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Abstract— In order to capture important subcellular dy-
namics, researchers in computational biology have begun to
turn to mesoscopic models in which molecular interactions
at the gene level behave as discrete stochastic events. While
the trajectories of such models cannot be described with
deterministic expressions, the probability distributions of these
trajectories can be described by the set of linear ordinary
differential equations known as the chemical master equation
(CME). Until recently, it has been believed that the CME could
only be solved analytically in the most trivial of problems, and
the CME has been analyzed almost exclusively with Kinetic
Monte Carlo (KMC) algorithms. However, concepts from linear
systems theory have enabled the Finite State Projection (FSP)
approach and have significantly enhanced our ability to solve
the CME without resorting to KMC simulations. In this paper
we review the FSP approach and introduce a variety of
systems theory based modifications and enhancements to the
FSP algorithm. Notions such as observability, controllability
and minimal realizations enable large reductions and increase
efficiency with little to no loss in accuracy. Model reduction
techniques based upon linear perturbation theory allow for
the systematic projection of multiple time scale dynamics onto
a slowly varying manifold of much smaller dimension. We
also present a powerful new reduction approach, in which we
perform computations on a small subset of configuration grid
points and then interpolate to find the distribution on the full
set. The power of the FSP and its various reduction approaches
is illustrated on few important models of genetic regulatory
networks.

I. INTRODUCTION

The main aim of synthetic biology is to intelligently build
or alter biological systems for useful purposes. This, of
course, is no small task, and it requires enormous knowledge
into the form and function of biological networks. While
new experimental tools are successfully revealing the form
of many gene regulatory networks, experiments alone may
not be enough to gain a sufficient understanding of the
function of these monstrously complex systems. For this
reason, researchers are also beginning to demand clear
quantitative models with which they hope to understand
their measurements, guide future experiments, and provide
another level of understanding for the medical and scientific
community.

It would be very nice if all important intercellular dy-
namics could be described with deterministic models, just as
it would be nice if every biological experiment yielded the
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same results every time. If these were so, one could treat all
important proteins and RNA molecules by continuous-valued
concentrations that evolve over time according to non-linear
ordinary differential equations (ODEs). Unfortunately, often
this is not the case. Many important biochemical processes,
especially those involving gene regulatory networks, occur
on a very small scale, where important chemical species,
such as DNA, RNA and key regulatory proteins, are restricted
to only a few copies per cell. In this regime, a concentration
description is meaningless, mass action kinetics are not valid,
and discrete models are necessary. Also, when only a few
copies exist of certain important chemical species, the system
becomes dominated by intrinsic noise [1], [2], [3], and an
individual molecular interaction, such as an inhibitor binding
to a gene, may change the dynamics of the entire cell or
organism.

For example, Gardner’s genetic toggle switch [4], shown in
Fig. 1 and discussed in more detail below, is one such system
where small populations and noise have great importance.
The system is comprised of two promoters, each of whose
product inhibits the other; if species s1 gains a slight edge
it will shut off s2, and vice versa. A deterministic model
would suggest that the system would reach a steady state
that depends only upon the initial condition. With noise,
however, the system can not only reach different steady
states, but even continue to oscillate between different states.
The dynamics of such systems can no longer be usefully
described by a single trajectory of the system through the
state space; that trajectory may be only one of many wildly
different possibilities. Instead, the system must be described
by the probabilities that the system will have certain states
at certain times. For discrete population chemically reacting
systems, the evolution of this probability distribution is
well understood to evolve according to the chemical master
equation (CME) [5], [6].
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Fig. 1. Schematic representation of the Gardner’s Genetic Toggle Model
[4]. The species s1 represses the gene that transcribes s2 and vice versa. For
this model, deterministic and stochastic approaches yield highly contrasting
results. In the deterministic model, the system reaches one of two steady
state solutions (s1 � s2 or s2 � s1) the choice of which depends only
upon the initial condition. In the stochastic model, the system oscillates
between these two regions.



For many systems the CME is an infinite set of linear
ODEs that cannot be solved exactly. Most analyses of the
CME have utilized kinetic Monte-Carlo algorithms such
as the Stochastic Simulation Algorithm [7], [8] or one of
its approximations [9], [10], [11], [12]. As these Monte
Carlo methods provide only a single trajectory for each run,
they must be reiterated many times to provide a statistical
description of the system. We recently showed that a properly
chosen finite state projection (FSP) approach can reduce the
order of the CME to a finite number of ODEs. The result is
an analytical approximation of the probability distribution at
any instant in time [13]. By recasting the CME as a finite set
of linear ODEs, the FSP paves the way for linear systems
theory based analyses of stochastic biological networks, as
we will show in this paper.

In the next section, we briefly review the mesoscopic
description of chemical kinetics and the chemical master
equation. In Section III we review the Finite State Projection
(FSP) method, which yields an analytical solution to the
CME. In Section IV, we review a few model reduction
techniques which can greatly expand the usefulness of the
FSP algorithm. These include several ideas from systems
theory including concepts of controllability, observability,
and time-scale separation. We also introduce an entirely new
reduction scheme that is based upon assuming that the prob-
ability distribution can be approximated by a function that is
piecewise linear in the configuration space and which evolves
according to simple linear dynamics. In Section V, we use a
couple important biochemical reactions in order to compare
and contrast the FSP and its various reductions schemes.
Finally, in Section VI we summarize our findings and make
some concluding remarks to outline future directions for
projection based approaches to solving the CME.

II. THE MESOSCOPIC MODEL FOR CHEMICAL KINETICS

For a macroscopic model, chemicals are treated as con-
centrations that evolve according to deterministic ODEs.
This is useless for some systems which contain a very
small number of molecules. In a microscopic model, each
individual molecule is tracked as it bounces around inside
the cell. This can be computationally expensive even for
a small number of non-reacting particles. The mesoscopic
model of chemical kinetics lies somewhere in between–the
system’s configuration is described by discrete populations,
xi := [ ξ1 ξ2 . . . ξN ]Ti ∈ NN , but the individual
molecules are assumed to be well mixed, and the system
is treated as a continuous time, discrete space Markov
process. The probabilities of each of the configurations
{x1,x2, . . .} make up the probability distribution state vector
P(t) := [p1(t), p2(t), . . .]T , which evolves according to the
possibly infinite dimensional set of linear ODEs known as
the Chemical Master Equation (CME) [14], [6]: Ṗ(t) =
A(t)P(t). Until recently, the CME had not been directly
solved except for the most trivial problems, and analyses
have often conducted using kinetic Monte Carlo (KMC)
algorithms.

The most popular KMC algorithm for mesoscopic chem-
ical kinetics is Gillespie’s Stochastic Simulation Algorithm
(SSA) [7], [8]. At each time, t, the process has a specific con-
figuration, xi, and can transition to some other configuration
xj = xi+νµ, where νµ is the stoichiometric vector of the µth

reaction. Each µth reaction has an infinitesimal probability
of occurring in the interval (t, t + dt], and this probability
is given by given by aµ(xi, t)dt, where aµ(xi, t) is known
as the propensity function. If, in addition to well-mixedness,
one assumes that the system has constant temperature and
constant volume, then aµ does not depend upon time, and
the time until the next reaction, τ , is an exponentially
distributed random variable with a mean equal to a−1

0 (xi) =(∑M
µ=1 aµ(xi)

)−1

. At each KMC step τ is generated from
this exponential distribution, and one can choose which of
the M reactions occurs according to the distribution defined
by
{
a1(xi)
a0(xi)

, . . . , aM (xi)
a0(xi)

}
. One then updates the time to t+τ

and the configuration to xi + νµ where µ is the index of the
chosen reaction. The process is continued until the final time
of interest. This algorithm produces a very detailed trajectory
for the mesoscopic model, and can be very computationally
expensive for some systems. In these cases, one may give up
some of the accuracy of the SSA for faster approximate MC
schemes such as time-leaping methods [9], [10] and system-
partitioning methods [11], [12].

These KMC algorithms do an excellent job of providing
sample trajectories for Markov processes, and as such are
indispensable in the study of gene regulatory networks.
However, in terms of actually solving the CME to find
probability distributions, these algorithms are very slow to
converge and provide little in the way of accuracy guarantees.

III. THE FINITE STATE PROJECTION (FSP) ALGORITHM

Recently, we proposed an analytical approach to solv-
ing the CME: the Finite State Projection (FSP) algorithm
[13]. With this approach, one may systematically choose
a projection of the CME, which satisfies any prespecified
accuracy requirement. Once the finite state projection has
been made, the problem of solving the infinite dimensional
CME becomes one of solving a finite dimensional linear
ODE. Because it is based upon linear systems theory, the
FSP is ripe for the further application of modern control
theory as we will review in this paper.

In the chemical master equation, Ṗ(t) = A(t)P(t), the
infinitesimal generator A(t) is comprised of the propensity
functions for transitions from one configuration to another
and is defined by the reactions and the enumeration of the
configuration space. Like all generator matrices, A(t) has no
negative off-diagonal elements, and all of A’s columns sum
to zero.

For a system of finite possible configurations, the solution
of the CME is easily solved using matrix exponentials or
ODE solvers. However, the CME is not so easily solved
when P(t) has an extremely large or infinite dimension.
In this case, a projection may be made to achieve an
arbitrarily accurate approximation. For this we need some



convenient notation. First, we use index sets of the form J =
{j1, j2, j3, . . .} as follows: we let vJ denote the subvector
of v chosen according to J , and we let AIJ denote the
submatrix of A whose rows and columns have been chosen
according to I and J , respectively. For example, if I = {3, 1}
and J = {3, 2}, then: a b c

d e f
g h k


J,J

=
[
k h
c b

]
.

For convenience, we will use the notation AJ := AJJ . We
will also use an embedding operator,DJ{.} as follows. Given
any vector, v and its J indexed subvector, vJ , the vector
DJ {vJ} has the same dimension as v and its only non-zero
entries are the elements of vJ distributed according to the
indexing set J . Finally, we will use the notation |.| to denote
a vector norm, and ||.|| to denote an induced matrix norm.
With this notation, we can restate the theorems from [13]
as follows, where we have extended Theorem 2.2 to include
the case of time-varying A(t).

Theorem 2.11 If every off-diagonal element of A ∈ Rn×n
is non-negative, then for any index set J ,

[exp(A)]J ≥ exp([A]J) ≥ 0. (1)

Theorem 2.2 Consider any distribution which evolves ac-
cording to the linear ODE: Ṗ(t) = A(t)P(t). Let FJ(t2, t1)
be the state transition matrix from time t1 to time t2 of the
J-indexed finite state projection system ṖFSP = AJPFSP .

If for ε > 0, and tf ≥ 0,

1TFJ(tf , 0)PJ(0) ≥ 1− ε, (2)

then

FJ(tf , 0)PJ(0) ≤ PJ(tf ), and (3)
|FJ(tf , 0)PJ(0)−PJ(tf )|1 ≤ ε (4)

Proof: We begin by proving (3). Let J ′ denote the com-
plement of J . The evolution of the probability distribution
on the set J is governed by:

ṖJ(t) = AJ(t)PJ(t) + AJJ ′(t)PJ′(t), (5)

where the submatrix AJJ ′(t) is nonnegative for any gener-
ator A(t). The solution for (5) is

PJ(tf ) = F(tf , 0)PJ(0) +
∫ tf

0

F(tf , τ)AJJ ′(τ)PJ′(τ)dτ

Since AJJ ′(t), PJ′(t), and F(t, τ) are all nonnegative for
t ≥ τ ≥ 0, we obtain the inequality in (3).

Since all probability distributions are non-negative and
sum to one we are assured that |PJ(tf )|1 ≤ 1 and the
condition (2) becomes:

|F(tf , 0)PJ(0)|1 ≥ |PJ(tf )|1 − ε, (6)

Finally, applying (3) and rearranging terms yields (4) and
completes the proof.

1For proof and additional details, see [13].

In the original form of [13], we assumed that A did
not vary in time, and the result is the same except that
F(t2, t1) = exp(A(t2 − t1)). Using this FSP theorem, we
can use an algorithmic approach to add and remove states in
the finite projection until we obtain an error, ε, that is less
than a prespecified bound.

IV. SPEEDING UP THE FSP

In its most basic form, the FSP method is not feasible for
every problem. For example, when there are many reacting
species or when large excursions occur frequently in small
periods of time, the number of ODEs required for the finite
projection to meet a given accuracy requirement may be
far too large. However, there are many additional tools
available from systems theory that can help us to meet this
challenge. As discussed in the introduction, kinetic Monte
Carlo algorithms for the solution of the CME benefit from
two approximation schemes: time leaping algorithms [9],
[10] and system partitioning methods [11], [12]. In order
for these approximations to apply to the KMC solutions
to the CME, it is reasonable to expect that the same or
similar approximations will also apply to the CME itself and
therefore the FSP. In Subsection IV-A we look at reductions
to the CME which rely upon separating the full time interval
into a series of shorter steps and then using the FSP to
compute how the distribution evolves from one step to the
next. In Subsection IV-B, we show various possible partition-
ing schemes in which we approximate the FSP solution by
projecting it onto a lower dimensional space. Each of these
reduction techniques are summarized below in the context
of time-invariant systems, but many can also be extended to
time-varying systems.

A. Multiple Time Interval FSP Approaches

The CME is a linear system describing the evolution of a
nonnegative probability distribution. As such, the finite state
projection solution of the CME must obey the principle of
superposition. The concept of super-positioning provides the
advantage that rather than compute the matrix exponential
of a very large matrix for a given initial probability dis-
tribution vector (pdv), one can break the pdv into separate
parts and compute the exponentials for a series of smaller,
less expensive matrices. For some systems, through clever
ordering, very large regions of the configuration space can
be considered with relatively few exponential computations.

A second advantage is that superposition supports a time
stepping algorithm for the solution of the infinite dimensional
ODE [15]. Beginning at a certain point in the configura-
tion space at time t0, one can approximate the probability
distribution vector at t1. One can then remove unimportant
portions of the approximate pdv, partition it into smaller
subvectors and use these subvectors as initial conditions
for the next time step. For time invariant systems, one can
achieve significant computational savings by caching and
then reusing previous matrix exponential computations from
one time step to the next. This approach can further benefit
by running a few SSA runs before the beginning the FSP



analysis–in addition to helping determine the set J0 for the
first time step, a few SSA runs can also provide an estimate
of how large each time step should be in the FSP formulation.
By carefully choosing the projections, the error accrued at
each step can be automatically controlled to guarantee a final
error bound in the full pdv. Recently, Burrage and coauthors
presented a new version of the FSP algorithm [16] that takes
advantage of multiple time intervals but does not use the
properties of superposition to reduce the computational costs.

B. Partitioning and Projecting the CME

Several readily available tools from linear systems theory
facilitate lower order approximations of larger systems and
promise significant reductions in computational cost. For
each of these reductions, we begin with the CME in the
form: Ṗ(t) = AP(t), and we seek to approximate the vector
P(t) ∈ Rn (here, n may or may not be finite) as some linear
transformation of a lower dimensional vector, q(t) ∈ Rm≤n.

It is important to note that the original FSP itself is one
such projection in which the elements of q(t) correspond
to PJ(t). There are many other possible choices for our
projection, as we will discuss in the following subsections.
In Subsection IV-B.1, we use concepts of controllability and
observability taken from modern control theory to obtain a
minimal basis set for the space in which the solution to the
FSP evolves. Alternatively, as previously presented in [17],
[18], Subsection IV-B.2 shows how one may project the
system onto a space spanned by an appropriately chosen
set of eigenvectors. If the time is relatively long, we can
use the eigenvectors corresponding to the slow eigenvalues.
Conversely, if the time is relatively short, we can choose
the eigenvectors that correspond to the fast eigenvalues. In
Subsection IV-B.3 we introduce another Finite Element like
approach in which we perform computations on a small
set of “discretization” points and interpolate the remaining
points of the distribution.

1) Observability, controllability, and minimal realizations:
Because the FSP approach formulates the CME as a finite
dimensional problem, it opens the analysis to linear systems
theory based model reductions as we first explored in [19]
and now expand upon here. We can pose the initial value
CME problem as an equivalent impulse response problem:
Ṗ(t) = AP(t) + bδ(t), where b = P(0).

Suppose that we wish only to compute the output y(t) =
CP(t). For example, y may include statistical information
such as means or variances, or could correspond to the
probability of certain important portions of the configuration
set. The resulting problem now takes on a familiar form:

Ṗ(t) = AP(t) + bδ(t);
y(t) = CP(t). (7)

For systems constrained to a finite configuration set, or for
systems that have been projected onto a finite configuration
set using the FSP, this standard representation is open to
a host of computational tools. We define a configuration
xi as reachable from another configuration xj if there is

a possible trajectory that will take the system from xi to
xj ; otherwise xi is unreachable from xj . A configuration
xi is defined to be observable by xj if xj is reachable from
xi; otherwise xi is unobservable by xj . We assume a priori
knowledge of which configurations are reachable from the
initial condition and which are observable from the output.
We use the index X to denote the full configuration set,
and we will use the index sets R, R′, O, and O′ to define
the reachable, unreachable, observable and unobservable
configuration sets, respectively. We then chose an index set
J ∈ RO and its complement on the reachable observable
set, J ′ = (RO − J) = {j′1, j′2, . . .}. With these index sets,
we can define the the projection system,

q =
[

q1(t)
q2(t)

]
≈
[

PJ(t)
1TRO′PRO′(t)

]
Applying this projection to the CME yields the ODE:

q̇(t) =
[

AJ tf 0
1TARO′J tf 0

]
q(t). (8)

This projection is the basis for the Observability Aggregated
FSP (OAFSP) algorithm as presented in [19] in which we
showed that if the solution to (8) satisfies

1T
[

q1(t)
q2(t)

]
≥ 1− ε,

then ∣∣∣∣∣∣
 PJ(t)

1TPRO′(t)
PJ′(t)

−
 q1(t)
q2(t)

0

∣∣∣∣∣∣
1

≤ ε. (9)

As an example, Fig. 2(top) illustrates a two dimensional
state lattice for a two chemical (a and b) reacting system. The
system begins with an initial configuration xu at time t = 0,
and we are interested in calculating the probability that the
system has configuration, xy , at the time t = tf ≥ 0. The
configuration set can be separated into three disjoint subsets:
the unreachable region, XR′ ; the unobservable region, XO′ ;
and the reachable/observable region XRO. Each of these
three subsets contains a countable number of points. Using
the OAFSP, we first remove the unreachable configuration
subset from the system and aggregate the unobservable con-
figuration subset to a single point, as shown in Fig. 2(bottom
left). We then project XRO onto a finite configuration subset
XJ ; in Fig. 2 this finite subset is enclosed by the black
polygon. The projected system is shown in Fig. 2(bottom
right), where the subsets XJ′ and XRO′ have each been
aggregated to a single point. Since the probability distribution
on the projected system evolves on a finite configuration
subset, its solution at any time can be computed using the
matrix exponential function or by using a linear ODE solver.

The OAFSP approach, is similar but not identical to stan-
dard observability based model reductions. Here the index
set RO defines the smallest euclidean basis set enclosing
the space that can be reached by the initial condition and
observed from the output. This is an easily constructed space,
but it does not necessarily provide a minimal realization for
the system.
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Fig. 2. Top: schematic of a two dimensional integer lattice representing
the countable configuration set of a discrete valued Markov process. Each
integer valued configuration point [a,b] is represented by a circle and
the directionality of transitions between configurations are shown by the
connecting arrows. Bottom: aggregation of the unobservable configuration
subsets (left), and projection of the observable/reachable configuration
subset onto a finite configuration subset: XJ ∈ XRO (right).

For a larger reduction, we can use more traditional con-
cepts of controllability and observability as follows. Since
the solution to a finite N -dimensional linear ODE is given
by the equation P(t) = exp(At)P(0), the Cayley-Hamilton
theorem allows us to write this solution as

P(t) =
N−1∑
i=0

αi(t)AiP(0).

Therefore, the solution is constrained to the range of the
observability matrix,

{P(0),AP(0),A2P(0), . . . ,Ak−1P(0)},

for some k ≤ N . In this case, we choose the k-dimensional
vector q to refer to the probability distribution in the
transformed coordinates of the controllable subspace.
Algorithmically, one can systematically increase k < N until
the vector AkP(0) can be written as a linear combination
of the previous vectors {P(0),AP(0), . . . ,Ak−1P(0)}.
This is essentially the Krylov subspace approach that has
been taken by Burrage and co-authors in [16].

2) Multiple time scale partitioning: In many biological
models, certain reactions occur much faster and more fre-
quently than others. For KMC algorithms like the SSA, the
majority of the simulated reactions correspond to those with
large propensities. In the case of the CME or its projection,
this separation of time scales results in numerical stiffness.
There has been significant progress in developing approxi-
mate KMC algorithms to deal with these concerns [11], [12].
In each of these, the fast dynamics are essentially averaged,
and the slow dynamics are simulated assuming the fast
dynamics have instantaneously reached thermal equilibrium.
We have previously shown that the FSP algorithm is also

amenable to time-partitioning approximation schemes that
speed up computation at a small cost to the accuracy [17],
[18]. In the original works, the time scale separation is
carried out using perturbation theory. In the control com-
munity, perturbation methods have also had long use as
described in [20]. In this paper we take a linear systems
theory approach to such problems. In our analysis, we use
the term “interconnected” to mean that the configurations
form a non-separable Markov process. A finite dimensional
interconnected system can readily be shown to have a simple
eigenvalue at zero.

In the configuration space, some subsets of configuration
points are often interconnected by fast reactions and sepa-
rated from each other by slow reactions. One such example
is the 4-configuration Markov process illustrated in Fig.
3(a). We assume that the fast reactions (solid lines) have
propensities equal to one, and the slow reactions (dashed
lines) have propensities equal to ε. The master equation for
this particular process has the generator

A =


−r − ε r ε 0
r −r − ε 0 ε
ε 0 −r − ε r
0 ε r −r − ε

 .
If one groups together the fast interconnected configurations
(possibly requiring a permutation of the configuration set),
one can separate the system into fast and slow parts: A =
H + εG, where H is block diagonal with each block
representing a fast interconnected configuration set. For the
schematic in Fig. 3 this separation gives us

H =
[

H1 0
0 H2

]
=


−r r 0 0
r −r 0 0
0 0 −r r
0 0 r −r

 ,
and

εG =


−ε 0 ε 0

0 −ε 0 ε
ε 0 −ε 0
0 ε 0 −ε

 .
It is easily seen that each Hi is the generator matrix for
the ith fast cluster, and εG is the generator matrix of the
reactions that take the system from one cluster to another.

For an N dimensional finite state projection with m fast
interconnected configuration sets, the master equation can be
written

Ṗ(t) = (H + εG)P(t) (10)

H can be written H = diag{H1,H2, . . . ,Hm}. Because
they are generators, each Hi has a single eigenvalue equal
to zero, and its corresponding left and right eigenvectors
are ui = 1T and vi, respectively. We define the following
matrices.

U =

 u1 0 . . .
0 u2 . . .
...

...
. . .

 , and V =

 v1 0 . . .
0 v2 . . .
...

...
. . .

 .
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Fig. 3. (a) A four configuration Markov process that undergoes reactions
on two different time scales. For r � ε, the fast reactions are represented by
solid lines, and slow reactions are represented by dashed lines. There are two
sets of strongly connected configurations: J1 = {1, 2} and J2 = {3, 4}.
The fast reactions form two infinitesimal generators, H1 and H2, and the
slow reactions form a single generator for the whole system, εG. (b) In the
reduced model, each fast interconnected set becomes a single configuration.
The strength of the slow reactions from the ith to the jth set is given by
εujGJjJi

vi, where ui and vi are the left and right zero-eigenvectors of
Hi, and GJjJi

is the submatrix of G with columns corresponding to Ji

and rows corresponding to Jj .

Let S = [ V R ] be a square matrix in which the columns
of R are the remaining N −m right eigenvectors of H. The
inverse of S is given by S−1 =

[
UT LT

]T
such that we

have the following similarity transformation for H:

S−1HS =
[

0 0
0 Λ

]
, Λ = diag(λm+1, . . . , λN ).

where the first m diagonal elements correspond to the zero
eigenvalues of the Hi blocks. We assume that non-zero
eigenvalues of H are ordered so that 0 > Re{λm+1} ≥
Re{λm+2}, . . . ≥ Re{λN}. Applying the coordinate trans-
formation

[
yT1 (t) yT2 (t)

]T = S−1P(t), (10) becomes:[
ẏ1(t)
ẏ2(t)

]
=
[
εUGV εUGR
εLGV Q

] [
y1(t)
y2(t)

]
, (11)

where we have defined the matrix Q = Λ + εLGR.
There are two important observations to make regarding

this transformed system. First, the matrix UGV is itself a
generator for a Markov process in that it satisfies the two
sufficient conditions: (i) its columns sum to zero, and (ii)
its off-diagonal elements are non-negative. To show that,
note that 1TU = 1T and therefore 1TUG = 1TG = 0.
Furthermore,

[UGV]ij = uiGJiJj vj ,

where ui and vj are non-negative for any (i, j) and the
submatrix GJiJj is non-negative for any i 6= j. Hence the

off-diagnoal elements of UGV are indeed non-negative.
The second observation that one can make is that for
ε � |Re{λm+1}|, linear perturbation theory assures us that
the matrix Q is Hurwitz, and its eigenvalues are close to
{λm+1, λm+2, . . . , λN}. In particular if we will let λ̃ denote
the real part of the least stable eigenvalue of Q, we know
that λ̃ ≈ Re{λm+1}.

With these observations in mind, we now examine the
forced dynamics of y2(t):

ẏ2(t) = εLGVy1(t) + Qy2(t),

which has a solution comprised of a zero-state and a zero-
input response:

y2(t) = yzs2 (t) + yzi2 (t).

Because Q is Hurwitz, with eigenvalues all having real parts
less than or equal to λ̃, the zero-input response, yzi2 (t), is
bounded by the exponentially decaying expression. There-
fore, there exists a constant K1 such that∣∣yzi2 (t)

∣∣
1
≤ K1 exp(λ̃t), ∀t ≥ 0.

By the definition of our transformation |y1(t)|1 =
|UP(t)|1 = 1, and |LGVy1(t)|1 is bounded. Since Q is
Hurwitz and the input is O(ε), we are guaranteed that the
zero-state solution, yzs2 (t) satisfies

|yzs2 (t)|1 = O(ε), ∀t ≥ 0.

Combining the two solutions, we have the following bounds
on y2(t)

|y2(t)|1 ≤ K1 exp(λ̃t) +O(ε), (12)

for all times t ≥ 0.
The forced dynamics of y1(t) given by the

ẏ1(t) = εUGVy1(t) + εUGRy2(t),

has a solution at the chosen final time tf :

y1(tf ) = exp(εUGVtf )y1(0)

+ ε

∫ tf

0

exp(εUGV(tf − τ))UGRy2(τ)dτ.

Note that since UGV is a infinitesimal generator of a
Markov process, every column of exp(UGVt) has a sum of
exactly one for any t ≥ 0, and ||exp(εUGV(t− τ))||1 = 1
for all ε ≥ 0 and t ≥ τ . Therefore

|y1(tf )− exp(εUGVtf )y1(0)|1 ≤ ε
∫ tf

0

|UGRy2(τ)|1 dτ.

Combining this with (12) and defining the constant K2 =
K1 ||UGR||1, one obtains the following bound on the error
of y1 at t = tf :

|y1(tf )− exp(εUGVtf )y1(0)|1

≤ ε
∫ tf

0

K2 exp(λ̃τ) +O(ε)dτ

≤ εK2
1
|λ̃|

+ tfO(ε2).



Therefore, for any fixed tf ≥ 0,

|y1(tf )− exp(εUGVtf )y1(0)|1 = O(ε). (13)

Combining (12) and (13), we have the following bounds
on our approximation error:∣∣∣∣[ y1(tf )

y2(tf )

]
−
[

exp(εUGVtf )y1(0)
0

]∣∣∣∣
1

≤ K1 exp(λ̃tf ) +O(ε).

Substituting the initial condition,[
y1(0)
y2(0)

]
= S−1P(0) =

[
UP(0)
LP(0)

]
,

and performing the reverse similarity transformation,
P(tf ) = Vy1(tf ) + Ry2(tf ), yields:

|P(tf )− V exp(εUGVtf )UP(0)|1
≤ K1 ||R||1 |LP(0)|1 exp(λ̃tf ) +O(ε).

Thus, this reduced model differs from the full system by at
most an exponentially decreasing transient term plus a term
of order ε.

In the toy example in Fig. 3, the blocks H1 and H2 were
identical, with eigenvalues of zero and −2r. The left and
right eigenvectors for the zero eigenvalue are ui =

[
1 1

]
and vTi =

[
1/2 1/2

]
, respectively. The generator for the

reduced system (as shown in Fig. 3(b)) is

UGV =
[

u1GJ1v1 u1GJ1J2v2

u2GJ2J1v1 u2GJ2v2

]
,

where the the index set for the first and second blocks are
J1 = {1, 2} and J2 = {3, 4}, respectively.

3) Projection through Interpolation: In the previous re-
ductions schemes, knowledge of the system is exploited
to provide smaller order models while maintaining known
bounds on the error of the achieved approximation. In this
subsection, we present a simpler reduction scheme, which
can be very effective, but which no longer provides accuracy
guarantees.

Suppose that one wishes to find a vector q(t) ∈ Rm, for
some known interpolation operator Φ ∈ Rn×m such that
Φq(t) provides an approximation of P(t). We assume that
q(t) has linear dynamics and can be expressed by q(t) =
exp(At)q(0) for some choice of q(0) and A, and we pose
the following problem

min
q(0),A

|P(t)−Φ exp(At)q(0)| .

Performing a Taylor series expansion, the cost of the mini-
mization becomes∣∣(P(0)−Φq(0)) + (AP(0)−ΦAq(0)) t+O(t2)

∣∣ .
While this optimization problem is difficult to solve, one
can easily minimize the first term in the least squares sense
to yield q(0) = Φ−LP(0), and minimize the second to give
A = Φ−LAΦ, where Φ−L is the left inverse of Φ. Although
this approximation is only guaranteed to retain accuracy for

short time intervals, in practice it often works well even for
much longer intervals.

As an aside, with the correct choice of Φ, all pre-
vious projections shown here can also be derived with
this same formalism. The original FSP uses ΦFSP =
IXJ ; the original OAFSP uses the projection ΦOAFSP =[

IJX DRO′{1TRO′}
]
; in the standard controllability or

observability reduction, the columns of Φ form a basis for
the range of the minimal model; and in the multiple time
scale reduction, Φ is simply the matrix of right eigenvectors:
V. In the above minimization, problem one could also
explore Krylov based methods of simultaneously choosing
Φ as well as A and q(0), but these are left to be reported
elsewhere.

To illustrate this interpolation based projection technique,
we first consider a Markov process evolving along a one
dimensional lattice such as that involving a single chemically
reacting species, a. We begin with the full lattice, which we
project to a finite subset as illustrated in Fig. 4(a,b). We
choose a smaller subset of interpolation points as shown
in Fig. 4(c). When the number of a molecules is small,
we need greater precision and these points must be closer
together, but when the number is larger, a coarser grid is
more likely to suffice. Each two consecutive values qi(t) and
qi+1(t) approximate the probability distribution at the points
indexed by integers Li and Ri, respectively. We assume that
the probability distribution varies linearly between these two
points; and we interpolate the distribution for any intervening
point according to:

pj(t) =
[ (

1− j−Li

Ri−Li

)
j−Li

Ri−Li

] [ qi(t)
qi+1(t)

]
.

From this formulation, if we use m nodes to represent a
distribution with n elements, we can obtain the projection
operator, Φ ∈ Rn×m as

[Φji,Φj(i+1)] =
[(

1− j − Li
Ri − Li

)
,
j − Li
Ri − Li

]
,

for all j.
As an example, suppose that the 1 dimension lattice in

Fig. 4 represents a one species chemical reaction with the
following two reactions

x→ 2x, and 2x→ x,

where the propensity of the first reaction is a1(x) = 3x, the
propensity of the second is a2(x) = x(x−1), and the initial
condition is xt=0 = 1. By choosing to include only the first
ten configurations of the system J = {1, 2, . . . , 10}, one can
obtain the finite state projection ṖFSP

J (t) = AJPFSP
J (t),

where the elements of A are given by

Aij =

 −j
2 − 2j for i = j
3j for i = j + 1

j2 − j for i = j − 1

 .

and the initial distributions is given as PFSP
J (0) =

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T . One may choose to the interpolate
the distribution among the points in the smaller 6 element



set {1, 2, 4, 6, 8, 10} which corresponds to the using the
projection operator

Φ =



1 0 0 0 0 0
0 1 0 0 0 0
0 0.5 0.5 0 0 0
0 0 1 0 0 0
0 0 0.5 0.5 0 0
0 0 0 1 0 0
0 0 0 0.5 0.5 0
0 0 0 0 1 0
0 0 0 0 0.5 0.5
0 0 0 0 0 1


Applying the reduction yields

A = Φ−LAΦ

≈

 −3.0000 2.0000 0 0 0 0
2.4853 −5.2965 5.8865 −2.8133 0.9546 −0.3091
−0.4264 3.4823 −8.4323 14.0664 −4.7729 1.5454
0.0732 −0.5976 4.7073 −16.5854 27.6829 −8.9634
−0.0126 0.1030 −0.8116 5.4458 −28.3246 52.2351
0.0025 −0.0206 0.1623 −1.0892 6.2649 −79.4470

 ,
and q(0) = Φ−LPFSP

J (0) = [1, 0, 0, 0, 0, 0]. Fig. 5 shows
the probability distribution at tf = 1s for the 10-state FSP
solution, PFSP

J (tf ) = exp(AJ tf )PJ(0), as well as the
reduced 6-state solution, PI

J(tf ) = Φ exp(Atf )q(0). From
the figure, one can see that the two solutions are in relatively
good agreement.

For a lattice of two or more dimensions, the process is
essentially the same, but the interpolation is slightly more
involved and must be approached with more care. For the
case of two species, each point (aj , bj) on the lattice is
interpolated between the four corners of the mesh rectangle
in which that point resides: (Bj , Lj), (Bj , Rj), (Tj , Lj),
(Tj , Rj), where (Bj , Rj) is the grid point to the bottom-
right side of lattice point indexed by j, (Tj , Rj) is the grid
point lying to its top-right side, and so on. The probability
at time t at each of these grid points is given by pBL(j)(t),
pBR(j)(t), pTL(j)(t), and pTR(j)(t). In our approximation
scheme, these variables will be approximated by qBL(j)(t),
qBR(j)(t), qTL(j)(t), and qTR(j)(t), whose dynamics evolve
in a lower dimensional space than the original system. To
assign an approximation for pj(t) where j is the index of
lattice point surrounded by the mesh rectangle, we interpolate
the four computed q variables, i.e.

qj(t) = N (j)qj(t) =


(1− α)(1− β)
α(1− β)
(1− α)β
αβ


T 

qLB(j)(t)
qRB(j)(t)
qLT (j)(t)
qRT (j)(t)

 ,
where

α =
aj − Lj
Rj − Lj

.

β =
bj − Tj
Tj −Bj

.

As in the one dimensional case, these Finite-Element-
Method-like “shape functions,” and our chosen enumeration
will directly provide the operator Φ:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

Fig. 4. One dimensional lattice Markov process. (a) The full infinite
dimensional configuration space, (b) The finite state projection, (c) The
finite lattice after it has been broken into 9 lattice elements with ten
nodes (shaded). In this projection distributions at the unshaded points are
interpolated from the distributions approximated at the nodes.
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Fig. 5. The probability distribution for a simple one species chemical
reaction as computed using the original FSP solution scheme as well as an
interpolation-based reduction of the FSP. The distribution is computed at
time tf = 1s.

[Φj,LB(j),Φj,RB(j),Φj,LT (j),Φj,RT (j)] = N (j), ∀j

In the next section, we will illustrate this reduction method
on a few example gene regulatory networks.

V. EXAMPLES

In this section we will illustrate some of the above
analytical solutions to the chemical master equation on a
few simple genetic regulatory networks. For each model, we
compare and contrast the various methods and make some
observations as to when each method is suitable.

A. The Genetic Toggle Model

One of the most important genetic regulatory problems is
that of stochastic switching. Two identical cells within the
same environment and with the same initial conditions may
express wildly different phenotypes; a few such examples
include the pap (pili) regulatory switch in E. coli [21] as well
as cell fate decisions in developing organisms. Alternatively,
a cell may switch from one state to another as has been
shown in previous stochastic models of the lysis-lysogeny
decision of phage lambda [22]. Here, we consider a simple
stochastic version of the genetic toggle system constructed
and presented by Gardner, Cantor and Collins [4]. Fig. 1



illustrates this genetic regulatory system, which is comprised
of two promoters each of whose products inhibits the other
promoter. The signals of the network are the populations
of the two repressors, s1 and s2. We assume that these
repressors react according to the simple production and
degradation reactions:

∅
 s1

∅
 s2

where the degradation rates (left arrows) of s1 and s2 are δ1
and δ2, respectively, and the synthesis rates (right arrows)
of s1 and s2 depend upon the populations [s2] and [s1],
respectively, and are given by:

α([s2]) =
α1

1 + [s2]β
, and β([s1]) =

α2

1 + [s1]γ
,

respectively.
First we consider the following set of parameters:

δ1 = δ2 = γ = 1, α1 = 25, α2 = 30, β = 1, (14)

and we begin with an initial condition of zero for both
species s1 and s2. Three methods have been used to find
the probability distribution at the time tf = 104s: (1) the
finite state projection method (FSP), (2) the interpolation-
reduced FSP (FSP-I), and (3) the stochastic simulation
algorithm (SSA). Other methods have been considered, but
an initial examination of the system presents no clear sep-
aration between time scales, so the slow manifold based
reductions (either for the FSP or for KMC algorithms) have
not be considered. Furthermore, with the entire distribution
as the output, every configuration will eventually be attained.
Therefore, the system is already minimal, and the reductions
in Subsection IV-B.1 is helpful only over very short time
intervals. To evaluate the accuracy of each method, we find
the maximum error in the computed distribution. To evaluate
the efficiency of each method, we consider two costs: JODE :
the time required to compute the solution after the system
reduction, and Jtotal the total time required to find and solve
the reduced system. Each of these costs can important in
different situations: Jtotal is the stand-alone cost of solving
this problem only once, and JODE represents the repetitive
cost of solving the system as part of larger more complex
problem. With these metrics accuracy and efficiency of these
different methods is discussed below and summarized in
Table I.

Method 1: FSP. In order to use the original FSP method,
one must first choose a configuration subset on which to per-
form the projection. Fig. 6 illustrates one such set chosen to
include all configurations such that [s1] ≤ 64, [s2] ≤ 88, and
[s1][s2] ≤ 220. For this configuration subset, the finite state
projection of the CME is comprised of 1014 configurations,
which took about 8 seconds to solve. Fig. 7(a) provides a
contour map of the distribution for the full FSP approach for
this first parameter set; Fig. 8(a,b) show the same probability
distributions for the populations of s1 and s2, respectively.
In terms of accuracy, the full FSP implementation yielded a
maximum error less than 5.3× 10−5.

Method 2: FSP-I. Using the methodology in Subsection
IV-B.3, one can project the finite state system from the
previous method onto a grid defined by integers distributed as
follows. The first 8 are separated by one point: {0, 1, . . . , 7};
the next 8 are separated by two points: {8, 12, . . . , 22}; the
next 8 by four points: {24, 28, . . . , 52}; and the remaining
points are separated by eight points up until the maximum
value is reached. Each of these grid points is illustrated in
Fig. 6 by a single dot. Figures 7(b) and 8(a,b) show the
distribution contours as computed using the interpolation-
based model reduction approach. From these figures, one can
see that there is very little observable difference between the
full FSP results and the interpolation-reduced FSP results.
However, the interpolation-based approach required solving
about a third as many ODEs and took less than a quarter
of the time to complete, including the model reduction. The
interpolation-based reduction had a maximum error of about
2.9× 10−4.

Method 3: SSA. For comparison with a typical Monte
Carlo algorithm, the SSA [7] has also been run. After
103 simulations of the SSA, the total computational time
was almost two hours, and the maximum error was about
30 times greater than that of the other methods. While
approximations to the SSA, such as τ leaping, may
significantly speed up the computational time, they can do
little to improve the accuracy of solution.
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Fig. 6. Projection used for the genetic toggle model for parameter
set (14). Here the finite state projection is first applied to remove the
unlikely configurations and reduce the system to a set of 1014 ODEs,
then the distribution of the remaining configurations is projected to a
lower dimensional space for a set of 353 ODEs. The probability density is
approximated assuming linear dynamics for the distribution at each point,
and the full distribution is approximated via interpolation.

Different Parameter Sets. To extend the comparison of
the three methods, two additional parameter sets have been
considered:

δ1 = δ2 = γ = 1, α1 = 80, α2 = 100, β = 1, (15)

and

δ1 = δ2 = γ = 1, α1 = 100, α2 = 25, β = 2.5, (16)



TABLE I
COMPARISON OF THE COMPUTATIONAL EFFICIENCY AND ACCURACY OF

THREE DIFFERENT SOLUTIONS OF THE CHEMICAL MASTER EQUATION

FOR THE STOCHASTIC GENETIC TOGGLE MODEL. FOR OUR ANALYSIS,
WE BEGIN AT A KNOWN INITIAL CONDITION OF s1 = s2 = 0 AND

COMPUTE THE DISTRIBUTIONS AT tf = 104s. TWO COMPUTATIONAL

COSTS ARE GIVEN: JODE –THE TIME REQUIRED TO SOLVE THE

REDUCED SYSTEM OF ODES AND Jtotal–THE TOTAL TIME REQUIRED

TO REDUCE AND SOLVE THE SYSTEM. SEE ALSO FIGS. 7-9.

For Parameters (14) and final time tf = 104s
Method Matrix Size Jsolve

a Jtotal ∞-norm Error
FSP 1014 7.27s 7.41s ≤ 5.3× 10−5

FSP-I 353 0.89s 1.40s ≈ 2.9× 10−4

SSA (103) - - 6920s ≈ 8.9× 10−3

SSA (104) - - 7.1× 104s ≈ 3.4× 10−3

For Parameters (15) and final time tf = 104s
Method Matrix Size Jsolve Jtotal ∞-norm Error
FSP 3340 287s 288s < 6.4× 10−5

FSP-I 665 7.56s 8.75s ≈ 8.1× 10−5

SSA (104) - - 2.2× 105s ≈ 2.9× 10−3

For Parameters (16) and final time tf = 104s
Method Matrix Size Jsolve Jtotal ∞-norm Error
FSP 2404 93.2s 93.8s < 6.5× 10−6

FSP-I 556 4.09s 5.02s 8.5× 10−4

SSA (104) - - 1.7× 105s 5.6× 10−3

aAll computations have been performed in Matlab 7.2 on a Dual 2
GHz PowerePC G5

which are more computationally difficult to solve (for all
methods) because more reactions occur, and the system
tends to reach a larger portion of the configuration set.
For parameter set (15), the chosen FSP solution includes
all configurations such that [s1] ≤ 120, [s2] ≤ 200 and
[s1][s2] ≤ 700. For the original FSP algorithm this requires
solving an 3340th order ODE and takes 288s to compute, but
with the grid described for the previous set of parameters,
the system is reduced to 665 dimensions and took only eight
seconds to compute. Comparable improvements were also
found for the third set of parameters for which the FSP
solution includes every configuration such that [s1] ≤ 176,
[s2] ≤ 96 and [s1][s2] ≤ 500. Fig. 9 shows the probability
distribution of species s2 for at the time 104s for both pa-
rameter sets (15) and (16) as computed with the FSP and the
interpolation reduced FSP methods, and Table I summarizes
the accuracy and efficiency of the same implementations.
Once again there is very good agreement between the two
solutions. For parameter sets (15) and (16), single runs of the
SSA took 20.8 and 17.4 seconds, respectively. At these rates,
104 simulations take two days for each set yet and yield ten
times worse convergence than any of the other methods.

B. The Toy Heat Shock Problem

Biological systems have evolved many intricate mecha-
nisms to deal with the frequent changes that occur in complex
environments. One particular such system that has received
a lot of recent attention is the cellular heat shock response in
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Fig. 7. Contour plots of the probability distributions of the reachable
configurations of the Genetic toggle regulatory network with parameters in
(14). We begin with a known initial condition of s1 = s2 = 0 and compute
the distributions at tf = 104s. Computations have been made using two
analytical solution techniques: (a) The full, original FSP implementation.
(b) The interpolation-based reduction of the FSP.

E. coli. At higher than normal temperatures, cellular proteins
often fold incorrectly, and are no longer able to perform their
functions. In order to survive, the cell avoids this outcome,
by producing molecular chaperones and proteases, which
refold denatured proteins and degrade irreversibly aggregated
proteins. At the heart of the heat shock response mechanism
in E. coli is the formation of the σ32-RNAP complex [23],
shown in Fig. 10. Here we use a simplified model for
σ32-RNAP formation to illustrate how one can combine
the reduction methods in Subsections IV-B.2 and IV-B.3 to
significantly increase the power of the FSP algorithm.

The simple Heat Shock regulatory mechanism is com-
prised of three reactions,

s1 
 s2 → s3, (17)

where s1, s2 and s3 correspond to the σ32-DnaK complex,
the σ32 heat shock regulator and the σ32-RNAP complex,
respectively. This model of the heat shock subsystem has
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Fig. 8. An alternate representation of the probability distributions of the
configurations reachable in the genetic toggle model with parameters in
(14) (see also Fig. 7). (a) The probability density for species 1, (b) The
probability density of species 2. The density as computed with the full FSP
equations is represented by the smooth line, and the density as computed
with the interpolation based reduction approach is represented with circles,
and the density as computed with the 104 runs ofthe SSA is given by the
jagged line.

been analyzed before using various computational methods
including Monte Carlo implementations [12], [24], [17], [18],
[15].

In the cell, the relative rates of the reactions are such
that the reaction from s2 to s1 is by far the fastest,
and σ32 molecules infrequently escape from DnaK long
enough to form the σ32-RNAP complex. The purpose of
this mechanism is to strike a balance between fixing the
damage produced by heat and saving the cell’s resources,
as a significant portion of cell energy is consumed when
producing heat shock proteins. We use the following set of
parameters values for the reaction rates:

c1 = 10, c2 = 4× 104, c3 = 2,
s1(0) = 2000, s2(0) = s3(0) = 0.

With only the reactions above, the total number of σ32–
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Fig. 9. The probability distribution of the population of s2 molecules in the
genetic toggle model for parameter sets (15). The densities as computed with
the full FSP equations are represented by the solid lines, and the densities
computed with the interpolation based reduction approach are represented
with circles.

RNAPDnaK

RNAP

σ32

σ32

σ32

s1

s2

s3

DnaK

Fig. 10. Schematic representation of the Toy Heat shock model [23].
Species s1, s2 and s3 represent the σ32-DnaK complex, free σ32 and the
σ32-RNAP complexes, respectively. In the model the free amounts of DnaK
and RNAP are assumed constant and are lumped into the reaction rates.
The solid arrows correspond to rapid binding and unbinding of DnaK and
free σ32. The dashed lines correspond to infrequent irreversible binding of
RNAP and σ32.

free or in compounds–is constant, so that s1 + s2 + s3 =
const. With this constraint the reachable states of this three
species problem can be represented on a two dimensional
lattice as shown in Fig. 11a. For our initial conditions
there are 2,001,000 reachable states, and the full chemical
master equation is too large to be solved exactly. There-
fore we wish to find an approximate solution at ant time
of interest. In particular, we wish to find the probability
distribution of the population of s3 at time tf = 300s. We
have acquired this solution seven different methods: (1) the
original finite state projection method (FSP), (2) the FSP
with a multiple time step algorithm (FSP-MTS) [15], (3)
the FSP with the slow manifold assumption (FSP-SM), (4)
the FSP with the interpolation based reduction (FSP-I), (5)
the FSP with first the slow manifold assumption and then
an interpolation based reduction (FSP-SM/I), (6) the basic
stochastic simulation algorithm (SSA), and (7) the SSA with
the slow manifold approximation (SSA-SM). Fig. 12 shows
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Fig. 11. (a) Two dimensional integer lattice representing possible configu-
rations of the toy heat shock model. Here s2 and s3 are populations of free
σ32 molecules and σ32-RNAP compounds, respectively, while s1 is the
population of σ32-DnaK compounds. Reactions s1 
 s2, are represented
by bidirectional horizontal arrows and reactions s2 → s3 is represented
with diagonal arrows. The total number of σ32 is constant, so the chemical
state of the system is uniquely defined by s2 and s3 alone. (b) The same
lattice after applying the finite state projection. Unlikely states have been
aggregated into a single sink state. Each horizontal row of configurations
is separated from the rest by the slow reaction 3 and then is used to form
the fast block generator Hi. (c) The slow manifold FSP that is found by
projecting the dynamics of each fast interconnected set onto its equilibrium
distribution. In this new system, each fast interconnected configuration
subset is represented by a single node. (d) Applying the interpolation-based
projection to the Slow Manifold FSP system. Here the shaded nodes are
interpolation points on which the dynamics are now to be approximated.

the distribution as computed with each of these methods,
and Table II summarizes the efficiency and accuracy of each
method.

Method 1: FSP. For the original finite state projection
approach, we include all configurations such that s2 ≤ 12
and s3 ≤ 342. The resulting master equation that governs
the evolution of the probability distribution on these config-
urations is a set of 4459 ODEs, which takes 750 seconds
to solves and provides an error that is guaranteed to be less
than 3× 10−5.

Method 2: FSP-MTS. By separating the time interval into
150 equal time intervals as described in Subsection IV-A and
[15], one can significantly improve the efficiency of the FSP
for this system. Rather than compute a 4459th order matrix
exponential, one can instead acquire a solution by computing
70 different matrix exponentials each of which is 195th order
or smaller. The total required time of this approach was 40.2
seconds, and the maximum error is guaranteed to be less
than 1.7× 10−4.

Method 3: FSP-SM. In the Heat Shock model, the first
two reactions, s1 → s2 and s2 → s2, are much faster
than the third. These fast reactions are used to define sets
of fast interconnected configurations. If Fig. 11b, these sets
are the horizontal rows of configurations. Using the slow
manifold projection discussed above and in [17], [18], each
fast interconnected configuration set can be collapsed to a
single point to form the 1D lattice Markov chain shown in
Fig. 11c. The reduced problem can now be solved as a system
of only 343 ODEs, which takes only 0.94s to solve including
reduction time.

Method 4: FSP-I. For an interpolation based solution
to the FSP (see Subsection IV-B.3), we have chosen a
grid where s2 is in the set {0,1,2,3,4,5,6,7,8,10,12} and
s3 is in the set {0,1,2,3,5,8,11,14,{14+8n)}}. This enables
us to reduce the 4459th order FSP solution to a set of
539 ODEs. The reduced problem takes 6.1s to compute
(including reduction time), and provides a solution with a
maximum error of 7.7× 10−4. As in the previous example,
our choice of interpolation points may not have provided the
best possible reduction; better choices in terms of accuracy
and efficiency may exist and are left as a topic for further
research.

Method 5: FSP-SM/I. For a fifth solution scheme we have
applied the interpolation based reduction of method 4 to the
slow manifold model of method 3. From the reduced 1D
lattice in Fig. 11c, we have chosen to include only the grid
points where s3 is in the set {0,1,2,3,5,8,11,14,{14+8n}}.
The resulting reduced system contains only 49 ODEs and
takes less that 0.04 seconds to solve (after the reduction), but
its results are nearly indistinguishable from the full system
in that the maximum error is only 8.2× 10−4.

Method 6: SSA. We have also used Gillespie’s stochastic
simulation algorithm to generate the probability distribution.
A single run of the SSA takes about 20 seconds to complete.
104 simulations would take over 50 hours and have not been
computed for this paper.

Method 7: SSA-SM. As discussed above, the toy heat



shock model exhibits two significantly different time scales.
Therefore, in addition to being an excellent candidate for the
analytical FSP-SM method, the heat model is also amenable
to Monte Carlo algorithms that utilize the same time scale
separation reduction. We have applied one such approach
where the SSA is simulated only on its slow manifold.
This method, for which we use the acronym SSA-SM is
very similar to the methods in [11], [12]. This SSA-SM
takes only 0.1s per run and is 170 times faster than the
original SSA, but it still requires many realizations before
the solution to the CME will sufficiently converge. A set of
103 runs take 84 seconds to compute and yields a maximum
error of about 0.012. By increasing the number of runs
by a factor of one hundred, this implementation takes 100
times longer and yields an error less than ten times better
as summarized in Table II.

Longer Time Intervals. If we were to consider longer
time intervals for the toy heat shock model, the size of
the projection would also need to increase. For an interval
of 1200s, we need to include every configuration such that
s2 ≤ 12 and s3 ≤ 1022. This means that we must include
over 13000 configurations with one ODE for each. While
computing a system of that size is often possible using
Krylov based solutions such as Roger Sidje’s expokit [25], it
is beyond the capabilities of our chosen software (Matlab’s
expm(.) routine), especially when there is significant numer-
ical stiffness in the ODE’s. In this case the reduced solutions
are not only beneficial, they are necessary. Fig. 12(b) shows
the distribution of the number of s3 molecules as computed
with the various FSP reduction schemes. In the interpolation-
based FSP reduction, we now use a slightly coarser mesh in
which we have chosen to include all configurations where
s3 is in the set {0,1,2,3,5,8,11,14,{14+12n}}. Once again,
all FSP based methods provide results that are virtually
indistinguishable from the true solution, but they reach these
results in far less time. In particular, the reduced model
formed by projecting the system onto its slow manifold and
then performing the interpolation-based projection results in
a model of only 92 ODEs which takes less than one tenth
of a second to solve.

VI. SUMMARY AND CONCLUSIONS

Recently we showed that one can use the Finite State
Projection (FSP) method to solve the chemical master equa-
tion (CME) and describe the dynamics of discrete stochastic
chemical processes. In this paper, we have reviewed various
systems-theory based approaches that can be used to further
expand the applicability of the FSP. The multiple time
step FSP approach, FSP-MTS,relies upon the linearity of
the CME and the principle of super-position to solve the
problem not as a single large system of ODEs but rather
a set of smaller dimensional ODEs evolving over much
shorter intervals [15]. The other three approaches explored
in this work are based upon linear projections. The first of
these, in Subsection IV-B.1 allows one to obtain a minimal
realization by determining the configurations that are both

TABLE II
COMPARISON OF THE COMPUTATIONAL EFFICIENCY AND ACCURACY OF

VARIOUS SOLUTIONS OF THE CHEMICAL MASTER EQUATION FOR THE

THE TOY HEAT SHOCK MODEL.

For final time tf = 300s
Method Matrix Size Jsolve Jtotal ∞-norm Error
FSP 4459 750s 750s < 3.0× 10−5

FSP-MTS 195a - 40.2s < 1.68× 10−4

FSP-SM 343 0.25s 0.94s ≈ 5.1× 10−4

FSP-I 539 5.1s 6.1s ≈ 7.7× 10−4

FSP-SM/I 49 0.04s 0.78s ≈ 8.2× 10−4

104 SSA Results would take more than 55 hours.
103 SSA-SM - - 84.1s ≈ 0.0116
104 SSA-SM - - 925s ≈ 3.4× 10−3

105 SSA-SM - - 9360s ≈ 1.6× 10−3

For final time tf = 1200s
Method Matrix Size JODE Jtotal ∞-norm Error
FSP 13274 Exceeds machine capabilities
FSP-MTS 325 - 253s < 1.2× 10−4

FSP-SM 1023 4.66s 10.66s ≈ 1.2× 10−4

FSP-I 1012 40.5s 44.6s ≈ 6.1× 10−4

FSP-SM/I 92 0.09s 6.19s ≈ 5.7× 10−4

104 SSA Results would take more than 180 hours.
103 SSA-SM - - 272s ≈ 9.9× 10−3

104 SSA-SM - - 3000s ≈ 3.5× 10−3

105 SSA-SM - - 2.99× 104s ≈ 1.2× 10−3

aFor the multiple time-step FSP algorithm smaller matrices can be
used at the cost of having to compute exponentials more than once.

observable from the output as well as controllable from
the initial condition. The second FSP-SM approach relies
upon projecting the dynamics of the full FSP onto its slow
manifold. Here we have presented a new systems theory
based proof for this approach, which was originally presented
in [17]. In the third, interpolation based FSP-I approach, one
chooses a small subset of configuration points and assumes
(i) that the probability distribution varies linearly between
these points and (ii) that the resulting model has linear
dynamics.

These and similar reduction approaches can yield great
improvements over the original FSP as has been illustrated
here through use of two genetic regulatory networks with
various parameter choices: a stochastic version of the genetic
toggle model and the toy heat shock model. In each case,
reduced order models have been found that are far easier to
solve and analyze yet which retain the important character-
istics of the true system. Furthermore, all of the reduction
approaches presented here can easily be used in conjunction
with one another such that the greatest reductions can often
be achieved by sequentially applying two or more methods.

In the work presented here, the interpolation based reduc-
tions have been chosen a priori with very limited knowledge
of the system. Some choices of interpolation points are
inherently better than others, but we have made no attempt to
find an optimal set in this paper. Current studies suggest that
large benefits can be gained from adaptive strategies for grid
selection, and such approaches can even be combined with
the multiple time step FSP algorithm of [15] so that different
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Fig. 12. The probability distribution of the amount of the σ-TNAP complex
formed at (a) tf = 300s and (b) tf = 1200s as computed using the
toy heat shock model. Different analytical reductions have been applied to
the chemical master equation, and each provides results that are virtually
indistinguishable from the full FSP solution. See also Table II

grids could be used at different instances in time. Finally,
we have limited ourselves to reduced models with linear
dynamics; low order nonlinear models may be both more
accurate and more efficient for many systems. While this
work has shown that enormous reductions are feasible, many
more may be possible with further application of systems
theory on stochastic biological networks.
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