new master equation is simply PFSP
J (tf)

G(tf)

 =

 exp(AJtf) 0

1T (I− exp(AJtf)) 1

 PFSP

J (0)

G(0)

 . (9)

In terms of the original system, this expression is exact in the sense that
PFSP

J (tf) is a vector describing the probabilities that (1) the system is in the
corresponding configurations XJ at t = tf and (2) that the process has been

7

within the set XJ for the entire interval (0, tf). Furthermore, G(tf) is the
probability that the system has left the set XJ at least once before the time
tf . Theorem 1 guarantees that as we add points to the finite configuration
subset, PFSP

J (tf), monotonically increases, and Theorem 2 provides a certifi-
cate of how close the approximation is to the true solution. In particular, since∣∣∣∣∣∣PFSP

J (tf)
∣∣∣∣∣∣

1
= 1−G(tf), then PFSP

J (tf) is within a one norm error of G(tf)

from the true distribution, i.e.
∣∣∣∣∣∣PJ(t)−PFSP

J (t)
∣∣∣∣∣∣

1
≤ G(t). Furthermore, since

the ∞-norm of any vector is never more than the 1-norm, the bound applies
not only to the error in the whole distribution, but also to each individual
point in the configuration space.

Together, these two theorems suggest the FSP algorithm [16]. Basically, this
procedure works by examining a sequence of finite projections of the CME.
For each projection set, one can obtain an accuracy guarantee using Theorem
2. If this accuracy is insufficient, more configurations can be added to the
projection set, thereby monotonically improving the accuracy as guaranteed
by Theorem 1. The full algorithm can be stated as follows:

The Original Finite State Projection Algorithm

Inputs Propensity functions and stoichiometry for all reactions.
Initial probability density vector, P(0).
Final time of interest, tf .
Total amount of acceptable error, ε > 0.

Step 0 Choose an initial finite set of states, XJo , for the FSP.
Initialize a counter, i = 0.

Step 1 Use propensity functions and stoichiometry to form AJi
.

Compute ΓJi
= ||exp(AJi

tf)PJi
(0)||1.

Step 2 If ΓJi
≥ 1− ε, Stop.

DJi
{exp(AJi

tf)PJi
(0)} approximates P(tf) to within a total error of ε.

Step 3 Add more states to find XJi+1
.

Increment i and return to Step 1.

In this FSP algorithm and those to be developed below, Steps 0 and 3 are left
intentionally open as to how the projection sets are chosen. In practice, there
may be many good ways to choose and expand the projection set, and it has
not yet been adequately addressed in the literature as to which method, or
methods, may be the best for which circumstances. Nevertheless, for the orig-
inal expansion routine presented in [16] and for that to be introduced below,
if there exists a sufficiently accurate FSP solution, then the FSP algorithm is

8

s1

s2

G

G1

G3

Fig. 2. Top: Two dimensional lattice of configurations for a chemically reacting
system with two species. The system begins in the configuration shaded in grey and
undergoes three reactions: The first reaction ∅ → s1 results in a net gain of one s1

molecule and is represented by right arrows. The second reaction s1 → ∅ results in
a net loss of one s1 molecule and is represented by a left arrow. The third reaction
s1 → s2 results in a loss of one s1 molecule and a gain of one s2 molecule. The
dimension of the Master equation is equal to the total number of configurations,
and is too large to solve exactly. Bottom Left: In the original FSP algorithm a
configuration subset is chosen and all remaining configurations are projected to
a single absorbing point, G. This results in a small dimensional solvable master
equation, where the total error is given by the probability that has leaked into G.
Bottom Right: Instead of considering only a single absorbing point, transitions out
of the finite projection can be sorted as to how they leave the projection space. In
this case, G1 and G2 absorb the probability that has leaked out through reactions
1 ad 2, respectively. this information can then be used to expand the configuration
set in later iterations of the FSP algorithm.

guaranteed to converge in a finite number of steps.

2.1 Choosing and Expanding the Finite State Projection

In previous work [16], the initial projection set XJ0 was an arbitrarily chosen
set of configurations reachable from the initial condition. The most obvious
choice is simply to choose XJ0 to contain only the initial configuration: XJ0 =

9

{x(0)}. Here, we present a better approach to initializing the set XJ0 in Step
0 of the above algorithm. Instead of choosing XJ0 offline, we run the SSA
[4] a few times and record every configuration reached in those simulations;
we will use that set as the initial projection space, XJ0 . If we use more SSA
runs, XJ0 will likely be larger and therefore retain a larger measure of the
probability distribution in the specified time interval. Therefore, as one uses
more SSA runs in the initialization portion of Step 0, fewer iterations of the
FSP algorithm should be necessary.

In [16] the FSP expansion was performed using the concept of N−step reach-
ability, where each set {XJN

} included all configurations that are reachable
from XJ0 in N reactions or fewer. Proposition 3.1 in [16] guarantees that if
there exists a sufficiently accurate FSP solution, then the FSP algorithm with
such an expansion routine is guaranteed to converge in a finite number of
steps. Here, our expansions will follow a new improved version of the N -step
reachability routine. In the original FSP approach all configurations outside
the set XJ have been projected to a single point yielding (8). Many alterna-
tive projections are possible. In particular, one can choose M absorbing points
{G1, . . . , GM} where each Gµ(t) corresponds to the probability that the system
has left the set XJ = {xj1 ,xj2 , . . .} via a µth reaction. Fig. 2(bottom-right)
illustrates such a projection choice. For this choice, we arrive at a new master
equation: ṖFSP

J (t)

Ġ(t)

 =

 AJ 0

Q 0

 PFSP

J (t)

G(t)

 , (10)

where G = [G1, . . . , GM]T and the matrix Q is given by

Qµk =

 aµ(xjk
)

0

if (xjk
+ νµ) /∈ XJ

Otherwise

 .

The solution of (10) at a time tf has the form

 PFSP
J (t)

G(t)

 =

 exp(AJtf) 0∫ tf
0 Q exp(AJτ)dτ I

 PFSP

J (0)

G(0)

 , (11)

and yields all of the same information as (9), but it now provides additional
useful knowledge. Specifically, each column of the operator in (11) corresponds
to a specific xi ∈ XJ . Each of the last M elements of the column corresponding
to xi gives the exact probability that a trajectory beginning in xi at time
t = 0 will have exited the full set XJ via a specific reaction channel before the
time t = tf . This knowledge is easily incorporated into Step 3 of the above
algorithm. If most of the probability measure left via one particular reaction,
it is reasonable to expand XJ in the corresponding direction. If very little of

10

the probability measure leaks out via a given reaction, it would be useless to
expand the projection in that direction.

For the basic FSP algorithm with this or any other expansion routine, if we
wish to find a solution that is accurate to within ε at a time tf , we must find
a finite set of configurations such that the probability of ever leaving that set
during the time interval [0, tf] is less than ε. For many problems, including the
examples shown in [16,17], this set of configurations may be small enough that
we can easily compute a single matrix exponential to approximate the solution
to the CME. However, in other situations the configuration space required for
a one matrix solution may be exorbitantly large. In this work we utilize the
linearity and time invariance of the chemical master equation to address two
such situations. First, in Section 3 we extend the FSP to handle problems
in which the initial probability distribution is supported over a large portion
of the configuration space. Second, in Section 4 we address the problem that
occurs when non-equilibrium distributions tend to drift over time and cover
large portions of the configuration space.

3 The FSP for Non-Sparse Initial Distributions

Although the original FSP method is valid for any initial probability distribu-
tion, all examples in previous work [16–21] begin with a specific known initial
configuration; if the system begins in configuration xk, the initial probability
distribution for the CME was written, pi(0) = δik, where δik is the Kronecker
delta. Suppose now that the initial distribution is given not by the Kronecker
delta but by a vector with many non-zero elements. For example, suppose that
the initial distribution is specified by the solution at the end of a previous time
interval. From Theorem 2, in order for the original FSP algorithm to converge,
we must be able to find a set of states, XJ , that satisfies the stopping criterion:

||exp(AJtf)PJ(0)||1 ≥ (1− ε). (12)

Since the sum of the FSP solution at tf cannot exceed the sum of the truncated
initial pdv, PJ(0), we must always include at least as many states in the FSP
solution as is required such that ||PJ(0)||1 ≥ 1− ε. For a sparse pdv, such as
that generated by δik, this restriction on the size of the FSP solution is trivial: J
need only include k. However, when the initial pdv has broad support, the size
of the FSP solution may be much larger and therefore require the inefficient
calculation of very high-dimensional matrix exponentials. Fortunately, one can
use the property of superpositioning guaranteed by the linearity of the FSP.
The underlying concept of this approach is illustrated in Fig. 3 and formalized
in the following proposition.

11

(a) (b)

(c)

x1

x2

x3

x1

x2

x3

XJ1

XJ2

XJ3

XIf

Fig. 3. Schematic of the FSP method using the property of superposition. (a) We
are given a Markov process that begins with some distribution among a few possible
initial configurations: XI0 = {x1,x2,x3}. (b) In order to find a sufficiently accurate
FSP solution for all times in the interval [0, tf], the original FSP must include a
large configuration region XIf

⊇ XI0 . (c) To save computational effort, one can
instead find projections that would satisfy each initial configuration separately; in
this example sets XJ1 , XJ2 and XJ3 are sufficient projections for system starting in
x1, x2 and x3, respectively. Furthermore since XJ1 ⊃ XJ3 , the set XJ1 also suffices
as the projection for the configuration x3. Therefore, instead of solving this problem
as one big system as in (b), the system can instead be solved by considering two
much smaller, linearly independent systems on the sets XJ1 and XJ2 .

Proposition 3 Superposition of FSP Solutions

Consider any Markov process in which the distribution evolves according to

12

the linear ODE:

Ṗ(t) = AP(t).

Let γ < 1, η < 1 and tf ≥ 0. If there is an index set I such that:

||PI(0)||1 ≥ γ, (13)

and if for every i ∈ I, there is a corresponding index set Ji containing i such
that ∣∣∣∣∣∣exp(AJi

tf)e
i
Ji

∣∣∣∣∣∣
1
≥ η, (14)

then, ∑
i∈I

piDJi

{
exp(AJi

tf)e
i
Ji

}
≤ P(tf), (15)

and ∣∣∣∣∣
∣∣∣∣∣P(tf)−

∑
i∈I

piDJi

{
exp(AJi

tf)e
i
Ji

}∣∣∣∣∣
∣∣∣∣∣
1

≤ 1− γη. (16)

Proof. We begin by proving (15). If we define the index set If =
⋃

i∈I Ji, then
we have the relation,

DIf

{
exp(AIf

tf)PIf
(0)

}
=

∑
i∈If

pi(0)DIf

{
exp(AIf

tf)e
i
If

}
, (17)

Since I ⊆ If , we are guaranteed that

DIf

{
exp(AIf

tf)PIf
(0)

}
≥

∑
i∈I

pi(0)DIf

{
exp(AIf

tf)e
i
If

}
. (18)

Furthermore, since for every i, Ji ⊆ If and pi(0) ≥ 0, Theorem 1 guarantees
that,

DIf

{
exp(AIf

tf)PIf
(0)

}
≥

∑
i∈I

pi(0)DJi

{
exp(AJi

tf)e
i
Ji

}
. (19)

Furthermore, using the result from Theorem 1 that exp(AJtf) is non-negative
for any index set J , and applying conditions (13) and (14) yields

∣∣∣∣∣∣DIf

{
exp(AIf

tf)PIf
(0)

}∣∣∣∣∣∣
1
≥

∣∣∣∣∣
∣∣∣∣∣∑
i∈I

pi(0)DJi

{
exp(AJi

tf)e
i
Ji

}∣∣∣∣∣
∣∣∣∣∣
1

≥ η ||PI(0)||1
≥ ηγ. (20)

Theorem 2 tells us that

DIf

{
exp(AIf

tf)PIf
(0)

}
≤ P(tf),

13

and then from Eqn (19) we show that∑
i∈I0

pi(0)DJi

{
exp(AJi

tf)e
i
Ji

}
≤ P(tf), (21)

which is Eqn. (15).

Combining the fact that ||P(tf)||1 = 1 and inequality (20) gives:∣∣∣∣∣
∣∣∣∣∣∑
i∈I

pi(0)DJi

{
exp(AJi

tf)e
i
Ji

}∣∣∣∣∣
∣∣∣∣∣
1

≥
(
||P(tf)||1 − 1

)
+ ηγ. (22)

Rearranging this result and applying 21 yields inequality (16)∣∣∣∣∣
∣∣∣∣∣P(tf)−

∑
i∈I

pi(0)DJi

{
exp(AJi

tf)e
i
Ji

}∣∣∣∣∣
∣∣∣∣∣
1

≤ 1− ηγ (23)

and completes the proof.

The result of Proposition 3 now enables us to modify the above FSP algo-
rithm to better handle situations in which the initial probability distribution
is non-sparse. Before stating this new algorithm, however, we would first like
to make a few notes to explain our choice of notation. First, although this al-
gorithm can be useful on its own, we will see below that it is most effective as
part of a multiple time interval solution scheme. For this reason we will refer
to the initial time as tk and the final time as tk+1 = tk + τ . Second, the total
error of the current approach is separated into two components, ε = 1 − ηγ,
where both γ and η are numbers slightly less than 1 and will be considered as
independent inputs to the algorithm. Here γ refers to the required sum of the
truncated probability distribution at tk, and η refers to the relative accuracy
requirement for the solution at tk+1 compared to the accuracy at tk. Third, for

added convenience we will use the notation Ei = DJi

{
exp(AJi

τ)ei
Ji

}
to de-

note the Ji indexed FSP approximation of the distribution at tk+1 conditioned
upon the ith configuration at tk. Each matrix exponential, exp(AJi

τ) provides
not only Ei but also approximations to Ej for every j ∈ Ji. Once we com-

pute these matrix exponentials, we will store every Ej = DJi

{
exp(AJi

τ)ej
Ji

}
and its corresponding index set Jj = Ji that meets our accuracy requirement
||Ej||1 ≥ η. Note that each vector Ei is an approximation of the ith column
of the operator Φ(τ), and the one norm error in this approximation is exactly
(1 − 1TEi). This means we are effectively storing a few columns of Φ(τ) at
a time. These can later be reused to reduce the total number of matrix com-
putations for a given initial probability distribution P(0). In addition, we can
reuse Φ(τ) for any initial distribution that is supported on the set for which
these columns of Φ(τ) have already been computed. With this notation, we
can now state the following algorithm:

14

The FSP Algorithm for Non-Sparse Initial PDV’s

Inputs Propensity functions and stoichiometry for all reactions.
Error Parameters, 0 ≤ γ < 1 and 0 ≤ η < 1 .
Initial probability distribution, P(tk), where 1 ≥ ||P(tk)||1 ≥ γ.
Length of time interval, τ .

Step 0 Choose a finite set of states, XIk
such that ||PIk

(0)||1 ≥ γ.
Initialize a counter, i, as the first element in Ik.
Initialize the FSP solution index set: If = {i}.
Initialize the FSP solution summation to zero: PFSP

If
(tf) = 0.

Step 1 If Ei has not already been calculated:
Use original FSP algorithm to find Ji and exp(AJi

τ) such

that
∣∣∣∣∣∣exp(AJi

τ)ei
Ji

∣∣∣∣∣∣
1
≥ η.

For every j ∈ Ji, if
∣∣∣∣∣∣exp(AJi

tf)e
j
Ji

∣∣∣∣∣∣
1
≥ η, then record

Ej = DJi

{
exp(AJi

tf)e
j
Ji

}
and Jj = Ji.

Step 2 Update the FSP solution index set: If = If
⋃

Ji.
Update the FSP solution summation: PFSP

If
= PFSP

If
+ piEi.

Step 3 If i is the last element in I0, Stop.

DIf

{
PFSP

If
(tf)

}
approximates P(tf) to within ε = 1− γη.

Step 4 Increment i to the next element in I0 and return to Step 1.

As discussed above, there may be many choices for initializing and expanding
the projection during the call to the FSP algorithm in Step 1. Here, the initial
projection is chosen using a few SSA runs only on the first time that Step
1 is executed, but the initial projections for subsequent executions of Step 1
are found a little differently. In the previous step, we already computed a set
XJi

that is sufficient for an initial configuration xi, and we now wish to find
a projection that is sufficient for a different initial configuration xj. As a first
guess for XJj

, we take the set XJi
and translate it by the amount xj − xi.

In some cases, this may lead to unrealistic choices for the initial set, such
as negative populations, but these are unreachable configurations that are
automatically removed from the configuration set. Once this initial projection
has been chosen, the expansion routine is the same as above in Section 2.1.

These alterations in the FSP algorithm enable one to handle problems in which
the initial probability density vector is not sparse. On its own, this may be
convenient when we wish to study systems that begin somewhere within a

15

range of possible initial configurations. However, as we will illustrate in the
following section, the non-sparse FSP algorithm has its greatest use when it
is integrated into a multiple time interval FSP algorithm.

4 The Multiple Time Interval FSP Method

Suppose that we require that the FSP solution be precise to a 1-norm error of
ε for the entire time interval (0, tf). This requires that the system remains with
probability (1-ε) within a finite set XJ for all times t ∈ (0, tf). One can envision
many simple cases where such a restriction can require an exorbitantly large
space XJ . Suppose our system begins with an initial condition at t = 0 far
from the support of the distribution at the later time t6 as illustrated in Fig.
1a. In this case the probability distribution is likely to evolve along some path
connecting the initial condition to the final solution. To achieve acceptable
accuracy at all times, the projection region must contain not only the initial
condition and the final solution, but also every point likely to be reached
during the intervening time. In such a circumstance, it can help to break the
time interval into pieces and require only that the FSP criteria are satisfied
only during each sub-interval. In effect, we seek a changing projection space
that follows the support of the distribution as it evolves. To do this, we utilize
the linearity and time invariance properties of the chemical master equation.

Suppose we start with a known initial probability distribution, P(0), and we
wish to approximate the solution to the CME in k time intervals of equal
length τ . Using the algorithm in the previous section, we can specify a posi-
tive η < 1 and require that transition vectors {Ei} satisfy ||Ei||1 ≥ η for all i.
For the first time interval, suppose that we simply specify γ1 = η and we use
the non-sparse FSP algorithm to find an approximation of the distribution at
t1 = τ such that

0 ≤ DI1

{
PFSP

I1
(t1)

}
≤ P(t1) and

∣∣∣∣∣∣PFSP
I1

(t1)
∣∣∣∣∣∣

1
≥ γ1η = η2.

For the second time interval, we use PFSP
I1

(t1) as the initial distribution. If we
use the same η, we can save some effort by reusing some of the Ei’s already
computed. However, since our solution at the end of the previous interval has
a guaranteed sum of only η2, we must choose a different γ2. A very reasonable
choice is simply to use the guarantee from the previous interval: γ2 = η2. With
this choice, we can again apply the non-sparse FSP algorithm to find an FSP
solution at the end of the second time interval such that

0 ≤ DI2

{
PFSP

I2
(t2)

}
≤ P(t2) and

∣∣∣∣∣∣PFSP
I2

(t2)
∣∣∣∣∣∣

1
≥ η3.

Following this example, at each kth step, if we use γk = ηk, then we will recover

16

a solution such that

0 ≤ DIk

{
PFSP

Ik
(tk)

}
≤ P(tk) and

∣∣∣∣∣∣PFSP
Ik

(τ)
∣∣∣∣∣∣

1
≥ ηk+1.

If we apply the fact that ||P(tk)||1 = 1, we have∣∣∣∣∣∣PFSP
Ik

(τ)
∣∣∣∣∣∣

1
≥ (||P(tk)||1 − 1) + ηk+1,

which after some rearranging yields∣∣∣∣∣∣P(tk)−DIk

{
PFSP

Ik
(τ)

}∣∣∣∣∣∣
1
≤ 1− ηk+1.

Suppose that we wish to find a solution that is within ε of the exact solution of
the CME at tf = Kτ . Following the ideas above, we would choose η according

to the relation ε = 1− ηk+1, or η = (1− ε)
1

K+1 . This procedure is stated more
formally in the following algorithm.

The Multiple Time Interval FSP Algorithm

Inputs Propensity functions and stoichiometry for all reactions.
Initial probability distribution, P(t0).
Final time of interest, tf .
Total error, ε > 0.

Step 0 Choose the number of time intervals, K, and calculate τ = tf/K.

Compute the required sum for each Ei, η = (1− ε)
1

K+1 .
Initialize time step counter: k = 0.
Choose initial time index set, I0, such that ||PI0(t0)||1 ≥ η.
Initialize the FSP approximate solution at t0, PFSP

I0
(t0) = PI0(t0).

Step 1 Run the Non-Sparse FSP algorithm with the initial condition PFSP
Ik

(tk),
and error parameters η and γk = ηk+1 and get PFSP

Ik+1
(tk+1).

Step 2 If k + 1 = K, then Stop.

DIK

{
PFSP

IK
(tK)

}
approximates PIk

(tf) to within ε.

Step 3 Increment k and return to Step 1.

To see how one may benefit from this modification to the FSP algorithm,
we refer again to Fig. 1 above. Suppose that we are interested in finding the
distribution at time t = 6τ of a Markov process that begins in the known initial
configuration represented by the black dot. Even though the distributions at
each of the times {0, τ, 2τ, . . . , 6τ} are supported on only a small portion of the
configuration space, the one shot FSP solution must include the whole region
of the configuration space that is swept by the distribution between 0 and 6τ

17

(see Fig. 1b). Therefore, the one step FSP algorithm requires a large matrix
exponential computation. By splitting the full interval into six subintervals as
shown in Fig. 1c, we will require more exponential computations, but since
each of these computations will be much smaller, the total computational
effort may be much less.

In order to estimate the computational complexity of the new algorithm we
will make a few assumptions. First, we will assume that in every call to the
original FSP algorithm, the initially chosen projection XJ0 is sufficient to
meet the desired accuracy tolerance. This allows us to analyze the complexity
separate from the choice of FSP initialization and expansion routines. Let
n denote the number of configurations necessary to solve the FSP in a single
time interval. The cost of this solution is dominated by the matrix exponential
computation on the order of O(n3). Suppose that the current multiple time
interval version of the FSP can solve the same problem with K time intervals
while using z matrix exponential computations of equal size s. Furthermore,
assume that the sets {XIk

} needed to support the probability distribution at
the beginning of each time interval all have exactly w elements. In this case
the cost of computing the z exponentials is O(zs3). The remaining overhead
cost is broken into two parts: first, the cost of storing the n columns of Φ(τ)
each with s non-zero elements is O(ns). Second, the cost of all K matrix-vector
updates is dominated by the cost of multiplying a w×s matrix by a w element
vector or O(Ksw). The total complexity of the Multiple Time Interval FSP
algorithm is then O(zs3)+O(ns)+O(Ksw). As K increases, smaller matrices
will be necessary, but the rate at which s decreases will vary from one chemical
system to the next. In general, for a small number of time intervals, s is large
and the total cost is dominated by the exponential computations (first term).
Conversely, for a large number of time intervals, the cost is dominated by the
overhead (second two terms).

The following section illustrates the use of this algorithm through a simplified
model of the heat shock response in E. coli.

5 Toy Heat Shock Example

When a cell’s environment changes, that cell must either adapt or perish.
Continually faced with this choice, life has evolved to contain many complex
gene regulatory networks that allow for quick and precise adaptation. The
heat shock response in E. coli is excellent example of one such mechanism
[22]. A simplified version of this system consists of three biochemical species
that interact according to a set of three reactions,

s1 → s2, s2 → s1, and s2 → s3 (24)

18

where s1, s2 and s3 correspond to the σ32-DnaK complex, the σ32 heat shock
regulator and the σ32-RNAP complex, respectively. This model of the heat
shock subsystem has been analyzed before using various computational meth-
ods including Monte Carlo implementations [8,23] as well as the FSP with the
multiple time-scale model reduction [20,21]. Here we use this model in order
to illustrate our current computational algorithm.

In the toy heat shock model, the propensity functions are given by

a1 = c1[s1], a2 = c2[s2], and a3 = c3[s2]. (25)

The parameters for the reaction rates and the initial configuration are:

c1 = 10, c2 = 4× 104, c3 = 2, s1(0) = K = 2000, s2(0) = s3(0) = 0. (26)

Our FSP solution to this problem has used the following enumeration scheme;

i(s1, s2, s3) = s3(K + 1) + s2 + 1,

which has the inverse

xi =

s1(i)

s2(i)

s3(i)

 =

K −mod(i− 1, K + 1)− floor((i− 1)/(K + 1))

mod(i− 1, K + 1)

floor((i− 1)/(K + 1))

 ,

where mod(x, y) is the remainder after dividing x by y, and floor(x) rounds x
down to the nearest integer. With this enumeration scheme and the propen-
sity functions and stoichiometry from (24) and (25), one can form the the
infinitesimal generator A as:

Aij =

−c1s1(i)− c2s2(i)− c3s2(i)

c1s1(j)

c2s2(j)

c3s2(j)

0

for (i = j)

for j s.t. xi = xj + [−1, 1, 0]T

for j s.t. xi = xj + [1,−1, 0]T

for j s.t. xi = xj + [0,−1, 1]T

Otherwise

. (27)

For the initial conditions in (26), the reachable configuration set is the set of
all configurations such that s1 + s2 + s3 = K. For K = 2000, one can show
that the number of points in this set is

K∑
s3=0

K−s3∑
s2=0

1 =
K∑

s3=0

s3 = 2, 001, 000,

19

and therefore, the full chemical master equation is too large to be solved
exactly, and an approximation is necessary.

Applying the original Finite State Projection method allows one to signifi-
cantly reduce the order of the problem and achieve a manageable solution at
least for small time intervals (t ≤ 300s). For our FSP implementation, we seek
a one-norm error in the total distribution of less than 10−3. In order to pop-
ulate the initial configuration set XJ0 for the FSP, we have used twenty runs
of the Stochastic Simulation Algorithm and recorded the maximum values
for species s2 and s3 as m2 and m3, respectively. We then chose XJ0 to in-
clude all configurations such that s2 ≤ 1.2m2 and s3 ≤ 1.2m3. Although these
SSA runs take a significant amount of time to complete, they provide a good
estimate of the region needed in the projection space, and can significantly
reduce the number of subsequent FSP expansion steps. We implemented this
method on the heat shock model for three final times 100, 200, and 300 sec-
onds. For tf = 100s, the SSA runs yielded m2 = 9 and m3 = 120, and XJ0

contained 1595 configurations where s2 ≤ 10 and s3 ≤ 144. For larger time in-
tervals, more configurations are necessary: for tf = 200s, the SSA runs yielded
m2 = 9 and m3 = 215, and XJ0 contained 2849 configurations where s2 ≤ 10
and s3 ≤ 258. For tf = 300s, the SSA runs yielded m2 = 9 and m3 = 310, and
XJ0 contained 1595 configurations where s2 ≤ 10 and s3 ≤ 372. For each of the
time intervals, the solution on the initial projection XJ0 exceeded our accuracy
requirements, and a single FSP step sufficed. The solid lines in Fig. 4 present
the probability distributions for the number of s3 molecules at 100, 200 and
300s, and the top section of Table 1 summarizes the computational require-
ments necessary to achieve these results with this particular implementation
of the FSP solution.

From Table 1 it can be seen that the results generated using the above choice
of XJ0 significantly exceed the accuracy requirement of ε = 10−3, suggesting
that a different routine for choosing and expanding the projection set may have
allowed a more efficient computation. In order to provide a better benchmark
for later comparisons with the new multiple time interval FSP method, we
have used the results from above to find an a posteriori choice for XJ0 . In
order to retain accuracy in the solution to an error of ε = 10−3 at a time
tf = 100s, we need to include the 1430 configurations where s3 ≤ 129 and
s2 ≤ 10; for tf = 200s, we need to include 2585 configurations where s3 ≤ 234
and s2 ≤ 10; and for tf = 300s, we need include 3641 configurations where
s3 ≤ 330 and s2 ≤ 10. The results in parenthesis in the top section of Table
1 summarize the computational requirements and accuracy results for FSP
solutions with these choices for the projection. While these new projections
are still meet the specified accuracy requirements, they take far less time to
compute.

We have also applied the multiple time interval FSP algorithm to the toy

20

heat shock model in order to compute the probability distributions at 100,
200 and 300 seconds. We have used a non-optimal interval size of one second.
In the first time interval, we initialize the projection with 20 SSA runs same
as above. For each subsequent time interval, we use an initial projection set
that is the same size as that required for the previous time interval, translated
to the current region of the configuration space as described in Section 3.
In all time intervals we have used an FSP expansion method based on that
described in Section 2.1 as follows. For a given projection set XJk

, and a given
initial configuration xi ∈ XJk

, let Gµ(τ) denote the probability that a system
beginning in xi would leave the set XJk

via the µth reaction during the time
interval of length τ . For each µ, if Gµ(τ) > ε/M , then we expand XJk+1

to
also include the configurations that can be reached via one µth reaction from
XJk

. In this manner the projection is expanded in every direction in which a
significant portion of the distribution is moving.

Fig. 4 shows that there is no discernible difference between the results of the
basic FSP algorithm and those of the multiple time interval FSP algorithm.
For a comparison of computational efforts, the bottom portion of Table 1
provides the maximum matrix size, number of matrices, and computational
time required for the multiple time interval FSP algorithm. As the total time
increases from 100 to 300 seconds, so does the computational benefit of the
discretized algorithm; for a final time of 100, the current algorithm reduces
computational time by a factor of about 3.3, for a final time of 300, the reduc-
tion is a factor of about 11.6. Furthermore, these reductions are in comparison
to the FSP benchmark in which the projection was known a priori; compared
to the full FSP algorithm implementation, reductions of a factor of 20 have
been achieved.

Of course, while the accuracy of the multiple time interval FSP is guaran-
teed, the efficiency of the algorithm depends upon our chosen interval size as
discussed above. Fig. 5 illustrates some of the subtleties of this tradeoff by
plotting the size of the largest exponentiated matrix, the number of matrix
exponentials, and the computational time all as functions of the number of
time intervals (bottom axis) and the interval length (top axis). As we use more
time intervals, the probability distribution has less time to disperse between
one interval and the next, and the required matrix exponentials are smaller as
shown in Fig. 5a. However, because the matrix dimension is a discrete integer
quantity, this decrease is stepwise rather than smooth, and a large range of
interval lengths may require the same matrix size. If an interval length is at
the low end of that range, the matrix exponentials required to get each Ei

are often slightly more precise than is absolutely necessary, and are therefore
more likely to provide other Ej’s as well–fewer exponential computations are
necessary. Conversely, if an interval length is at the high end of the range for
a given matrix size, fewer Ej’s will come from each exponential computation–
more exponential computations are necessary. This trend is clear when one

21

0 100 200 300 4000

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Population of s3

Pr
ob

ab
ilit

y
De

ns
ity

t=100s

t=200s

t=300s

Fig. 4. Probability distribution of the population of the σ32-RNAP complex at 100,
200 and 300 seconds as computed with the basic FSP algorithm (solid line) and
with the Multiple Time Interval FSP algorithm (dotted line).

compares Fig. 5a to 5b.

In order to show how these concerns affect the computation, we have broken
the total computational cost in Fig. 5c into three components. The first cost
is that of computing the matrix exponentials; the second cost is the combined
cost of storing the vectors {Ei} and then updating the solution from one
interval to the next; and the third cost is the cost of initializing the first
projection set with a set of 20 SSA runs. For tf = 300s, this tradeoff is
optimized for 360 time intervals corresponding to a interval length of τ ≈
0.83s. To obtain the solution with this time interval, the algorithm needed
to compute 122 matrix exponentials of size 121 × 121 or smaller, and the
computation takes about 31.4s.

Extrapolating from Table 1(top) suggests that a regular FSP solution at
t = 1000s would require inclusion of more than 11000 configurations. Un-
fortunately, the memory requirement to exponentiate a 11000× 11000 matrix
exceeds the specifications of our machine, and the unmodified FSP algorithm
cannot be used. Alternatively, by discretizing the full time interval, we can
significantly reduce the computational complexity and bring the model back
into the realm of a solvable problem. Once again, there is a definite tradeoff
between too many and too few time intervals, and Figure 6 plots the the size
of the largest exponentiated matrix, the number of matrix exponentials, and
the computational time as a function of the number of time intervals. For
tf = 1000s, the computational tradeoff is optimized for 360 time intervals
corresponding to a interval length τ ≈ 2.8. To obtain the solution with this
time interval, the algorithm needed to compute 131 matrix exponentials of

22

0

200

400

0

100

200

100 200 300 400 500 6000

20

40

60

Number of time steps

Time Step Length (s)
3 3/2 1 3/4 3/5 1/2

Maximum
Matrix Size

of Matrix
Exponentials

Computational Effort (s)

Total
Overhead

Matrix Exponentials
Initialization

Fig. 5. Trade off between more and fewer time intervals in the Multiple Time Interval
FSP (MTI-FSP) algorithm solution for the toy heat shock model at a final time of
tf = 300s. The following are plotted as function of the number of intervals: (top) the
size of the largest required matrix exponential computation, (middle) the number
of matrix exponential computations performed, (bottom) the computational time
required for the MTI-FSP algorithm split into three components: the smallest is
the cost of using 20 SSA to initialize the projection for the first time interval, the
next smallest is total cost of computing matrix exponentials, and the largest is the
remaining overhead costs (primarily data storage and retrieval). All computations
have been performed in Matlab 7.2 on a Dual 2 Ghz PowerPC G5.

size 228× 228 or smaller, and the total computation takes about 164s.

23

0

200

400

600

0

200

400

0 250 500 750 1000 1250 1500
0

100

200

300

400

Number of time steps

Time Step Length (s)
4 2 4/3 1 4/5 2/3

Maximum
Matrix Size

of Matrix
Exponentials

Computational Effort (s)

Total
Overhead

Matrix ExponentialsInitialization

Fig. 6. Trade off between more and fewer time intervals in the Multiple Time Interval
FSP (MTI-FSP) algorithm solution for the toy heat shock model at a final time of
tf = 1000s. See also Fig. 5

6 Conclusions

Although the original finite state projection method can significantly reduce
the order of the chemical master equation for many problems, this initial re-
duction is not sufficient for all systems. Fortunately, the FSP is amenable to
numerous modifications, which can considerably improve upon the method’s
range and potency. In this paper we have concentrated on one computational
difficulty that arises when system trajectories slowly drift over large regions of
the configuration space during long time intervals. In order to use the original
FSP method for these cases, one must include vast portions of the configura-

24

Table 1
Comparison of the computational requirements of the basic FSP solution and the
Multiple Time Interval FSP (MTI-FSP) algorithm for the toy heat shock example
for three different final times: tf = 100, 200, and 300 seconds. For each method,
different computational costs are given: CTotal is the total computational expense;
CSSA is the cost of the 20 SSA runs that have been used to initialize the set XJ0

for the first time interval; Cexp is the cost of exponentiating the matrices during the
solution process; and in the case of the MTI-FSP method, COH is the overhead cost
for the solution scheme. For the original FSP algorithm (top table), the results in
parenthesis correspond to trials run with an a priori choice of XJ0 . For the MTI-
FSP algorithm results (bottom table), we have used a non-optimal interval size of
one second; different interval sizes may provide the same or better accuracy at a
lower computational cost.

FSP solution with 20 SSA runs to find XJ0 (with optimal choice of XJ0)

tf (s) # Exp’s Size of XJ0 CTotal
a (s) Error ‖.‖1 CSSA(s) Cexp (s)

100 1 (1) 1595 (1430) 164 (27) 2.4× 10−4 (9.61× 10−4) 128 37 (27)

200 1 (1) 2849 (2585) 462 (165) 3.7× 10−4 (9.04× 10−4) 249 213 (165)

300 1 (1) 4103 (3641) 1003 (437) 4.6× 10−4 (9.67× 10−4) 354 649 (437)

1000 1 (1) ≈ 11000 Exceeds machine memory

Multiple Time Interval FSP Algorithm

tf (s) # Exp’s Size of XJk
’s CTotal(s) Error ‖.‖1 CSSA(s) Cexp (s) COH(s)

100 46 121 8.1 3.7× 10−4 1.4 2.9 3.8

200 89 121 17.8 4.6× 10−4 1.3 5.7 10.8

300 116 132 37.8 1.6× 10−4 1.4 12.5 24.0

1000 218 144 212 2.3× 10−4 1.3 27.3 183.4

a Computations have been performed in Matlab 7.2 on a Dual 2 GHz PowerePC G5.

tion space in the projected solution. As the size of the included configuration
space increases, so do the computational requirements of the FSP. However,
in some cases this difficulty can be ameliorated simply by solving the FSP
for a series of smaller time intervals. Here we have presented the Multiple
Time Interval FSP (MTI-FSP) algorithm, which is essentially an incremental
approach to solving the original FSP.

The MTI-FSP algorithm is built upon three important aspects that the FSP
inherits from the chemical master equation: linearity, time-invariance, and pos-
itivity. The linearity of the FSP allows us to apply the principle of superposi-
tion with regards to initial conditions–if we know the probability distribution
at time 0 and we know the conditional probabilities at time τ conditioned
on each configuration at time 0, then we can easily compute the probability
distribution at time τ . The time invariance of the FSP assures us that if we

25

know the probabilities at time τ conditioned on time 0, then we also know
the probabilities at time t + τ conditioned on any time t. The positivity of
the FSP guarantees us that we never over-predict the solution to the CME.
Whether we neglect some portion of the initial probability distribution or lose
some of that distribution to configurations excluded from our various projec-
tions, the resulting error is known at the end of each time interval. By directly
controlling the error at each time-interval, we can control the final error.

In addition to presenting the MTI-FSP algorithm, we have also developed a
new approach to choosing and expanding the configuration space for an FSP
analysis. While in the original FSP algorithm [16], the initial projection space
was chosen arbitrarily, here we now utilize a few computationally inexpensive
stochastic simulation runs to initialize the projection. Later, by systematically
tracking the directions in which the probability measure leaks out of the pro-
jection space, we can more efficiently expand the projection space to recapture
more of that probability measure.

We have demonstrated the MTI-FSP algorithm on the toy heat shock problem.
For time intervals of one, two and three hundred seconds the FSP and the
current algorithm produce nearly identical results, but with the new method,
we can compute those results much faster. In addition, the new algorithm
extends the range of problems to which the FSP approach may be applied. To
solve the toy heat shock problem over a time interval of one thousand seconds,
the original FSP algorithm would require a configuration space of over 11000
points, which is too large to manage. However, we can now solve the problem
using matrices less than one thirtieth of the size.

This time stepping approach is just one of many mutually beneficial improve-
ments that are quickly expanding the ability of the FSP to directly approx-
imate the solution of the chemical master equation. This current approach
retains the full accuracy and properties of the original FSP and can easily be
combined with other model reduction techniques such as those based linear
systems and modern control theory. While we may never be able to directly
solve every master equation, it remains to be seen just how far these FSP based
approaches can push back the boundary between solvable and unsolvable.

7 Acknowledgments

This material is based upon work supported by the National Science Founda-
tion under Grant NSF-ITR CCF-0326576 and the Institute for Collaborative
Biotechnologies through Grant DAAD19-03-D-0004 from the U.S. Army Re-
search Office.

26

References

[1] D. T. Gillespie, “A rigorous derivation of the chemical master equation,”
Physica A, vol. 188, pp. 404–425, 1992.

[2] D. McQuarrie, “Stochastic approach to chemical kinetics,” J. Applied
Probability, vol. 4, pp. 413–478, 1967.

[3] van Kampen, Stochastic Processes in Physics and Chemistry. Elsevier, 3 ed.,
2001.

[4] D. T. Gillespie, “Exact stochastic simulation of coupled chemical reactions,” J.
Phys. Chem., vol. 81, pp. 2340–2360, May 1977.

[5] E. Haseltine and J. Rawlings, “Approximate simulation of coupled fast and slow
reactions for stochastic chemical kinetics,” J. Chem. Phys., vol. 117, pp. 6959–
6969, Jul. 2002.

[6] C. V. Rao and A. P. Arkin, “Stochastic chemical kinetics and the quasi-steady-
state assumption: Application to the gillespie algorithm,” J. Chem. Phys.,
vol. 118, pp. 4999–5010, Mar. 2003.

[7] Y. Cao, D. T. Gillespie, and L. R. Petzold, “Multiscale stochastic simulation
algorithm with stochastic partial equilibrium assumption for chemically reacting
systems,” J. Comp. Phys., vol. 206, pp. 395–411, July 2005.

[8] Y. Cao, D. Gillespie, and L. Petzold, “The slow-scale stochastic simulation
algorithm,” J. Chem. Phys., vol. 122, Jan. 2005.

[9] H. Salis and Y. Kaznessis, “Accurate hybrid stochastic simulation of a system of
coupled chemical or biological reactions,” J. Chem. Phys., vol. 112, no. 054103,
2005.

[10] D. T. Gillespie, “Approximate accelerated stochastic simulation of chemically
reacting systems,” J. Chem. Phys., vol. 115, pp. 1716–1733, Jul. 2001.

[11] D. T. Gillespie and L. R. Petzold, “Improved leap-size selection for accelerated
stochastic simulation,” J. Chem. Phys., vol. 119, pp. 8229–8234, Oct. 2003.

[12] M. Rathinam, L. R. Petzold, Y. Cao, and D. T. Gillespie, “Stiffness in stochastic
chemically reacting systems: The implicit tau-leaping method,” J. Chem. Phys.,
vol. 119, pp. 12784–12794, Dec. 2003.

[13] T. Tian and K. Burrage, “Binomial leap methods for simulating stochastic
chemical kinetics,” J. Chem. Phys., vol. 121, pp. 10356–10364, Dec. 2004.

[14] Y. Cao, D. T. Gillespie, and L. R. Petzold, “Avoiding negative populations in
explicit poisson tau-leaping,” J. Chem. Phys., vol. 123, no. 054104, 2005.

[15] Y. Cao and L. R. Petzold, “Accuracy limitations and the measurement of errors
in the stochastic simulation of chemically reacting systems,” J. Comp. Phys.,
vol. 212, pp. 6–24, Feb. 2006.

27

[16] B. Munsky and M. Khammash, “The finite state projection algorithm for the
solution of the chemical master equation,” J. Chem. Phys., vol. 124, no. 044104,
2006.

[17] B. Munsky, A. Hernday, D. Low, and M. Khammash, “Stochastic modeling of
the pap-pili epigenetic switch,” Proc. FOSBE, pp. 145–148, August 2005.

[18] B. Munsky and M. Khammash, “A reduced model solution for the chemical
master equation arising in stochastic analyses of biological networks,” Proc.
45th IEEE CDC, Dec. 2006.

[19] K. Burrage, M. Hegland, S. Macnamara, and R. Sidje, “A krylov-based finite
state projection algorithm for solving the chemical master equation arising in
the discrete modelling of biological systems,” Proc. of The A.A.Markov 150th
Anniversary Meeting, 2006.

[20] S. Peles, B. Munsky, and M. Khammash, “Reduction and solution of
the chemical master equation using time-scale separation and finite state
projection,” J. Chem. Phys., vol. 125, Nov. 2006.

[21] B. Munsky, S. Peles, and M. Khammash, “Stochastic analysis of gene regulatory
networks using finite state projections and singular perturbation,” Submitted to
ACC, Jul. 2007.

[22] H. El Samad, H. Kurata, J. Doyle, C. Gross, and K. M., “Surviving heat shock:
Control strategies for robustness and performance,” PNAS, vol. 102, no. 8,
p. 27362741, 2005.

[23] H. El Samad, M. Khammash, L. Petzold, and D. Gillespie, “Stochastic modeling
of gene regulatory networks,” Int. J. Robust Nonlin., vol. 15, pp. 691–711, 2005.

28

