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Fully parallel algorithm for simulating dispersion-managed
wavelength-division-multiplexed optical fiber systems
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An efficient numerical algorithm is presented for massively parallel simulations of dispersion-managed
wavelength-division-multiplexed optical fiber systems. The algorithm is based on a weak nonlinearity
approximation and independent parallel calculations of fast Fourier transforms on multiple central processor
units (CPUs). The algorithm allows one to implement numerical simulations M�2 times faster than a direct
numerical simulation by a split-step method, where M is a number of CPUs in a parallel network. © 2002
Optical Society of America
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A wavelength-division-multiplexed (WDM) dispersion-
managed (DM) optical fiber system is the focus of cur-
rent research in high-bit-rate optical communications.
High capacity of optical transmission is achieved with
both wavelength multiplexing and dispersion manage-
ment (see, e.g., Refs. 1 and 2). Wavelength multiplex-
ing allows the simultaneous transmission of several
information channels, modulated at different wave-
lengths, through the same optical fiber. Dispersion-
managed3 –6 optical f iber systems are designed to
achieve low (or even zero) path-averaged group-
velocity dispersion (GVD) by periodic alternation
of the sign of the dispersion along an optical fiber.
Second-order GVD (dispersion slope) effects and
path-averaged GVD effects cause optical pulses in
distinct WDM channels to move with different group
velocities. Consequently, modeling of WDM systems
requires simulation of a long time interval. Enormous
computation resources are necessary to capture accu-
rately the nonlinear interactions between channels,
which causes the bit-rate capacity to deteriorate. The
large computational resources required for simulating
WDM transmission over transoceanic distances make
parallel computation necessary. Here an efficient
numerical algorithm is developed for massive parallel
computation of WDM systems. The required compu-
tational time is inversely proportional to the number
of parallel processors used. This makes feasible a
full-scale numerical simulation of WDM systems on a
workstation cluster with a few hundred processors.

Neglecting polarization effects and stimulated Ra-
man scattering and Brillouin scattering, one can de-
scribe the propagation of WDM optical pulses in a DM
fiber with a scalar nonlinear Schrödinger equation:
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z is the propagation distance along an optical fiber;
A�t, z� is the slow amplitude of light; b2 and b3 are
the first- and second-order GVD, respectively, which
are periodic functions of z; s � �2pn2���l0Aeff� is the
nonlinear coeff icient; n2 is the nonlinear refractive in-
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dex; l0 � 1.55 mm is the carrier wavelength; Aeff is the
effective f iber area; zk � kza �k � 1, . . . , N� are ampli-
fier locations; za is the amplifier spacing; and g is the
loss coefficient. Distributed amplification can be also
included in G�z�.
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where c�z� � s�z�exp�2
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integrating Eq. (2) over z from z0 to z, one obtains the
following integrodifferential equation:
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Assume that if the nonlinearity is small, znl .. zdisp,
where znl � 1�jpj2 is a characteristic nonlinear length,
zdisp � t2�jb2j is the dispersion length, and p and t

are the typical pulse amplitude and width, respectively.
ĉ�v, z� is a slow function of z on any scale L ,, znl be-
cause all of the fast dependence of û is already included
in the term exp�ib�z��.7 – 9 This term is nothing more
than an exact solution of the linear part of Eq. (2). In
the f irst approximation one can neglect the slow de-
pendence of ĉ on z in the interval mL # z , �m 1 1�L;
i.e., one can replace ĉ�v, z� with ĉ�v, mL� in the non-
linear term, R (m is an arbitrary nonnegative integer
number), and obtain from Eq. (3):
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ĉ�v, �m 1 1�L� � ĉ�v,mL�

1iR�ĉ�v,mL�,v, �m 1 1�L,mL� 1 O�L�znl�2. (5)

The term O�L�znl�2 indicates the order of accuracy
of this approximation. Equation (5) enables one to
find ĉ�v, �m 1 1�L� given ĉ�v, mL�. Thus one can
recover u�t, z� by using the definition of c. However,
for WDM simulation, the accuracy O�L�znl�2 is not
always suff icient. The next-order approximation is
obtained by inclusion of the first-order correction,
ĉ�1��v, z�, in the nonlinear term, R:

ĉ�v, �m 1 1�L� � ĉ�v,mL� 1 iR�ĉ �1��v,z�,v, z,mL�
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ĉ �1��v, z� � ĉ�v,mL� 1 iR�ĉ�v,mL�,v, z,mL� . (7)

Equations (4), (6), and (7) form a closed set for
the approximate calculation of ĉ�v, �m 1 1�L� given
ĉ�v, mL�, where O�L�znl�3 is the accuracy of the
approximate solution, which is controlled by the
appropriate choice of L. The main obstacle
in the numerical integration of Eqs. (4), (6), and (7)
is the computation of the integral term R�v̂�v, z�,
v, z, mL�, which generally requires M 3 N3 oper-
ations for each iteration, where N is the number
of grid points in v or t space and M is the num-
ber of grid points for integration over z. Below, a
very eff icient numerical algorithm for calculations
R�v̂�v, z�, v, z, mL� is presented.

In t space Eq. (4) becomes

F̂21�R�v̂�v�,v, z,mL�� �
Z z
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where F̂21 is the inverse Fourier transform over v;
V �z��t, z� � jv�z��t, z�j2v�z��t, z� and G�z� is the integral
operator corresponding to the multiplication operator
Ĝ�z��Ĉ�z��v, z�� � exp�2ib�z��V̂ �z��v, z� in the v space.
It follows from Eqs. (4) and (6)–(8) that numerical cal-
culation of R�Â, v� requires the following eight steps:

(i) The inverse Fourier transform of v̂�z��v, mL� �
ĉ�v, mL�exp�ib�z�� for every value of z�mL , z # �m 1

1�L�.
(ii) A calculation of V �z��t, mL� from v�z��t, mL�.
(iii) The forward Fourier transform of V �z��t, mL�.
(iv) A numerical integration (summation) of c�z0� 3

exp�2ib�z��V̂ �z0��v� over z0 (from z0 � mL to z0 � z) for
every values of v and z�mL , z # �m 1 1�L�. This
integration gives ĉ �1��v, z� according to Eq. (7).
(v) The inverse Fourier transform of v̂�z��v, z� �
ĉ �1��v, z�exp�ib�z�� for every value of z, mL , z #
�m 1 1�L. [Note that in contrast with step (i) it is
necessary to take into account the dependence of ĉ �1�

on z.]
(vi)–(viii) These steps are similar to steps (ii)–(iv)
except that the new value of v̂�z��v, z� is used that was
obtained in step (v).

The forward and inverse Fourier transforms can
be performed with the fast Fourier transform, which
requires N Log2�N� numerical operations. Steps
(i)–(iii) need only the value of c�t, mL�. These steps
can be performed independently and simultaneously in
a network of M central processor units (CPUs), shown
schematically in Fig. 1. The number of CPUs, M, co-
incides with the number of grid points for integration
over z. Thus the effective computational time equals
the time necessary to perform 2N Log2�N� operations
on complex numbers in one CPU. As shown below,
to estimate effective computational time one always
refers to the number of numerical operations in one
CPU if all calculations can be implemented simul-
taneously in different CPUs without communication
between them.

The resulting values of V �z��t, mL� [after step (iii)]
are a set of vectors am �m � 1, 2, . . . , M� consisting
of N complex numbers each. Every vector am is
stored in the memory of the mth CPU (or in memory
assigned to mth CPU in shared memory network).
To perform step (iv) one replaces these vectors by the
new vectors bm: bm �

Pm
j�1 aj �m � 1, 2, . . . , M�.

Here a simple parallel algorithm is given. Note that
this algorithm can be improved, but this improvement
is outside the scope of this Letter. It is assumed
that M is a power of 2: M � 2Me , where Me is an
integer. The proposed algorithm requires Me sub-
steps. The vectors b�k�

m �m � 1, 2, . . . ,M� are results
of the kth substep stored in memory, b�Me�

m � bm.
The first substep is to sum up every pair of vectors:
a2m 1 a2m11 to get b�1�

1 � a1, b�1�
2 � a1 1 a2, . . . ,b

�1�
M21 �

aM21, b�1�
M � aM21 1 aM . This summation requires

N operations. By induction one can see that
after k substeps, b�k�

m �
Pm

j�1 aj for 1 # m #

2k, b�k�
m �
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j�2k11 aj for 2k 1 1 # m # 2k 1

2k, . . . , b�k�
m �

Pm
j�2Me22k11 aj for 2Me 2 2k 1

1 # m # 2Me . Note that M vectors are now grouped
in M�2k blocks with the appropriate summation
inside each block. To perform the k 1 1th substep,
it is necessary to double the block size. This can
be done by addition of the last element of each odd
block to each element of next even block. To do
this, one first creates in memory 2k copies of the
last element of each odd block, which requires kN
operations in a parallel CPU network. (A number of
copies can be doubled by memory forking after each
N operations.) To complete the k 1 1th substep,

Fig. 1. Schematic of parallel computation algorithm and
required number of numerical steps. FFT1, FFT2, . . . rep-
resent fast Fourier transforms in the f irst CPU, second
CPU, etc., respectively. The right-hand side shows sche-
matically calculation of vectors bm (see text).
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Fig. 2. Power distributions of f ive WDM channels after
propagation of pseudo-random sequences of Gaussian
pulses over 104 km. Only a small part of the total
computational interval of 1000 ps is shown.

it is now enough to simultaneously add 2k copies to
each element in the even block, requiring N opera-
tions. The total number of operations for step (iv) is
�1 1 2 1 . . .Me�N � Me�Me 1 1��2. Steps (v)–(viii)
can be done in 	N �2 Log2�N � 1 Log2�M�� operations.
[In step (viii) it is only necessary to calculate bM
requiring N Log2�M� operations.] Thus the total
number of operation for steps (i)–(viii) is

N�4 Log2�N� 1 Log2�M� 1 Log2�M� �Log2�M � 1 1��2�

	N
∑
4 Log2�N� 1

Log2�M�2

2

∏
. (9)

Direct solution of Eq. (2) by a split-step method with
the same accuracy (for the same size of numerical step,
L�M , and the same number of points N in v space)
requires 2MN Log2�N� operations. Comparing this
with expression (9), one can conclude that the pro-
posed parallel algorithm allows one to do numerical
simulations with the same numerical accuracy 	M�2
times faster using a network of M parallel CPUs.
However, the proposed algorithm is approximately
two times slower if only one CPU is used.

Numerical simulations of the WDM system were
performed by use of both the split-step method
for nonlinear Schrödinger equation (2) and the nu-
merical algorithm given by Eqs. (4), (6), and (7)
to demonstrate the accuracy of the proposed nu-
merical scheme. Simulations were performed for
five WDM channels (20 Gbits�s per channel) over
a typical transoceanic distance of 104 km. The
channel spacing was 0.6 nm. The GVD periodically
alternates between spans of standard monomode
fiber [b�1�

2 � 220.0 ps2�km, b
�1�
3 � 0.1 ps2�km, s1 �

0.0013 �km mW�21, length L1 � 40 km] and disper-
sion-compensating f iber [b�2�

2 � 103.9 ps2�km, b
�2�
3 �

20.3 ps3�km, s2 � 0.00405 �km mW�21, length
L2 �2b

�1�
2 L1�b

�2�
2 km] so that the average GVD is

zero. Fiber losses and amplifiers were not considered.
However, they can be easily included in the coeff icient
c�z�. A pseudo-random binary sequence of length 20
was used for every WDM channel. The boundary
conditions are periodic in time. Each binary 1 was
represented by an initially zero-chirp Gaussian pulse
(return-to-zero format) of 10-ps width and peak power
juj2 � 1 mW at the beginning �z � 0� of the fiber line,
which is taken at the middle of a standard monomode
fiber span. The integration length, L [see Eqs. (4),
(6), and (7)], is set to be equal to �L1 1 L2��4; M � 29;
and N � 211. Figure 2 shows the pulse power dis-
tribution (simultaneously in all f ive channels) after
the pulses propagate 104 km, obtained from both the
split-step and the proposed parallel algorithms. The
differences in power distribution between these two
simulations are less than 1%, so the two curves are
indistinguishable in Fig. 2. Numerical simulations
were performed on the usual workstation without
the use of parallel computations. The objective of
this numerical example is to demonstrate the relative
accuracy of the numerical algorithm. Hardware im-
plementation of the parallel simulation for numerical
algorithm (4), (6), and (7) is beyond this Letter.

One can conclude that the proposed parallel numeri-
cal algorithm allows one to implement numerical simu-
lations of Eq. (1) 	M�2 times faster than a direct
numerical simulation of that equation by the split-step
method with the same accuracy. The absence of
communications between parallel CPUs during the
computation of the fast Fourier transform allows one
to implement the proposed massive parallel algorithm
on workstation clusters.
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