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Abstract

We study a hybrid non-equilibrium pattern formation model combining short-scale Ising model with a continuous slow or
long scale inhibitor. The computation combines alternates Monte-Carlo algorithm with updating of the inhibitor field. It is very
fast, and allows us to study the influence of various factors, such as scale ratios, coupling strength, bias, temperature (level o
noise), anisotropy, etc., on the pattern formation and behavior of emerging non-equilibrium structures.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction where the activator is modeled by cell elements which
can switch between a definite number of states (e.g. de-
Studies of symmetry breaking and pattern forma- scribed by a binary variabke = {0, 1}) in such a way
tion in non-equilibrium systems are commonly based that the state of any element at a given time step is de-
on reaction—diffusion mode[4,2]. A dazzling variety termined by the states of this element and its neighbors
of patterns were obtained using either representative at the previous step. Recent interest to pattern forma-
equations of Ginzburg—Landau type or ad hoc mod- tion on microscopic and nanoscopic scales, especially
els, such as Brusselator or FitzHugh—Nagumo equa- in surface restructuring and catalygi$, brought about
tions containing “activator” and “inhibitor” variables  more intricate models explicitly including intermolec-
with widely separated spatial and temporal scales. Lessular interactions: nonlocal “mesoscopic” models and
common is a cellular automaton (CA) approd8h6], various applications of Monte-Carlo (MC) techniques.
Both reaction—diffusion modeling and MC computa-
tions become technically difficult and lose computa-
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estrelevant scale. Practical considerations dictate usingdiffusive inhibitor equation, and the results of compu-
modest scale ratios in numerical studies of model equa- tations are discussed 8ections 4 and.5
tions of FitzHugh—Nagumo (FN) tyg8], which makes
it difficult to compare numerical results with analytical
results obtained in the “sharp interface" limit when the
scale ratio tends to infinitjf9—13]. MC computations
are short-scale by their nature and cannot be extended
to a macroscopically large region at reasonable cost.
Moreover, they are very sensitive to disparity of charac-
teristic times of alternative transitions that causes waste u, = V2u + u — u°, (1)
of computing time in simulations based on a common
importance-sampling algorithm . CA computations are
more flexible in this respect, as they allow for different
averaging kernels and distinct dynamic algorithms for
“activator” and “inhibitor” particleq5,6]. 1 2
Our choice is zhybrid model that combines Mc £ = [ Ldx, L =35K[Vu|®+ V(u) + eW(u),
computations for a fast short-scale component of the 2)
model with a continuous description of a long-scale
or slow component. Hybrid computations of this kind Where K is rigidity coefficient, v is a symmetric
have been recently applied in modeling of CO oxidation double-well potential, and is an antisymmetric cor-
on Pt(110) , where the main emphasis was on realistic 'ection, which is scaled by < 1 to make its action
description of surface reconstruction and roughening comparable to that of surface tension for structures of
coupled to kinetic oscillations. The aim of the present @ characteristic size large compared to the effective in-
communication is different: setting up asimple and ver- terface thickness. The evolution equation
satile mo_qlel_enabling us to study qualitative_features of XYy = KV — V() — W' () 3)
non-equilibrium patterns. The model described below
can be viewed as a hybrid version of the FN model. The is derived from(2) by applying the dissipative dy-
latter exists in two versions: the original version with namics principle:; = —x8F/éu, wherey is mobility
a fast activator and slow non-diffusing inhibitor that coefficient.Eq. (1) with time scaled by xTo)~! and
generates propagating waves, and the version with alength by./K/Ty corresponds to the particular case
long-scale inhibitor that generates Turing patterns and V(u) = 1/4To(1 — ,42)2, W (u) = 0, whereTy is an ap-
solitary spots. The behavior of hybrid counterparts of propriate energy scale. The bias potential can be cho-

2. Continuous and discrete equilibrium models

The Ising model can be viewed as a discrete ana-
log of the nonlinear reaction—diffusion equation (called
also real Ginzburg—Landau or Allen—Cahn model)

where all coefficients have been rescaled to unity. A
generalized asymmetric dimensional form of this equa-
tion can be derived from the energy functional

both models is discussed 8ections 4 and.5 sen in such a way that it does not affect the position of
Our model is very much different from the cellu- equilibria, e.g.W(x) = Tou(1 — 1/3u?).
lar automaton version of the FN model in R§f4] The simplest discrete analogB€. (1) is MC com-

where MC dynamics imitated fictitious reactions for- putation of transitions between two alternative states
mally generating respective reaction—diffusion equa- ; = +1 on a square lattice with transition probabilities
tions according to the mass action law. It differs as well 1 [E)T
from CA modelg4—6]where cells were modeled asex- P = Min{ze > 1 (4)
citable elements “firing” with a probability depending  \yhere [E] is the change of energy resulting from a
on their neighborhood and, in later models, modified by flip of u. In the symmetric casé is proportional to
mobile inhibitor particleg5,6]. Aiming atthe simplest  {he numbem (0 < n < 4) of nearest neighbors with
possible scheme, we use the classical two-state Ising, gifferent value of:: the proportionality constant is
model as a symbolic analog of an activator species in the jnteraction coefficient > 0. If the energies of the

a bistable reaction—diffusion equation. The connection gjternative states are biased by some vakiEo2the
between these two models is discussedattion 2 energy of a single cell is computed as

The non-equilibrium model is set ufséction 3 by
coupling with either slow diffusionless or long-scale E = euEg+ Jn. (5)
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A comparison between the continuous and discrete Eg = v and the equation of is linear. We shall con-
equilibrium models can be found in a recent publica- sider two hybrid models. In the first modebéction
tion [15]. The correspondence between the two is es- 4), the inhibitor is slow and non-diffusing and obeys
tablished by comparing the characteristic length and locally the dynamic equation
time scales, which are all a@(1) when the continu- )
ous model is scaled as Bq. (1) and the length and ¥V "V = —V—V+ lu, ®)
time units coincide, respectively, with the cell size
and Monte-Carlo cycle (MCC), i.e. the time interval
wherein one transition attempt occurs, on the aver-
age, in each cell. More precisely, MCC can be identi-
fied with the characteristic time= (x| V" (uo)|/uo)~*
computed for some representative valueugf say
that corresponding to one of the stationary states, e.g.
=1 = 2Ty for the symmetric quatric potential, or
t = 1/2 for the dimensionless modgl).

The rigidity coefficient in the dimensional continu-
ous model3) equivalent to the MC algorithm is com-
puted by comparing the the surface energy of a planar
interface separating “up” and “down” domains

wherev, u are, respectively, bias and coupling param-
eters andy~! is the characteristic time. Sinaecan

be rescaled, the relevant parameters are the products
ev, €. Computations usingqgs. (4), (5) and (Bare
carried out by alternately updating the values of the bi-
nary variablex = £1 during one MCC and updating
the values of the continuous variahién each cell by
itegratingEq. (8 using the fourth-order Runge-Kutta
method during the time intervak¢, which is identi-
fied with the duration of MCC. In the second model
(Section 9, the inhibitor is rapidly diffusing and obeys
the linear reaction—diffusion equation with a diffusivity
€D large compared to th@(1) effective diffusivity

) KTn 1 of the binary variable.
aozK/ u’(x)zdxz,/—O/ (1 — u?) du
—00 2 Ja y_lvt =€ 2DV —v—v+ pulu), 9)

2K To. (6)

WIN

where(- - -) denotes averaging over an area large com-

pared to the Ising cell size. This equation is solved on

a “macrogrid” with the units o¢ ! size; the inhibitor

T J values on the macrogrid nodes are updated alternately

o=/ (2 -5 th?) : @) with MCC updates of, using the alternating-direction
implicit schemd17]. The values of are averaged over

This gives the correspondeng@2KTy = 3J at zero each macrogrid unit. The boundary conditions are pe-

temperature. The decrease of surface tension at highetrriodic in all computations.

temperatures leading to an effective interface widening

and increased fluctuations does not have a counterpart

in a continuous deterministic model. The latter defines 4. Diffusionless model

only the intrinsic interface width, while MC compu-

tation based on the Ising model gives also interface  The diffusionless model based &q. (§ simulates

widening due to capillary waves. With growing fluc-  excitable behavior at moderate values of the coupling

with the Onsager surface tensifi6]

tuations, the surface tension vanishegjat > 2.269, parameten. and oscillatory behavior when coupling
and the “up” and “down” phases cease to be separatedis very strong. A simulation run for a symmetric case
beyond this point. (v = 0) starting from uniformy = 0 and random initial

values ofu shows, after a short coarsening stage, a dy-
namic fluctuating pattern seenfhiig. 1. The snapshots
3. Hybrid non-equilibrium models in Fig. 1are taken from computations at different tem-
peratures. One can observe significant nucleation noise
A non-equilibrium hybrid model imitating the FN  (seen as flickering of single cells in “hostile” surround-
system is constructed by making the bias enefgy ings) at high temperatures, while at low temperatures
dependent on the “inhibitor” field described by a  grid-induced anisotropy causes predominantalignment
reaction—diffusion equation. In the simplest version, of domain boundaries along the coordinate axes. Mid-
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Fig. 1. Snapshots of patterns of the binary variabtained at high and low temperatures. Black areas correspane-te-1, and white, to
u = 1. Initial conditions(x, y) = 0 andu(x, y) distributed randomly betweenl and 1. Parameterg:At = 0.006,ex = 0.14, v =0,J = 1.
Grids foru andv: 250 x 250 nodes.

temperature runs are most representative as analogs ofariableu in these figures have been obtained in long
a continuous system with added noise. The average do-simulation runs at different values pfAz. The change
main size increases with decreasing\t, as seen by  of a typical domain size is expressed quantitatively by
comparingrig. 2(a) and (b)The patterns of the binary  the energy plots iffrig. 2(c)
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Fig. 2. Snapshots of patterns of the binary variabitained at high and low temperatures. Black areas correspane-te- 1, and white, to
u = 1. Initial conditionsw(x, y) = 0 andu(x, y) distributed randomly betweenl and 1. Parameters:= 0.8,ex = 0.14,v =0, J = 1. Grids
for u andv: 500 x 500 nodes.
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Fig. 3. Snapshots of a moving spot at a moderate temperature. The levels of the inhibitordiieldhown in gray scale (dark area, low
light area, highv). The interphase boundary for the binary variable is shown by black conteur<1 inside the spoty = 1 outside; crosses
mark “defects”, single cells with = —1 in theu = 1 area). Initial conditionso(x, y) = 0,u = —1 inside and: = 1 outside a circular spot.
Parametersy Ar = 0.006,ex = 0.14v =0, J = 1, T = 0.8. Grids foru andv: 250 x 250 nodes.

While the number of cells in the “up” and “down”  in a direction randomly selected under the influence of
state remains approximately equal, the domains shift fluctuations, and keeps moving into the region of large
perpetually due to a slow drift of the level of the in- vwidening into aboomerang shape and leaving behind
hibitor v in each cell in the direction unfavorable to its @ relaxation trail of large.
current state. The direction of shift of domain bound- ~ More distinct spiral waves are obtained in an asym-
aries is history-dependent at each location. This is seenmetric system with > 0, which introduces a bias in
by Comparing the consecutive Snapshotﬁi'g] 3. The favor of negative values afand, hence, the “up” state
boundary of the “down” state, shown by the solid line, Of «. This causes the regions of “down” state to be rel-
advances where it passes through the region 0 atively narrow. Patterns of broken and distorted spiral
(shownin lighter gray level) and recedes where it passeswaves typical for these conditions are showrfFig.
through the regiom < 0 (shown in darker gray level). 4 take note that the excited domains become thicker
This, in turn, depends on the history of the respecti\/e when the inhibitor slows down, i.e. at smaller values of
locations, which, in the former case, had long been in ¥ At.
the “up” and, in the latter case, in the “down” state.

The structures formed following a transition be-
tween alternative states of the binary variable localized 5. Coupling to long-scale inhibitor
in a compact region are typical for excitable systems.

The snapshots iffig. 3 show evolution starting from The Ising model coupled to long-scale inhibitor gen-
a spot of the “down” state. The spot is set into motion €rates Turing patterns and solitary objects similar to the

(a) yAr=0.001 ) YAr=0.006
1000 g 1000

500

0+ c — :
0 500 1000 0 500 1000

Fig. 4. Adistorted spiral wave pattern of the binary variabtebtained at moderate temperatures with a non-zero bias paranaetedifferent
values ofy Ar. Black areas correspond #o= —1, whitex = 1. Initial conditions:v(x, y) = 0 andu(x, y) is distributed randomly betweenl
and 1. Parametersy = 0.14,¢v = 0.03,J = 1, T = 0.8. Grids foru andv: 1000x 1000.
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Fig. 5. Diagrams in they(, v) and (, y At) planes showing different dynamical behaviour in a system with a long-scale inhibitor. Initial
conditions:v(x, y) = —1,u = —1 inside and: = 1 outside a circular spot. Fixed parameters: 0.2,/ =1,T=1,D =1;y At =0.1 (a),
v = 0.15 (b).

reaction—diffusion mod€L), (9), butshows alargerva-  tinguished here:
riety of behavior due to the impact of intrinsic noise.
Fig. 5(a)summarizes the results of a number of sim-
ulation runs at different values qf andv and fixed
values of other parameters and with identical initial
conditions, with the “down” state inside a circle of a
fixed radius and the “up” state elsewhere. Four para-
metric domains with distinct dynamic behavior are dis-

I The spot disappears—no non-uniform asymptotic
states.
Il A wandering and breathing spot persists.
Il “Wormlike” moving segments persist.
IV “Worms” grow, branch out, and split, leading to a
distorted striped or labyrinthine pattern.
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Fig. 6. Fluctuations of the area (a) and interfacial energk (b) of a wandering spot (Region Il) at different inhibitor diffusivitig3:= 12.5
(upper curves) an® = 6.25 (lower curves). (c) Trajectory of the center of mass of the spptat6.25. Parameterg:= 0.2,/ =1,T7 =1,
u = 0.55v = 0.15; u-grid: 250x 250 nodesyp-grid: 50 x 50 nodes.
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Fig. 7. Two scenarios for interacting spots under conditions corresponding to Region Il. The levels of the inhibitoarfeekhown in gray
scale (dark area, low;, light area, highv). The interphase boundary for the binary variable is shown by black contear{1 inside the spots,
u = 1 outside). Parameters= 0.2, J = 1, T = 14,0=6.254,u = 0.55,v = 0.15; u-grid: 250x 250 nodesyp-grid: 50 x 50 nodes.

A ssimilar diagram in the planed, y Atr)is shownin which may be additionally modified by changing tem-
Fig. 5(b) As in the reaction—diffusion model, coupling perature and the scale ratioThe boundaries between
to the inhibitor acts, generally, in the way opposite to the Regions |-V are approximate, as, due to the in-
the action of surface tension. As a result, formation of trinsic noise, transitions between different types of be-
stretched structures and splitting are favored at larger havior are smooth and there are no sharp bifurcation
w. Patterned states disappear when the response of thdines. In all computations described in this Section,
inhibitor becomes too slow. nucleation of single cells with a state differing from

It should be noted that the diagramdHig. 5do not all four neighbors is suppressed. This does not signif-
exhaust the variety of behavior of the hybrid model, icantly influence the dynamic behavior, except elimi-

(a)
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Fig. 8. (a) Snapshots showing evolution of a “worm" under conditions corresponding to Region Ill. The levels of the inhibitaréeitiown
in gray scale (dark area, low light area, highy). The interphase boundary is shown by black contous(—1 inside the wormy = 1 outside).
(b,c) Fluctuations of the aremand interfacial energ¥ of the worm. Parameters:= 0.2,/ = 1,7 = 1,D = 6.25,x = 0.65,v = 0.15;u-grid:
500 x 500 nodesyp-grid: 100x 100 nodes.
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Fig. 9. Snapshots of patterns of the binary variabtdtained under conditions corresponding to Region IV. Black areas corresponid tol,

and white, tax = 1. Parameters.=0.2,J =1, D = 6.25,x = 0.9, v = 0.15. (a) A segmented pattern obtained through repeated splitting of
a large spot at a high temperatufe£ 1); u-grid: 500 x 500 nodesyp-grid: 100x 100 nodes. (b) A labyrinthine pattern obtained starting from
four large spots at a low temperatui@ £ 0.7); u-grid: 2000x 2000 nodesp-grid: 400x 400 nodes.

nating “flickering” far from interphase boundaries, but plots of absolute values of the area and interfacial en-
considerably speeds up the computation. ergy inFig. 6(a) and (b)but is revealed by comparing
One can see ifrig. 6 that the size and interfacial  the standard deviationg%2) — (m)2)/(m)? = 0.0302
energy of a wandering spot in Region Il remain, onthe for D = 6.25 and 0.0172 foD = 12.5.
average, constant, while the spot undergoes Brownian  Fig. 7illustrates interaction of two spots, which may,
motion in the plane. This solitary structure is an analog under identical conditions, either attract and merge or
of a stationary, rather than a moving spotin the FN sys- repel, dependent on the random factors.
tem; there is no persistent direction of motion, and no  The dynamics of a typical “worm” in Region 11l is
apparent asymmetry in the shape of the spot and distri- illustrated byFig. 8 showing evolution starting from a
bution of the inhibitor in its surroundings. The position, circular spot and growing gradually into a wandering
as well as size fluctuations are caused by the intrinsic and bending stripe. In Region IV “worms” branch out
noise and decrease with growing spot size at larger val- and divide, spreading gradually into a pattern cover-
ues of the inhibitor diffusivity. This is not obvious in  ing the entire plane. The same pattern can be formed

(@) Jp= JV=1 (b)Jh=0.95, Jy=1.05 (©Jy=0.7, Jy=1.3
1000 L
) V%G C}\ (b

500— ? 1] -
20 f’ {‘ F
s 3c

0 T
0 500 1000

Fig. 10. Effect of anisotropic interactions. Black areas correspondto-1, and white, ta: = 1. (a) Isotropic structure; (b) weak anisotropy;
(c) strong anisotropy. Paramete¢s= 0.2, 7 = 1, D = 6.25, x = 0.65,v = 0.15; u-grid: 1000x 1000 nodesp-grid: 200x 200 nodes.
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as a result of repeated splitting of a large spot, fol- References

lowed by spreading and multiplication of “worms”.
At higher temperatures, repeated splitting, leads to a
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atures, splitting is suppressed, and persistent growth
and branching leads to a labyrinthine pattern, as in
Fig. 9(b) Take note that the patches grown out of four
spots in this computation remained separated, since
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state, requiring activation, is also suppressed at low
temperatures.
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6. Conclusions

The models described above reproduce princi-
pal features of the non-equilibrium reaction—diffusion
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algorithm is very fast, and allows us to study the influ-
ence of various factors, such as scale ratios, coupling
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