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Abstract

Gene networks arise due to the interaction of genes through their protein products. Modeling such
networks is key to understanding life at the most basic level. One of the emerging challenges to the
analysis of genetic networks is that the cellular environment in which these genetic circuits function
is abuzz with noise. The main source of this noise is the randomness that characterizes the motion
of cellular constituents at the molecular level. Cellular noise not only results in random fluctuations
(over time) within individual cells, but it is also a source of phenotypic variability among clonal cellular
populations. In some instances fluctuations are suppressed downstream through intricate dynamical
networks that act as noise filters. Yet in other important instances, noise induced fluctuations are
exploited to the cell’s advantage. The richness of stochastic phenomena in biology depends directly
upon the interactions of dynamics and noise and upon the mechanisms through which these interactions
occur. In this article, we explore the origins and impact of cellular noise, drawing examples from
endogenous and synthetic biological networks. We motivate the need for stochastic models and outline
the key tools for the modeling and analysis of stochasticity inside living cells. We show that tools from
system theory can be effectively utilized for modeling, analysis, and identification of gene networks.

∗This article is an expanded version of a conference paper that appeared in the proceedings of IFAC 2009 SYSID
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1 Introduction

In living cells, many key events such as gene expression and protein-protein interactions follow from el-
ementary reactions between the cellular consituents at the molecular level (e.g. genes, RNAs, proteins).
There is considerable inherent randomness in the order and the timing of these reactions. This randomness
can be attributed to the random collisions among cellular constituents whose motion is induced by thermal
energy and follows specific statistical distributions. The result is fluctuations in the molecular copy num-
bers of reaction products both among similar cells and within a single cell over time. These fluctuations
(commonly referred to as cellular noise) can propagate downstream–impacting events and processes in
accordance to the dynamics of the network interconnection.

Cellular noise has been measured experimentally and classified based on its source ([4, 35]): intrinsic
noise refers to noise originating within the boundaries of the process under consideration and is due to the
inherent discrete nature of the chemical process of gene expression, whereas extrinsic noise has origins that
are more global and affects all processes in the cell under consideration in a similar way (e.g. fluctuations
in regulatory protein copy numbers, RNA polymerase numbers, cell-cycle). Noise, both intrinsic and
extrinsic, plays a critical role in biological processes. In ([20, 19]) it was proposed that lysis-lysogeny fate
decisions for phage λ are determined by a noise driven stochastic switch, implying that the fate of a given
cell is determinable only in a probabilistic sense. Another stochastic switch which governs the piliation of
E. coli has been modeled in ([22]). Aside from endogenous switches, bistable genetic switches have been
constructed and tested ([7, 12]). Depending on their parameters, such switches can be quite susceptible
to noise. In ([5]), the first synthetic oscillator was reported. This novel circuit, called the repressilator,
consists of three genes, each having a product that represses the next gene, thereby creating a feedback
loop of three genes. The role of noise in the operation of the repressilator was recently studied in ([42]). Yet
another curious effect of noise can be seen in the fluctuation enhanced sensitivity of intracellular regulation
termed ’stochastic focusing’ and reported in ([30]). In gene expression, noise induced fluctuations in gene
products have been studied in ([37, 38, 33, 14, 36, 1, 31, 29, 17, 2]). Many of these studies look at the
propagation of noise in gene networks and the impact (and sometimes limitations) of various types of
feedback in suppressing such fluctuations.

In this article, we give an overview of the methods used for modeling and analysis of fluctuations in
gene networks. We also demonstrate that these fluctuations can be used in identifying model parameters
that may be difficult to measure. The presentation follows that in ([16] and [26]).

1.1 Deterministic vs. Stochastic Modeling

The most common approach for modeling chemical reactions relies on the law of mass-action to derive a
set of differential equations that characterize the evolution of reacting species concentrations over time.

As an example, consider the reaction A + B
k→C. A deterministic formulation of chemical kinetics would

yield the following description d[C]
dt = k[A] · [B] where [·] denotes the concentration, which is considered to

be a continuous variable. In contrast, a discrete stochastic formulation of the same reaction describes the
probability that at a given time, t, the number of molecules of species A and B take certain integer values.
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In this way, populations of the species within the network of interest are treated as random variables. In
this stochastic description, reactions take place randomly according to certain probabilities determined
by several factors including reaction rates and species populations. For example, given certain integer
populations of A and B, say NA and NB, at time t, the probability that one of the above reactions takes
place within the interval [t, t+dt) is proportional to NA·NB

Ω dt, where Ω is the volume of the space containing
the A and B molecules. In this mesoscopic stochastic formulation of chemical kinetics, molecular species
are characterized by their probability density function which quantifies the amount of fluctuations around
a certain mean value. As we show below, in the limit of an infinite number of molecules and infinite volume
(the thermodynamic limit), fluctuations become negligible and the mesoscopic description converges to the
macroscopic description obtained from mass-action kinetics. In typical cellular environments where small
volumes and molecule copy numbers are the rule, mesoscopic stochastic descriptions offer a more accurate
representations of chemical reactions and their fluctuations. Such fluctuations need to be accounted for
as they can generate distinct phenomena that simply cannot be captured by deterministic descriptions.
In fact, in certain examples (see e.g. stochastic focusing in Fig. 1) the deterministic model fails to even
capture the stochastic mean, underscoring the need for stochastic models.

Figure 1: The reaction system shown on the left represents a signaling species S and its response P . I
is an intermediate species. When the system is modeled deterministically, the concentration of P fails to
capture the stochastic mean of the same species computed from a stochastic model. This example system
and the stochastic focusing phenomenon are described in [30].

2 Stochastic Chemical Kinetics

In this section, we provide a more detailed description of the stochastic framework for modeling chemical
reactions. In the stochastic formulation of chemical kinetics we shall consider a chemically reacting sys-
tem of volume Ω containing N molecular species S1, ....SN which react via M known reaction channels
R1....RM . We shall make the key assumption that the entire reaction system is well-stirred and is in ther-
mal equilibrium. While this assumption does not always hold in examples of biological networks, spatial
models of stochastic chemical kinetics can be formulated. In the well-mixed case that we focus on here,
the reaction volume is at a constant temperature T and the molecules move due to the thermal energy.
The velocity of a molecule in each of the three spacial directions is independent from the other two and is
determined according to a Boltzman distribution:

fvx(v) = fvy(v) = fvz(v) =

√
m

2πkBT
e
− m

2kBT
v2

where m is its mass, v its velocity, and kB is Boltzman’s constant. Let X(t) = (X1(t)....XN (t))T be the
state vector, where Xi(t) is a random variable that describes the number of molecules of species Si in the
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system at time t. We consider primitive reactions, which may be either mono-molecular: Si → Products,
or bi-molecular: Si + Sj → Products. More complex reactions can be achieve by introducing intermediate
species that interact through a sequence of primitive reactions. In this formulation, each reaction channel
Rk defines a transition from some state X = xi to some other state X = xi + sk, which reflects the change
in the state after the reaction has taken place. sk is known as the stoichiometric vector, and the set of all
M reactions give rise to the stoichiometry matrix defined as

S = [s1 . . . sM ].

Associated with each reaction Rk is a propensity function, wk(x) which captures the rate of the reaction
k. Specifically, wk(x)dt is the probability that, given the system is in state x at time t, the kth reaction
will take place in the time interval [t, t + dt). The propensity function for various reaction types is given
in Table 1.

Reaction type Propensity function

Si → Products cxi
Si + Sj → Products (i 6= j) c′xixj

Si + Si → Products c′′xi(xi − 1)/2

Table 1: Table showing the propensity function for the various elementary reactions. If we denote by k, k′,
and k′′ the reaction rate constants from deterministic mass-action kinetics for the first, second, and third
reaction types shown in the table, it can be shown that c = k, c′ = k′/Ω, and c′′ = 2k′′/Ω.

2.1 Sample Path Representation and Connection with Deterministic Models

A sample path representation of the stochastic process X(t) can be given in terms of independent Poisson
processes Yk(λ) with parameter λ. In particular, it can be shown [6] that

X(t) = X(0) +
∑
k

skYk

(∫ t

0
wk(X(s))ds

)
.

Hence, the Markov process X(t) can be represented as a random time-change of other Markov processes.
When the integral is approximated by a finite sum, the result is an approximate method for generating
sample paths which is commonly referred to as tau leaping [10]. The sample path representation shown
here is of theoretical interest as well as. Together with the Law of Large numbers, it is used to establish a
connection between deterministic and stochastic representations of the same chemical system.

In a deterministic representation based on conventional mass-action kinetics, the solution of the deter-
ministic reaction rate equations arising describes the trajectories of the concentrations of species S1, . . . , SN .
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Let these concentrations be denoted by Φ(t) = [Φ1(t), . . . ,ΦN (t)]T . Accordingly, Φ(·) satisfies the mass-
action ODE:

Φ̇ = Sf(Φ(t)), Φ(0) = Φ0.

For a meaningful comparison with the stochastic solution, we shall compare the function Φ(t) with

the volume-normalized stochastic process XΩ(t) := X(t)
Ω . A natural question is: how does XΩ(t) relate to

Φ(t)? The answer is given by the following fact, which is a consequence of the Law of Large numbers ([6]):

Fact 1 Let Φ(t) be the deterministic solution to the reaction rate equations

dΦ

dt
= Sf(Φ), Φ(0) = Φ0.

Let XΩ(t) be the stochastic representation of the same chemical systems with XΩ(0) = Φ0. Then for every
t ≥ 0:

lim
Ω→∞

sup
s≤t

∣∣XΩ(s)−Φ(s)
∣∣ = 0 almost surely.

To illustrate the convergence of the stochastic system to the deterministic description, we consider a
simple one species problem with the following non-linear reaction description:

Reaction Stoichiometry Deterministic Description Stochastic Description

R1 : ∅ → S, f1(x) = 20 + 40 φ
4010+φ10

, w1(X) = Ω
(

20 + 40 X/Ω
4010+(X/Ω)10

)
R2 : S → ∅, f2(x) = φ, w2(X) = Ω (X/Ω) .

From Fig. 2A, which illustrates the production and degradation terms of the reaction rate equation, one
can see that the deterministic model has three equilibrium points where these terms are equal. Figs.
2A show the deterministic (smooth) and stochastic (jagged) trajectories of the system from two different
initial conditions: φ(0) = X(0)/Ω = 0 and φ(0) = X(0)/Ω = 100. and three different volumes Ω =
{1, 3, 10}. From the plot, it is clear that as the volume increases, the difference between the stochastic
and deterministic process shrinks. This is the case for almost every possible initial condition, but with one
obvious exception. If the the initial condition were chosen to correspond to the unstable equilibrium, then
the deterministic process would remain at equilibrium, but the noise driven stochastic process would not.
Of course, this unsteady equilibrium corresponds to a single point of zero measure, thus illustrating the
nature of the “almost sure” convergence.

Hence in the thermodynamic limit, the stochastic description converges to the deterministic one. While
this result establishes a fundamental connection which ties together two descriptions at two scales, in prac-
tice the large volume assumption cannot be justified as the cell volume is fixed, and stochastic descriptions
could differ appreciably from their large volume limit.
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Figure 2: Convergence of the stochastic and deterministic descriptions with volume scaling. (A) Reaction
rates for the production (solid) and degradation (dashed) events. (B-D) Trajectories of the determinis-
tic (smooth) and stochastic representations (jagged) assuming equivalent initial conditions for different
volumes: (B) Ω = 1, (C) Ω = 3, (D) Ω = 10.

2.2 The Forward Kolmogorov Equation

The Chemical Master Equation (CME), or the Forward Kolmogorov equation, describes the time-evolution
of the probability that the chemical reaction system is in any given state, say X(t) = x. The CME can
be derived from the Markov property of chemical reactions. Let P (x, t), denote the probability that the
system is in state x at time t. We can express P (x, t+ dt) as follows:

P (x, t+ dt) = P (x, t)(1−
∑
k

wk(x)dt) +
∑
k

P (x− sk, t)wk(x− sk)dt+O(dt2).

The first term on the right hand side is the probability that the system is already in state x at time t and
no reactions occur to change that in the next dt. In the second term on the right hand side, the kth term
in the summation is the probability that the system at time t is an Rk reaction away from being at state
x, and that an Rk reaction takes place in the next dt.
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Moving P (x, t) to the left hand side, dividing by dt, and taking the limit as dt goes to zero we get the
Chemical Master Equation (CME):

dP (x, t)

dt
=

M∑
k=1

[wk(x− sk)P (x− sk, t)− wk(x)P (x, t)]

3 Stochastic Analysis Tools

Stochastic analysis tools may be broadly divided into four categories. The first consists of Kinetic Monte
Carlo methods which compute sample paths whose statistics are used to extract information about the
system. The second class of methods consists of approximations of the stochastic process X(t) by solutions
of certain stochastic differential equations. The third type of methods seek to compute the trajectories of
various moments of X(t), while the fourth type is concerned with computing the evolution of probability
densities of the stochastic process X(t).

3.1 Kinetic Monte Carlo Simulations

Because the CME is often infinite dimensional, the majority of analyses at the mesoscopic scale have been
conducted using Kinetic Monte Carlo algorithms. The most widely used of these algorithms is Gillespie’s
Stochastic Simulation Algorithm (SSA) [9] and its variants. These are described next.

3.1.1 The Gillespie Algorithm

Each step of Gillespie’s SSA begins at a time t and at a state X(t) = x and is comprised of three substeps:
(i) generate the time until the next reaction; (ii) determine which reaction occurs at that time; and (iii)
update the time and state to reflect the previous two choices. The SSA approach is exact in the sense
that it results in a random variable with a probability distribution exactly equal to the solution of the
corresponding CME. However, each run of the SSA provides only a single trajectory. Numerous trajectories
are generated which are then used to compute statistics of interest.

We now describe these steps in more detail. To each of the reactions {R1, . . . , RM} we associate a
random variable Ti which describes the time for the next firing of reaction Ri. A key fact is that Ti is
exponentially distributed with parameter wi. From these, we can define two additional random variables,
one continuous and the other discrete:

T = min
i
{Ti} (Time to the next reaction)

R = arg min
i
{Ti} (Index of the next reaction)
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It can be shown that: (a) T is exponentially distributed with parameter:
∑

iwi; and (b) R has the discrete

distribution: P (R = k) =
wk∑
iwi

. With this in mind, we are ready to give the steps in Gillespie’s Stochastic

Simulation Algorithm.

Gillespie’s SSA:

• Step 0 Initialize time t and state population x.

• Step 1 Draw a sample τ from the distribution of T . (See Figure 3).

• Step 2 Draw a sample µ from the distribution of R. (See Figure 3).

• Step 3 Update time: t← t+ τ . Update the state: x← x + sµ.

Figure 3: The figure shows the cumulative distribution of the two random variables T and R. A sample of
T is drawn by first drawing a uniformly distributed random number r1 and then finding its inverse image
under F , the cumulative distribution of T . A similar procedure can be used to draw a sample from the
distribution of R.

3.2 Stochastic Differential Equation Approximations

There are several SDE approximations of the stochastic process X(t). One of these is the so-called Chemical
Langevin Equation, also called the Diffusion Approximation ([18, 8]). We will not discuss this here, but
we will instead examine another SDE approximation that relates to SDEs that arise naturally in systems
and control settings.

Another approximation that leads to a stochastic differential equation is the so called van Kampen’s
approximation or Linear Noise Approximation (LNA) (see [40, 3, 39]). It is essentially an approximation
to the process X(t) that takes advantage of the fact that in the large volume limit (Ω→∞), the process
XΩ(t) := X(t)/Ω converges to the solution Φ(t) of the deterministic reaction rate equation: Φ̇(t) = f(Φ).
Defining a scaled “error” process VΩ(t) :=

√
Ω
(
XΩ(t) − Φ(t)

)
and using the Central limit theorem, it

can be shown that V Ω(t) converges in distribution to the solution V (t) to the following linear stochastic
differential equation:

dV(t) = Jf (Φ)V(t)dt+

M∑
k=1

sk
√
wk(Φ)dBk(t),

where Jf denotes the Jacobian of f(·) ([6]). Hence, the LNA results in a state X(t) ≈ ΩΦ(t) +
√

ΩV(t),
which can be viewed as the sum of a deterministic term given by the solution to the deterministic reaction
rate equation, and a zero mean stochastic term given by the solution to a linear SDE. While the LNA is
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reasonable for systems with sufficiently large numbers of molecules (and volume), examples show that it
can yield poor results when this assumption is violated, e.g. when the system of interest contains species
with very small molecular counts, or where the reaction propensity functions are strongly nonlinear over
the dominant support region of the probability density function.

3.3 Statistical Moments

When studying stochastic fluctuations that arise in gene networks, one is often interested in computing
moments and variances of noisy expression signals. The evolution of moment dynamics can be described
using the Chemical Master Equation. To compute the first moment E[Xi], we multiply the CME by xi
and then sum of all (x1, . . . , xN ) ∈ NN to get

dE[Xi]

dt
=

M∑
k=1

sikE[wk(X)]

Similarly, to get the second moments E[XiXj ], we multiply the CME by xixj and sum over all (x1, . . . , xN ) ∈
NN , which gives

dE[XiXj ]

dt
=

M∑
k=1

sikE[Xjwk(X)] + E[Xiwk(X)]sjk + siksjkE[wk(X)]

These last two equations can be expressed more compactly in matrix form. Defining w(x) = [w1(x), . . . , wM (x)]T ,
the moment dynamics become:

dE[X]

dt
= SE[w(X)]

dE[XXT ]

dt
= SE[w(X)XT ] + E[w(X)XT ]TST + S{diagE[w(X)]}ST

In general, this set of equations cannot be solved explicitly. This is because the moment equations
will not always be closed: depending on the form of the propensity vector w(·), the dynamics of the first
moment E(X) may depend on the second moments E(XXT ), the second moment dynamics may in turn
depend on the third moments, etc. resulting in an infinite system of ODE’s. However, when the propensity
function is affine, i.e. w(x) = Wx+w0, where W is N×N and w0 is N×1, then E[w(X)] = WE[X]+w0,
and E[w(X)XT ] = WE[XXT ] + w0E[XT ]. This gives us the following moment equations:

d

dt
E[X] = SWE[X] + Sw0

d

dt
E[XXT ] = SWE[XXT ] + E[XXT ]WTST + S diag(WE[X] + w0)ST + Sw0E[XT ] + E[X]wT

0 ST
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Clearly, this is a closed system of linear ODEs that can be solved easily for the first and second moments.
Defining the covariance matrix Σ = E[(X − E[X])(X − E(X)]T ], we can also compute covariance

equations:
d

dt
Σ = SWΣ + ΣWTST + S diag(WE[X] + w0)ST

The steady-state moments and covariances can be obtained by solving linear algebraic equations. Let
X̄ = lim

t→∞
E[X(t)] and Σ̄ = lim

t→∞
Σ(t). Then

SWX̄ = −Sw0

SWΣ̄ + ¯ΣW
T
ST + S diag(WX̄ + w0)ST = 0

The latter is an algebraic Lyapunov equation can be solved efficiently.

3.3.1 Moment Closures.

An important property of the Markov processes that describe chemical reactions is that when one constructs
a vector µ with all the first and second-order statistical uncentered moments of the process’ state X, this
vector evolves according to a linear equation of the form

µ̇ = Aµ+ Bµ̄. (1)

Unfortunately, as pointed out earlier, (1) is not in general a closed system because the vector µ̄ may contain
moments of order larger than two, whose evolution is not provided by (1). In fact, this will always be the
case when bi-molecular reactions are involved. A technique that can be used to overcome this difficulty
consists of approximating the open linear system (1) by a closed nonlinear system

ν̇ = Aν + Bϕ(ν), (2)

where ν is an approximation to the solution µ to (1) and ϕ(·) is a moment closure function that attempts
to approximate the moments in µ̄ based on the values of the moments in µ. The construction of ϕ(·) often
relies on postulating a given type for the distribution of X and then expressing the higher-order moments
in µ̄ by a nonlinear function ϕ(µ) of the first and second-order moments in µ. Authors construct moment
closure functions ϕ(·) based on different assumed distributions for X, which include normal ([41, 28, 11]),
lognormal ([15, 34]), Poisson, and binomial ([27]). Here we discuss only the normal and lognormal moment
closure method.,

1. Normal Distribution. Assuming that the populations of each species follow a multi-variate normal
distribution leads to the equation:

E([Xi − E(Xi)][Xj − E(Xj)][Xk − E(Xk)]) = 0
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from which an expression for the third order moment E[XiXjXk] in terms of lower order moments
can be obtained. When substituted in the moment equations (1), a closed-system results. This is
referred to as the Mass-Fluctuation Kinetics in ([11]). So long as the reaction rates are at most second
order, only the expressions for the third moments will be necessary–all of which can be determined as
above. For third or higher order propensity functions, the resulting higher order moments can be also
be easily expressed in terms of the first two using moment using generating functions as described in
the example section below.

2. Lognormal Distribution. Based on a lognormal distribution for X, one obtains the following equation:

E[XiXjXk] =
E[XiXj ]E[XjXk]E[XiXk]

E[Xi]E[Xj ]E[Xk]
.

As before, this leads to a closed-system when substituted in the moment Eqn. (1), provided that the
reactions in the system are at most bimolecular. In ([13]) it was shown that this moment closure
results without any a priori assumptions on the shape of the distribution for X by matching all (or a
large number of) the time derivatives of the exact solution for Eqn. (1) with the corresponding time
derivatives of the approximate solution for Eqn. (2), for a given set of initial conditions. However, for
systems with third or higher order terms in the reaction rates, it is more difficult to find expressions
for the higher moments necessary to close the system.

When the population standard deviations are not much smaller than the means, choosing ϕ(·) based
on a normal distribution assumption often leads to less accurate approximations. Furthermore, normal
distributions of X allows for negative values of X, which clearly does not reflect the positive nature of the
populations represented by X(t). In these cases, a lognormal or other positive distribution closure may be
preferred, but at the cost of more complicated closure expressions for the higher order moments.

3.4 Density Computations

Another approach to analyze models described by the CME aims to compute the probability density
functions for the random variable X. This is achieved by approximate solutions of the CME, using a new
analytical approach called the Finite State Projection (FSP) ([23, 32, 24, 21]). The FSP approach relies
on a projection that preserves an important subset of the state space (e.g. that supporting the bulk of the
probability distribution), while projecting the remaining large or infinite states onto a single ’absorbing’
state. See Figure 4.

Probabilities for the resulting finite state Markov chain can be computed exactly, and can be shown
to give a lower bound for the corresponding probability for the original full system. The FSP algorithm
provides a means of systematically choosing a projection of the CME, which satisfies any prespecified
accuracy requirement. The basic idea of the FSP is as follows. In matrix form, the CME may be written
as Ṗ(t) = AP(t), where P(t) is the (infinite) vector of probabilities corresponding to each possible state in
the configuration space. The generator matrix A embodies the propensity functions for transitions from
one configuration to another and is defined by the reactions and the enumeration of the configuration
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Figure 4: The Finite State Projection. Left panel shows the state space for a system with two species.
Arrows indicate possible transitions within states. The corresponding process is a continuous-time discrete
state Markov process whose state space is typically very large or infinite. Right panel shows the projected
system for a specific projection region (gray box). The projected system is obtained as follows: Transitions
within the projection region are kept unchanged. Transitions that emanate from states within the region
and end at states outside (in the original system) are routed to a single absorbing state in the projected
system. Transitions into the projection region are deleted. As a result, the projected system is a finite
state Markov process, and the probability of each state can be computed exactly.

space. A projection can now be made to achieve an arbitrarily accurate approximation as outlined next:
Given an index set of the form J = {j1, j2, j3, . . .} and a vector v, let vJ denote the subvector of v chosen
according to J , and for any matrix A, let AJ denote the submatrix of A whose rows and columns have
been chosen according to J . With this notation, we can restate the result from [23, 21]: Consider any
distribution which evolves according to the linear ODE Ṗ(t) = AP(t). Let AJ be a principle sub-matrix of
A and PJ be a sub-vector of P, both corresponding to the indexes in J . If for a given ε > 0 and tf ≥ 0 we
have that 1T exp(AJ tf )PJ(0) ≥ 1− ε, then

‖ exp(AJ tf )PJ(0)−PJ(tf )‖1 ≤ ε,

which provides a bound on the error between the exact solution PJ to the (infinite) CME and the matrix
exponential of the (finite) reduced system with generator AJ . This result is the basis for an algorithm
to compute the probability density function with guaranteed accuracy. The FSP approach and various
improvements on the main algorithm can be found in [24, 21].

4 Parameter Identification

Microscopy techniques and Fluorescence Activated Cell Sorting (FACS) technology enable single cell mea-
surement of cellular species to be carried out for large numbers of cells. This raises the prospect of using
statistical quantities such as moments and variances, measured at different instants in time, to identify
model parameters. Here we demonstrate these ideas through a simple description of gene transcription and
translation. Let x denote the population of mRNA molecules, and let y denote the population of proteins
in a cell. The system population is assumed to change only through four reactions:

∅ → mRNA

mRNA→ ∅

mRNA→ mRNA+ protein
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protein→ ∅

for which the propensity functions, wi(x, y), are

w1(x, y) = k1+k21y; w2(x, y) = γ1x;

w3(x, y) = k2x; w2(x, y) = γ2y.

Here, the terms ki and γi are production and degradation rates, respectively, and k21 corresponds to
a feedback effect that the protein is assumed to have on the transcription process. In positive feedback,
k21 > 0, the protein increases transcription; in negative feedback, k21 < 0, the protein inhibits transcription.

The various components of the first two moments, v(t) :=
[
E{x} E{x2} E{y} E{y2} E{xy}

]T
,

evolve according to the linear time invariant system:

d

dt


E{x}
E{x2}
E{y}
E{y2}
E{xy}

 =


−γ1 0 k21 0 0

γ1 + 2k1 −2γ1 k21 0 2k21
k2 0 −γ2 0 0
k2 0 γ2 −2γ2 2k2
0 k2 k1 k21 −γ1 − γ2




E{x}
E{x2}
E{y}
E{y2}
E{xy}

+


k1
k1
0
0
0


= Av + b (3)

Now that we have expressions for the dynamics of the first two moments, they can be used to identify
the various parameters: [k1, γ1, k2, γ2, k21] from properly chosen data sets. We will next show how this can
be done for transcription parameters k1 and γ1. For a discussion on identification of the full set, we refer
the reader to ([26, 21, 25]).

4.1 Identifying Transcription Parameters

We begin by considering a simpler birth-death process of mRNA transcripts, whose populations are denoted
by x. The moment equation for this system is:

d

dt

[
v1

v2

]
=

[
−γ 0

γ + 2k −2γ

] [
v1

v2

]
+

[
k
k

]
,

where we have dropped the subscripts on k1 and γ1. By applying the nonlinear transformation:[
µ

σ2 − µ

]
=

[
v1

v2 − v2
1 − v1

]
,
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where µ and σ2 refer to the mean and variance of x, respectively, we arrive at the transformed set of
equations:

d

dt

[
µ

σ2 − µ

]
=

[
v̇1

v̇2 − 2v1v̇1 − v̇1

]
=

[
−γ1v1 + k

(γ1 + 2k)v1 − 2γv2 + k − (2v1 + 1)(−γv1 + k)

]
=

[
−γ 0
0 −2γ

] [
µ

σ2 − µ

]
+

[
k
0

]
. (4)

Suppose that µ and σ2 are known at two instances in time, t0 and t1 = t0 + τ , and denote their values
at time ti as µi and σ2

i , respectively. The relationship between (µ0, σ
2
0) and (µ1, σ

2
1) is governed by the

solution of (4), which can be written:[
µ1

σ2
1 − µ1

]
=

[
exp(−γτ)µ0

exp(−2γτ)(σ2
0 − µ0)

]
+

[
k
γ (1− exp(−γτ))

0

]
(5)

In this expression there are 2 unknown parameters, γ and k, that we wish to identify from the data
{µ0, σ

2
0, µ1, σ

2
1}. If µ0 = σ2

0, the second equation is trivial, and we are left with only one equation whose
solution could be any pair: (

γ, k = γ
µ1 − exp(−γτ)µ0

1− exp(−γτ)

)
.

If for the first measurement µ0 6= σ2
0 and for the second measurement µ1 6= σ2

1, then we can solve for:

γ = − 1

2t
log

(
σ2

1 − µ1

σ2
0 − µ0

)
k = γ

µ1 − exp(−γt)µ0

1− exp(−γτ)
.

Note that if µ1 and σ2
1 are very close, the sensitivity of γ to small errors in this difference becomes very

large. From (5), one can see that as τ becomes very large, (σ2
1 − µ1) approaches zero, and steady state

measurements do not suffice to uniquely identify both parameters.

5 Examples

To illustrate the above methods, we consider the synthetic self regulated genetic system as illustrated in
Fig. 5. The lac operon controls the production of the LacI protein, which in turn tetramerizes and represses
its own production. The lac operon is assumed to be present in only a single copy within each cell and
is assumed to have two possible state: gON and gOFF , which are characterized by whether or not a LacI
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tertramer, LacI4 is bound to the operon. In all, the model is described with seven reactions:

Reaction# Reaction Description Propensity Function

R1 : 4LacI→ LacI4 w1 = k1

(
[LacI]

4

)
R2 : LacI4 → 4LacI w2 = k2[LacI4]
R3 : gON + LacI4 → gOFF w3 = k3[gON ][LacI4]
R4 : gOFF → LacI4 + gON w4 = k4[gOFF ]
R5 : gON → gON + LacI w5 = k5[gON ]
R6 : LacI→ φ w6 = k6[LacI]
R7 : LacI4 → φ w7 = k7[LacI4]

(6)

The first of these reactions corresponds to the combination of four individual monomers to form a tetramer–
the rate of this reaction depends upon the total number of possible combinations of four different molecules,
which is given by the binomial(

[LacI]

4

)
= [LacI] · ([LacI]− 1) · ([LacI]− 2) · ([LacI]− 3)/24,

and the second reaction corresponds to the reverse of the tetramerization event. The next two reactions
characterize the ON-to-OFF and OFF-to-ON switches that occur when a tetramer binds to or unbinds
from the operon, respectively. When the gene is in the ON state, then the fifth reaction can occur and
LacI monomers are created with an exponentially distributed waiting times. Finally reactions R6 and R7
correspond to the usual linear decay of the monomers and tetramers, respectively.

For the analysis of this process, we first define the stoichiometry and reaction rate vectors for the
process as:

S =


−4 4 0 0 1 −1 0
1 −1 −1 1 0 0 −1
0 0 −1 1 0 0 0
0 0 1 −1 0 0 0

 , and (7)

w(x) =



k1

(
x1
4

)
k2x2

w3 = k3x3x2

w4 = k4x4

w5 = k5x3

w6 = k6x1

w7 = k7x2


. (8)

In what follows, we will take many different approaches to analyzing this system. In order to compare
each method, we make the assumption that the volume is unity Ω = 1, such that we can avoid parameter
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LacI-4

Figure 5: Schematic representation of a synthetic self regulated genetic network. In the model, four LacI
monomers (represented as ovals) can bind reversibly to form tetramers (represented as clusters of four
ovals). The lac operon has two states: OFF corresponding to when LacI tetramers are bound to the gene
and blocking the transcription start site, and ON when LacI tetramers are not bound to the gene. Both
LacI monomers and tetramers can degrade. See also reactions listed in Eq. 6.

scaling issues when moving between reaction rate equations and the stochastic description. We consider
the following parameter set for the reaction rates:

k1 = 1/30 N−4s−1 k2 = 0.002 N−1s−1 k3 = 0.01 N−2s−1

k4 = 0.2 N−1s−1 k5 = 20 N−1s−1 k6 = 0.1 N−1s−1

k7 = 0.1 N−1s−1,

and we assume that the process begins with the gene in the active state and no LacI is present in the
system:

x(0) =


x1(0)
x2(0)
x3(0)
x4(0)

 =


0
0
1
0


5.1 Deterministic (Reaction Rate) Analysis

As a first analysis, let us consider the deterministic reaction rate equations that are described by these
four interacting chemical species and their seven reactions. For this case, one can write the reaction rate
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equations as:
ẋ(t) = Sw(x(t))

or in the usual notation of ordinary differential equations:

ẋ1 = −(4/24)k1x1(x1 − 1)(x1 − 2)(x1 − 3) + 4k2x2 + k5x3 − k6x1,

ẋ2 = (4/24)k1x1(x1 − 1)(x1 − 2)(x1 − 3)− k2x2 − k3x2x3 − k7x2,

ẋ3 = −k3x2x3 + k4x4,

ẋ4 = k3x2x3 − k4x4.

We note that the first reaction only makes sense when the x1 ≥ 4 corresponding to when there are at least
four molecules of the monomer present and able to combine. In the case where there are fewer than four
molecules, we must use a different set of equations:

ẋ1 = 4k2x2 + k5x3 − k6x1,

ẋ2 = −k2x2 − k3x2x3 − k7x2,

ẋ3 = −k3x2x3 + k4x4,

ẋ4 = k3x2x3 − k4x4.

These equations have been integrated over time and the responses of the dynamical process are shown
in the solid gray lines of Fig. 7. We note that were one to use the linear noise approximation, the computed
mean value for the process would be exactly the same as the solutions shown with the solid gray line.

5.2 Stochastic Simulations

The reactions listed above can also be simulated using Gillespie’s stochastic simulation algorithm (SSA-
[9]. Two such simulations shown in Fig. 6 illustrate the large amount of stochastic variability inherent
in the model. By simulating the system 5000 times, one can collect the statistics of these variations
and record them as functions of time. The dynamics of the mean levels of each species is shown by the
solid, but somewhat jagged, black lines in Fig. 7. Furthermore, one can collect statistics on the number of
monomers and tetramers at different points in time and plot the resulting histograms to show their marginal
distributions as illustrated in Figs. 8 and 9. From these plots, it is noticeable that the deterministic reaction
rate equations and the mean of the stochastic process are not equivalent for this process. This discrepancy
arises from the non-linearity of the propensity functions for the the first and third reactions.

5.3 Normal Moment Closures

Above we have derived the differential equation for the mean of the process to be:

d

dt
E(X) = SE{w(X)} (9)
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Figure 6: Results of two stochastic simulations (solid black, dashed gray) of the self-repressing LacI syn-
thetic gene regulatory network. The top left panel corresponds to the populations of LacI monomers;
the top right panel corresponds to the population of LacI tetramers; the bottom left corresponds to the
population of ON genes; and the bottom right panel corresponds to the population of OFF genes.

In the case of linear propensity functions, then the average propensity function is simply the propensity
function of the average population, and we could make the substitution:

SE{w(X)} = Sw(E{X}), for affine linear w(X).

However, when the propensity function are non-linear, this substitution is incorrect, and in our case we
have:

E{w(X)} = E





k1

(
x1
4

)
k2x2

k3x3x2

k4x4

k5x3

k6x1

k7x2




=



k1/24
(
E{x4

1} − 6E{x3
1}+ 11E{x2

1} − 6E{x1}
)

k2E{x2}
k3E{x3x2}
k4E{x4}
k5E{x3}
k6E{x1}
k7E{x2}


.
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Thus, we find that the expected values depend upon higher order moments, and the equations are not
closed to a finite set. Similarly, the ODEs that describe the evolution of the second moments are given by:

d

dt
E{XXT } = SE{w(X)XT }+ E{w(X)XT }TST + S {diag(E{w(X)})}ST , (10)

where the matrix w(x)xT is

w(X)XT =



k1

(
x1
4

)
x1 k1

(
x1
4

)
x2 k1

(
x1
4

)
x3 k1

(
x1
4

)
x4

k2x1x2 k2x
2
2 k2x2x3 k2x2x4

k3x1x2x3 k3x
2
2x3 k3x2x

2
3 k3x2x3x4

k4x1x4 k4x2x4 k4x3x4 k4x
2
4

k5x1x3 k5x2x3 k5x
2
3 k5x3x4

k6x
2
1 k6x1x2 k6x1x3 k6x1x4

k7x1x2 k7x
2
2 k7x2x3 k7x2x4


,

In this case we see that the second moment also depends upon higher order moments. In particular
the second moment of x1 now depends upon the fifth uncentered moment of x1. This relationship will
continue for every higher moment such that the nth moment will always depend upon the (n+ 3)rd order
moment for this system.

If we make the assumption that the joint distribution of all species are given by a multivariate normal
distribution, then we can use this relationship to close the moment equations. Perhaps the easiest way to
find these relationships is to use the moment generating function approach. We define the MGF as:

Mx(t) = exp
(
µT t + 1/2tTΣt

)
,

where the vectors are defined as:

µ = E{x},
Σ = E{(x− µ)(X− µ)T }

= E{XXT } − E{X}E{xT }, and

t = [t1, t2, t3, t4]T .

With this definition, one can write any uncentered moment in terms of µ and Σ as follows:

E{xn1
1 . . . xn4

4 } =
dn1+...+n4

dxn1
1 . . . dxn4

4

Mx(t)

∣∣∣∣
t=0

.

For example, the fifth uncentered moment of x1 is given by:

E{x5
1} =

d5

dx5
1

Mx(t)

∣∣∣∣
t=0

= 15E{x1}E{x2
1}2 − 20E{x1}3E{x2

1}+ 6E{x1}5.
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Such an expression can be found for each moment of order three or higher in Eqns. 9 and 10. As a result
the approximated distribution is fully described in terms of the first and second moments, which are our
new set of fourteen dynamic variables:

E{x1},E{x2},E{x3},E{x4},
E{x2

1}E{x1x2},E{x1x3},E{x1x4},
E{x2

2},E{x2x3},E{x2x4}},
E{x2

3},E{x3x4},E{x2
4}}. (11)

We note that because there is only a single gene then x3 and x4 are mutually exclusive and take values of
either zero or one. As a result, we can specify algebraic constraints on the last three of the moments listed
in (11) as:

E{x2
3} = E{x3},

E{x2
4} = E{x4},

E{x3x4} = 0

and thus we are left with only eleven ordinary differential equations.
We have solved the non-linear ODE’s resulting from the moment closure, and the results for the mean

values of each species are represented by the gray dashed lines in Fig. 7. From the figure, we see that for
this case, the use of the coupled first and second moments results in a much better approximation of the of
the mean behavior than did the deterministic reaction rate equation (compare solid and dashed gray lines
in Fig. 7).

By including some description of the second uncentered moment of the process, the moment closure
does a much better job of capturing the mean behavior of the process as can be seen by Fig. 7. Furthermore,
closer examination reveals that the second moment for the population of monomers is also well captured by
this approximation as is seen in Fig. 8. However, it is clear that the actual distributions are not Gaussian,
and truncating away the higher order moments has introduced significant errors. This can be seen first in
the monomer distributions at t = 10s, where the actual distribution appears to be almost bimodal. An
even worse approximation is obtained for the tetramer distribution as is shown in Fig. 9, where the solution
of the moment closure equations actually produces a physically unrealizable result of negative variance for
the tetramer distribution. This failure is not unexpected due to the fact that the dynamics of the tetramer
population depend strongly on the approximated high order moments of the monomer population.

5.4 FSP Analysis

In general the master equation can be written in the form P(t) = AP(t), where the infinitesimal generator
A is defined as:

Ai2i1 =

 −
∑M

k=1wk(xi1) for i1 = i2
−wk(xi1) for xi2 = xi1 + sk
0 otherwise
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However, in order for this notation to make sense, one first has to define the enumeration of all the possible
states {x}. Based upon a few runs of the SSA, we can restrict our attention to a finite region of the state
space (x1 ≤ N1 = 30 and x2 ≤ N2 = 55), then we can use the following scheme.

i(x) = x4(N1 + 1)(N2 + 1) + x1(N2 + 1) + x2 + 1.

Note that we can make this enumeration depends only on x1, x2 and x4 due to the fact that x3 and x4 are
mutually exclusive and x3 = 1− x4.

The FSP analysis has been conducted and the black dotted lines in Fig. 7 show the mean value of
each of the four species as functions of time. With the chosen projection, the total one norm error in
the computed probability distribution is guaranteed to be 4.8 × 10−5 or less at every instant in time. As
such, the FSP solution makes a good basis upon which to compare the other solution schemes. With the
FSP solution we can also determine not just the mean but the entire probability distribution at each time
point, and the marginal distributions of the monomers (x1) and the tetramers (x2) are shown at times
t={0.5,1,5,10}s in Figs. 8 and 9.
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