
BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

PHASE TRANSITION KINETICS IN SYSTEMS WITH

LONG-RANGE INTERACTIONS

by

KIPTON MARCOS BARROS

B.S., Carnegie Mellon University, 2001

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2010



Approved by

First Reader

William Klein, Ph.D.
Professor of Physics

Second Reader

Karl Ludwig, Ph.D.
Professor of Physics



Acknowledgments

This work was made possible by many friends and collaborators. First among them is

my advisor William Klein who not only introduced me to the subject of my dissertation

research, but provided guidance and support in innumerable ways. A second close collabo-

rator is Harvey Gould. Through their enthusiasm, patience, and kindness, Bill and Harvey

nurtured my development as a researcher.

The wisdom provided by senior graduate students and postdocs has been invaluable;

I would like to thank Louis Colonna-Romano, Jan Fiala, Natali Gulbahce, Aaron Santos,

Aaron Schweiger, Hui Wang, and Junchao Xia.

It is a pleasure to recall the many stimulating discussions I’ve had with my friends and

collaborators; I would like to thank Ronald Babich, Richard Brower, Ranjit Chacko, Clau-

dio Chamon, Michael Clark, Rachele Dominguez, Jack Douglas, Paul Krapivsky, Claudio

Rebbi, Sidney Redner, and Andrea Velenich, among many others.

I am grateful for steady support from Cheryl Endicott and Ilona Lappo of the Center

for Computational Science, and from Mirtha Cabello of the Department of Physics – these

wonderful people have created a “home away from home” for graduate students.

Finally, I would like to acknowledge the encouragement and enduring patience of my

family – especially my partner, Mina Khanlarzadeh, to whom I dedicate this work.

iii



PHASE TRANSITION KINETICS IN SYSTEMS WITH

LONG-RANGE INTERACTIONS

(Order No. )

KIPTON MARCOS BARROS

Boston University, Graduate School of Arts and Sciences, 2010

Major Professor: William Klein, Professor of Physics

ABSTRACT

Non-equilibrium physics in model systems with long-range Kac-type interactions is in-

vestigated. There are at least two advantages to working with long-range, near-mean-field

models: (1) analytic calculations are tractable and (2) predictions can be made that are

independent of system details. The latter gives hope that the phenomenology of sim-

ple models reflects real systems with effective long-range interactions (e.g., polymers and

possibly metals).

In this dissertation I address two important phase transition processes: unstable growth

and nucleation. The former occurs when a system is quenched into an unstable regime.

The Cahn-Hilliard-Cook (CHC) linear theory is a description of the early time ordering

dynamics following a critical quench and is applicable to systems with long-range inter-

actions. I generalize the CHC linear theory in two ways. First, I construct a systematic

perturbation expansion beyond the CHC theory in order to describe continuous ordering at

later times; unlike prior work, the expansion is not subject to ultraviolet divergences. Sec-

ond, in phase transitions which break a spatial symmetry, I demonstrate that a CHC-like

theory can emerge even if the CHC assumptions are not met at the time of the quench.

Nucleation dynamics describes the process of escape from metastable equilibrium. Sys-

tems with long-range interactions have a well defined spinodal limit of metastability. I de-

rive analytical results describing the character of nucleation when the system is quenched



deep into the metastable phase, near the spinodal. In the case of the fluid-to-solid tran-

sition in three dimensions and greater, the nucleating droplets are predicted to have an

onion-structure (multilamellar-vesicle) symmetry, completely unlike the stable phase. I

also discuss nucleating droplets for solid-to-solid transitions in two dimensions.
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Chapter 1

General introduction

1.1 Motivation

The subject of this dissertation is the kinetics of phase transitions. I will focus on two

broad categories of phase transitions: continuous and first order. A well known continuous

phase transition occurs in the ferromagnet. Above the critical temperature Tc (also known

as the Curie temperature) the ferromagnet is not magnetized. Below Tc the ferromagnet

obtains a “spontaneous” equilibrium magnetization m (for simplicity, m is restricted to be

a scalar, either positive or negative). An important non-equilibrium process is initiated

when the ferromagnet is quenched from above Tc to below Tc. Following the quench, local

domains of enhanced magnetization form and then coarsen. Despite extensive study, many

details of this process are still not understood.

First order phase transitions, unlike continuous phase transitions, allow for metastable

phases. As already mentioned, below Tc the ferromagnet in equilibrium adopts some

nonzero magnetization m even without the presence of an external magnetic field h. If

an external field h 6= 0 is applied, the equilibrium condition is that m be aligned with h.

If the directions of m and h are opposite, the magnet is an metastable phase. The mech-

anism by which a long-lived metastable phase eventually decays to equilibrium involves

nucleation. A nucleation event occurs when (rare) fluctuations appear in the metastable

phase that initiate a rapid decay process. In the classical theory of nucleation this occurs

through a compact object called the nucleating droplet. The droplet can be pictured as

an “island” of the stable phase living in a “sea” of the metastable phase [1]. The classical

theory of nucleation is valid when there is little free energy difference between metastable

1
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and stable phases (i.e., h ≈ 0). For quenches deep into the metastable phase, the classical

theory is no longer effective and an alternate description is necessary [2].

Another example of a first order phase transition is the liquid-solid transition, e.g.,

freezing in water. Below 0 Celsius the equilibrium phase of water is ice. Water can also

be supercooled into a long lived (non-equilibrium) metastable liquid phase. The decay of

the metastable liquid phase occurs through nucleation. The nucleating droplet in this case

takes the form of a seed crystal. In simple models of liquid-to-solid nucleation, and for

deep quenches, the nucleating droplet often has a structure completely different than that

of the stable phase crystal (see Section 3.3 and Refs. [3, 4]). This result is an example of

the “Ostwald step rule” [5]. Understanding the mechanisms of nucleation is of significant

theoretical and practical interest, with important applications to materials science and

chemistry.

In this dissertation I will consider simple model systems with long-range interactions

of the specific form given by Kac [6]. Systems with Kac interactions have convenient

analytic properties allowing them to be studied within a non-trivial mean-field framework.

This “Kac mean-field theory” involves a careful order of limits: first the system volume

is taken to infinity, second the interaction range is taken to infinity (while weakening the

interaction strength). One appeal of working with mean-field systems is mathematical

tractability. Another is universality: sometimes predictions can be made that are largely

insensitive to system details. Universality offers hope that theoretical results, obtained

from simple models, apply to real systems.

The mean-field assumption may seem drastic since the the microscopic interactions

in most real materials are of finite range due to screening. Still, mean-field theory may

apply if the system has effective long-range interactions (i.e., long-range interactions that

emerge in a coarse grained description). Polymer systems are a good example: mean-field

theories of polymers, such as the Flory-Huggins theory, are effective due to large persistence

lengths [7]. Materials such as metals may also admit accurate mean-field descriptions,

owing to effective long-range elastic interactions [8].
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Much of the work in this dissertation builds on the classical Ising model, a toy model

of ferromagnetism, in which spin degrees of freedom (each either up or down) are arranged

on a lattice. In the classical Ising model all interactions are between nearest neighbor

spins only. I will work with a generalized Ising model in which pairs of spins interact

through a long-range Kac potential. One particularly simple Kac potential is the radial

step function: pairs of spins, separated by a distance d, do not interact if d > R and

interact with a fixed strength that is proportional to R−d if d < R. The interactions

may be either ferromagnetic or antiferromagnetic (repulsive) depending on a choice of

sign. Systems with ferromagnetic interactions, considered in Chapter 2, exhibit uniform

spontaneous magnetization. Systems with antiferromagnetic interactions, considered in

Chapter 3, have modulated, spatially nonuniform, phases at low temperatures [9].

In Section 1.3.2 it is demonstrated that, for large interaction range R, the Ising model

partition function may be represented as a functional integral over φ(~x), the coarse grained

(locally averaged) magnetization [6, 10]. The probability of a configuration φ(~x) is given

by the Boltzmann factor e−βF , where the coarse grained free energy functional F [φ] (also

known as the Landau-Ginzburg-Wilson effective Hamiltonian) is derived from the micro-

scopic Hamiltonian. A remarkable property of Kac interactions is that, upon scaling all

lengths by R, the free energy functional can be expressed as F = RdF̃ where F̃ has no

R dependence. Thus, large values of R serve to damp statistical fluctuations. In the

Kac mean-field limit, where R → ∞, Laplace’s method enables the exact calculation of

the partition function. Kac mean-field theory is analogous to quantum mechanics in the

“classical” limit; Rd corresponds to ~
−1.

Systems with long-range interactions provide an excellent context with which to study

metastable phases and nucleation. Metastable phases correspond to local minima of the

free energy functional – they are stable to small fluctuations. Control parameters, such

as the temperature and external magnetic field, affect the free energy functional and the

stability of the metastable phase. The spinodal curve is the locus of control parameters at

which the metastable phase has marginal stability; it is an inherently mean-field object.
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Critical phenomena occurs at the spinodal.

A metastable phase, although locally stable, will eventually decay to the stable phase

if the interaction range R is finite. The decay process is initiated by the formation of a

nucleating droplet. In Section 1.5.1 I introduce the mean-field theory of nucleation [1]. The

rate of nucleation is proportional to exp(−β∆F ) where ∆F ∝ Rd is the free energy cost

of the nucleating droplet (metastable equilibrium is valid when R≫ 1, which is assumed).

The nucleating droplet is the configuration of minimum free energy that straddles the

stable and metastable wells: a saddle point of the free energy functional. As the spinodal

limit of metastability of approached, the free energy cost of the nucleating droplet typically

decreases. Nucleation near the spinodal has a character different than that predicted by

the classical theory [2], and is studied in Section 2.2 in the case of the Ising ferromagnet.

Ising model dynamics is the subject of Section 2.3. Although the Ising model is usually

introduced as purely equilibrium model, it can be extended with many possible dynam-

ics while preserving the Boltzmann equilibrium distribution. Most common are spin-flip

Glauber (SFG) and Metropolis (SFM) Monte Carlo dynamics (Section 2.3.1). Effective

Langevin equations for both SFG and SFM dynamics in the large R limit are derived in

Section 2.3.2. Noisy gradient flow (NGF) dynamics is another possibility and is described

in Section 1.4. Unlike SFG and SFM dynamics, NGF dynamics is without a microscopic

basis, being defined directly in terms of the coarse grained magnetization. Although these

three dynamics are normally expected to have the same qualitative behavior, surprising

differences are encountered in Sections 2.4.2 and 2.4.3.

The ferromagnetic ordering process following a quench from above to below the critical

temperature is considered in Section 2.4. I focus on the case of continuous ordering, in

which the total magnetization is not conserved. The continuous ordering process occurs in

several temporal stages. At the earliest stage the coarse grained magnetization, φ(x, t), is

small and the dynamical equations can be linearized about φ(x) = 0. The result is the so-

called Cahn-Hilliard-Cook (CHC) linear theory [11, 12]. The main prediction of the CHC

linear theory is that the Fourier modes φ(k) grow exponentially at early times. Scaling
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arguments indicate that φ ∼ R−d/2, so the CHC theory lasts a time of order lnR before

the condition φ≪ 1 fails [7], which has been confirmed in Ising model simulations [13, 14].

After the CHC linear theory fails there is a transient nonlinear stage, succeeded by an

extended coarsening stage [15, 16].

The transient stage immediately following the breakdown of the CHC theory has been

the subject of much study [17, 18, 19, 20, 21, 22]. Important progress was made when it was

realized that the CHC prediction for the structure factor is just the leading order in an R−d

perturbation expansion. Higher orders in the expansion were calculated explicitly using a

Landau-Ginzburg φ4 field theory [23]. One difficulty encountered is that corrections to the

CHC theory diverge with the ultraviolet (UV) cut-off Λ, a problem familiar from quantum

field theory [24]. Regularization – an explicit choice of Λ – is possible but not satisfactory;

the effectiveness of the Langevin equation depends on a decoupling from microscopic system

details.

I will show in Section 2.4.3 that the R−d expansion of the structure factor for the

continuous ordering process is free of UV divergences in the special case of SFG dynamics.

I will derive the first correction to the CHC theory analytically and demonstrate agreement

with Ising simulation data. Similar attempts to develop an R−d perturbation expansion for

SFM dynamics are stymied by a non-analyticity at φ = 0: namely, |φ| appears explicitly in

the Langevin equation. This difficulty is actually a virtue: the first correction to the CHC

theory enters at order Rd/2 rather than R−d, and leads to the prediction that the CHC

theory fails earlier for SFM dynamics than for SFG dynamics. In Section 2.4.2 I will show

simulation results that are consistent with this prediction.

Models with long-range repulsive interactions exhibit modulated (spatially nonuniform)

phases [9]. A typical example is the long-range antiferromagnetic Ising model discussed

in Section 3.1. At high temperatures this model exhibits a disorder phase, while at low

temperatures spatial patterns form. In two dimensions there are three possible phases: the

disorder phase, the stripe phase and the clump phase (bubble regions of enhanced magne-

tization arranged in a hexagonal lattice structure). Similar phenomena have been observed
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in a variety of systems with effective long-range repulsive interactions including “magnet

garnet films modeled as a dipolar Ising ferromagnet, Langmuir monolayers, adsorbates

on metal surfaces, two-component vesicles, and liquid crystal films of achiral molecules

undergoing chiral symmetry breaking” [9].

In the mean-field limit the disorder phase terminates at a well defined spinodal limit of

stability, as is discussed in Section 3.1.1. The spinodal can be universally characterized with

only a few physical parameters and exhibits critical behavior, e.g., divergent fluctuations.1

The antiferromagnetic Ising model has up/down magnetization symmetry. At zero

magnetization the disorder phase terminates at a critical point. In Section 3.2.1 the phase

diagram in the vicinity of the critical point is analyzed. The result is illustrated in Fig. 3·3

and includes coexistence and spinodal curves separating disorder, clump, and stripe phases.

The phase diagram is universal to a large class of models with long-range repulsive inter-

actions. An investigation of nucleation near the critical point presented in Section 3.2.3.

By definition, the spinodal demarcates the limit of metastability – the point at which

the Hessian of the free energy functional has modes with zero eigenvalue (cf. Section 3.2.2).

A unique property of the disorder phase is that, at the spinodal, there is a continuum of

unstable modes – all Fourier wave vectors with magnitude |~k| = k0 become unstable. As

a result, there are many interesting saddle points of the free energy functional near the

disorder phase spinodal, as demonstrated in Section 3.3. The structure of the nucleating

droplet (the saddle point with minimum free energy) is described in Section 3.3.5; in

two dimensions the nucleating droplet has a hexagonal clump structure while in three

dimensions and above it has an onion structure.

If a system is quenched beyond the metastable phase, there is no nucleation barrier and

the phase transition kinetics will be unstable growth. One example, continuous ordering of

the ferromagnet, was already discussed. In Section 3.4 I consider unstable growth processes

in models with long-range repulsive interactions. The transitions in these models exhibit

spatial symmetry breaking (the initial phase contains a symmetry not present in the final

1In mean-field theory all measurements, including measurements of fluctuations, are calculated from the
neighborhood of the free energy functional minimum.
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phase). I will demonstrate that transitions involving spatial symmetry breaking exhibit an

emergent CHC-like linear theory even when the classical CHC theory does not apply. This

emergent theory differs from the CHC theory in two interesting ways: exponential growth

does not begin immediately following the quench, and the objects that grow exponentially

are not necessarily Fourier modes.

The remainder of this chapter will introduce theoretical tools to be used in rest of the

dissertation.

1.2 The Ising model

1.2.1 Definition

The Ising model is defined on a lattice of spins {s} = {s1, s2, . . . }, each spin taking the

value 1 or −1. The energy of a spin configuration is

E{s} = −1

2

∑

i,j

Ji,jsisj − h
∑

i

si. (1.1)

Spins interact with each other through the coupling, Ji,j, and also interact with an external

magnetic field h. The classical Ising model has only nearest neighbor (nn) couplings

J
(nn)
i,j =







1 if(i, j) ∈ nn

0 otherwise
(1.2)

Consider an ensemble with fixed temperature T . Equilibrium properties of the Ising model

derive from the equilibrium partition function

Z =
∑

{s}
e−βE{s}, (1.3)

where β = T−1 and the Boltzmann constant is chosen to be kB = 1. At fixed temperature

the probability of any particular spin configuration {s} is given by

P{s} =
1

Z
e−βE{s}. (1.4)
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The free energy is defined as

F = −β−1 lnZ. (1.5)

Derivatives of the free energy give useful thermodynamic quantities such as the mean

magnetization,

− ∂

∂h
F = β−1 1

Z

∂

∂h

∑

{s}
e−βE{s}, (1.6)

=
∑

{s}
(
∑

i

si)P{s}

= 〈M〉 ,

and the susceptibility

− ∂2

∂h2
F =

∂

∂h
〈M〉 (1.7)

= 〈M2〉 − 〈M〉2.

The exact evaluation of the partition function Z is often difficult, if not impossible. (The

two dimensional Ising model has been solved exactly only when h = 0.) Most often it is

necessary to make some sort of approximation.

1.2.2 The näıve mean-field approximation

Consider the mean magnetization at the kth lattice site,

〈sk〉 = P[sk = 1] − P[sk = −1] (1.8)

=
1

Z





∑

{s};sk=1

e−βE{s} −
∑

{s};sk=−1

e−βE{s}



 .

Decompose the energy function as

E{s} = E1{s′} + skE2{s′}, (1.9)
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where {s′} denotes the collection of spins {s} excluding sk and where

E1{s′} = −1

2

∑

i6=k;j 6=k

Ji,jsisj −
1

2
Jk,k − h

∑

i6=k

si (1.10)

E2{s′} = −
∑

i6=k

Jk,isi − h. (1.11)

Using this decomposition Eq. 1.8 becomes

〈sk〉 =

∑

{s′} e
−βE1{s′}

[

e−βE2{s′} − e+βE2{s′}
]

∑

{s′} e
−βE1{s′}

[

e−βE2{s′} + e+βE2{s′}
] . (1.12)

In the näıve mean-field theory one makes the uncontrolled approximation

∑

j

Jkjsj → J〈sk〉 (1.13)

where J is some constant representing the overall interaction strength. Under this approx-

imation E2 has no dependence on {s′} and Eq. 1.12 reduces to

〈sk〉 =
e−βE2 − e+βE2

e−βE2 + e+βE2
= tanh(βJ〈sk〉 + h). (1.14)

Because the system is constructed to be translationally invariant, 〈sk〉 = m is the mean

magnetization per spin and Eq. 1.14 can be written as

m = tanh[β(Jm+ h)]. (1.15)

Equation 1.15 is the mean-field equation of state and can be solved numerically. For h = 0

it predicts a critical temperature of β−1 = J .

1.2.3 The fully connected Ising model

Näıve mean-field theory is exact for the fully connected Ising model, in which every pair

of spins interacts. The fully connected Ising model is realized by choosing

J
(inf)
i,j =

J

N
, (1.16)
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and has a well defined thermodynamic N → ∞ limit.

Expand the partition function, Eq. 1.3,

Z =
∑

M

∑

{s};
P

si=M

e−βE{s}, (1.17)

where the inner sum is over all spin configurations which have magnetization M . Since all

pairs of spins interact equally, E{s} is a function of M only. The partition function can

be rewritten as

Z =
∑

M

exp [−βF (M)] , (1.18)

where

F (M) = E(M) − β−1 ln Ω(M) (1.19)

and Ω(M) denotes the number of spin configurations {s} that have magnetization M . It

will become evident that the function F (M) evaluated at its minimum is the system free

energy.

The energy is simply

E(M) = −1

2

∑

i,j

J
(inf)
i,j sisj − h

∑

i

si (1.20)

= −N
[

J

2
m2 + hm

]

,

where

m = M/N. (1.21)

Now turn to the calculation of Ω(M). At fixed M , let n+ and n− denote the the number of

up spins and down spins, respectively. From the relations n+ +n− = N and n+−n− = M ,

one finds

n+ =
N

2
(1 +m). (1.22)
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The number of spin configurations {s} that have magnetization M is then

Ω(M) =

(

N

n+

)

=
N !

(

N
2 (1 +m)

)

!
(

N
2 (1 −m)

)

!
. (1.23)

Stirling’s approximation, valid for large N , is

N ! ≈ N lnN −N. (1.24)

Application to Eq. 1.23 yields, at leading order,

ln Ω =
N

2
(2 ln 2 − (1 −m) ln(1 −m) − (1 +m) ln(1 +m)) . (1.25)

Insert Eqs. 1.20, 1.25 into Eq. 1.19 to obtain

F (M) = N

[

−J
2
m2 − hm+

β−1

2
[(1 −m) ln(1 −m) + (1 +m) ln(1 +m)]

]

, (1.26)

up to an additive constant. It is now possible to evaluate the partition function using

Laplace’s method. For large N there is nearly a continuum of magnetizations m between

−1 and 1. The sum of Eq. 1.18 is well approximated by an integral

Z =

1
∫

−1

dm

2/N
e−βF (M). (1.27)

Since F (M) is proportional to N , Laplace’s method can be applied to obtain the leading

order behavior of the partition function,

Z ∝ e−βF , (1.28)

where F , the thermodynamic free energy, equals F (M) evaluated at its minimum. The

minimum of F (M) is found by solving

dF

dm
= 0. (1.29)
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Differentiation of Eq. 1.26 yields

N(−Jm− h+ β−1 atanh(m)) = 0. (1.30)

By rearranging terms, it is found that the fully connected Ising model shares the mean-field

equation of state, Eq. 1.15.

1.3 Long-range Kac interactions

Näıve mean-field theory, with only a single degree of freedom m, is often too drastic

an approximation. In this section I will describe Kac mean-field theory, a more refined

approach.

In the Kac mean-field limit the interaction range between particles, R, is taken to

be infinitely large compared to the mean inter-particle separation, yet infinitely small

compared to the system size. Thus, local processes (including nucleation and ordering)

can be modeled using Kac mean-field theory. Physical systems with effective long (but

finite) range interactions are said to be near-mean-field and are approximately described

by Kac mean-field theory.

1.3.1 The Kac potential

A Kac potential JR is parametrized by R and has the form [6]

JR(~x) = R−dJ (~x/R). (1.31)

It is assumed that JR(~x) goes to zero “sufficiently” fast as ~x → ∞. The parameter R

represents the interaction range; each particle interacts with roughly Rd others.

A particularly simple choice for JR is the radial step function ΘR described in Sec-

tion 1.7.5. Up to a choice of sign, the radial step function could represent either attractive

of repulsive interactions.

The Kac mean-field limit is defined by taking the volume to infinity first and R to

infinity second. In this limit, each spin interacts with infinitely many others in a local
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region, effectively damping fluctuations and simplifying the physical description.

1.3.2 Static coarse graining of the Ising model

Return to the Ising model, Eq. 1.1, and chose the interactions Ji,j to be of the Kac potential

form

Ji,j = JR(~x(i) − ~x(j)) = R−dJ ((~x(i) − ~x(j))/R), (1.32)

where ~x(i) is the position of the ith spin. In this section I will show that the Ising model

partition function Z is considerably simplified in the Kac mean-field limit, where V → ∞

first and R→ ∞ second.

Rather than working directly with the spins, I will work with the coarse grained magne-

tization φ(~x) – a local average of spins. To define φ(~x) precisely it is necessary to introduce

some notation.

Choose the coarse graining length ∆x to satisfy

1 ≪ ∆x≪ R, (1.33)

which is possible for R sufficiently large. Note that all lengths are dimensionless, being

measured in units of the lattice spacing.

The system volume is partitioned into in a large number of coarse graining cells. Each

coarse graining cell is a hypercube that contains ∆xd spins, is indexed by i, and is centered

at the position ~xi.

The coarse grained magnetization φi at the ith cell is defined as the average of all spins

sα in that cell,

φi = φ(~xi) =
1

∆xd

∑

α∈i

sα. (1.34)

(Greek letters are adopted as spin indices in order to avoid confusion with cell indices.) By

construction,

−1 ≤ φi ≤ 1. (1.35)

The Ising model partition function can be expressed as a functional integral over the
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coarse grained magnetization,

Z =

∫

Dφ(x)e−βF [φ], (1.36)

where the free energy functional F [φ] is defined by

F [φ] = E[φ] − β−1 ln Ω[φ], (1.37)

E[φ] is the energy functional and Ω[φ] is the degeneracy of spin configurations {s} cor-

responding to the same coarse grained field φ. The free energy functional F [φ] is also

sometimes called the Landau-Ginzburg-Wilson Hamiltonian.

The significance of Eq. 1.36 is that, in the Kac mean-field limit, Laplace’s method can

be used to show that F [φ] is the thermodynamic free energy when it is evaluated at its

minimum.

To determine energy functional E[φ], consider two coarse graining cells centered at ~xi

and ~xj . Because ∆x ≪ R, all spins in these two cells interact with the nearly constant

strength JR;i,j = JR(~xi − ~xj). The sum of interactions between the cells is therefore

−1
2JR;i,j(∆x

dφi)(∆x
dφj). The full Ising energy, Eq. 1.1 can be expressed as a sum over all

pairs of coarse graining cells,

E[φ] = −
∑

i

∆xd



φi

∑

j

1

2
∆xdJR;i,jφj + hφi



 . (1.38)

Now turn to the coarse graining degeneracy Ω[φ]. The coarse grained magnetization φi

represents an average of ∆xd spins where n+ are up and n− are down. Because ∆xd ≫ 1,

Stirling’s approximation may be applied,

ln Ω[φ] =
∑

i

ln





∆xd

n±i



 (1.39)

=
∑

i

∆xd

2
(2 ln 2 − (1 − φi) ln(1 − φi) − (1 + φi) ln(1 + φi)) .
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Both E[φ] and ln Ω[φ] (Eqs. 1.38, 1.39) can be expressed in continuum notation. Up to

additive terms the result is

F [φ] =

∫

d~x
(

E[φ] − β−1Ω[φ]
)

(1.40)

=

∫

d~x

(

−1

2
φ(JR ∗ φ) +

β−1

2
[(1 − φ) ln(1 − φ) + (1 + φ) ln(1 + φ)] − hφ

)

,

where

(JR ∗ φ)(~x) =

∫

d~x ′JR(~x− ~x ′)φ(~x ′). (1.41)

The coarse grained Ising free energy functional will be used throughout the dissertation.

1.3.3 Scaled lengths and the Kac mean-field limit

It is natural to measure all positions in units of the single remaining fundamental (non-

statistical) length scale, R,

~r = ~x/R (1.42)

u(~r) = φ(~x). (1.43)

In these units the free energy functional, Eq. 1.40, becomes

F [φ(~x)] = RdF̃ [u(~r)], (1.44)

where F̃ has no R dependence,

F̃ [u] =

∫

d~r

(

−1

2
u(J ∗ u) +

β−1

2
[(1 − u) ln(1 − u) + (1 + u) ln(1 + u)] − hu

)

. (1.45)

Note that

(J ∗ u)(~r) =

∫

d~r ′J (~r − ~r ′)u(~r ′) (1.46)
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where J (~r) is related to Kac potential JR(~x) through, Eq. 1.31. The partition function

can be expressed in scaled variables,

Z =

∫

Dφ(~x)e−βF [φ] ∝
∫

Du(~r)e−βRdF̃ [u]. (1.47)

When R is large the equilibrium distribution is concentrated at the minimum of the free

energy functional and large fluctuations are unlikely. In the limit R→ ∞ Laplace’s method

becomes exact,

Z ∝ e−βRdF̃ , (1.48)

where F̃ represents the scaled free energy functional F̃ [u] at its minimum. Solutions to the

Euler-Lagrange equation, δF̃
δu = 0,

u(~r) = tanh(β(J ∗ u)(~r) + βh) (1.49)

give the minima of F̃ (see Section 1.7.2).

If u(~r) is taken to be uniform, setting J =
∫

d~xJ (~x) exactly reproduces the mean field

result, Eq. 1.15. Unlike the fully connected model, solutions to Eq. 1.49 may be spatially

varying. This is particularly relevant for systems with repulsive interactions J where the

stable phase at low temperatures is non-uniform.

1.4 Ising Langevin dynamics

When Kac-type long-range interactions are applied to the Ising model, its equilibrium

physics can be modeled using a coarse grained free energy functional F [φ], Eq. 1.40. Here

I summarize various coarse grained dynamics that can be applied to the long-range Ising

model. They will mostly take the form of a Langevin equation (Section 1.7.4),

∂φ(~x, t)

∂t
= θ[φ] +

√

2B[φ]η(~x, t), (1.50)
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where η(~x, t) is white Gaussian noise with zero mean and with second moment

〈η(~x, t)η(~x ′, t′)〉 = δ(~x− ~x ′)δ(t − t′) (1.51)

and where the functionals θ[φ] and B[φ] are yet to be specified.

The Fokker-Planck equation,

∂P[φ]

∂t
=

∫

d~x

[

− δ

δφ
θP +

δ

δφ
B
δ

δφ
P
]

, (1.52)

(Section 1.7.4) describes the evolution of the probability distribution P[φ] under Langevin

dynamics.

If the Langevin equation is supposed to represent the Ising model, it must conform to

the Boltzmann equilibrium distribution Peq[φ] ∝ exp[−βF ] in the long time limit. That is,

∂Peq[φ]

∂t
= 0, (1.53)

under Fokker-Planck evolution, Eq. 1.52.

1.4.1 Summary of common dynamics

Noise gradient flow dynamics

For an arbitrary free energy functional F , a common choice of Langevin dynamics is noisy

gradient flow (NGF) (also known as Model A dynamics [25]),

θ = −M δF

δφ(~x)
(1.54a)

B = β−1M, (1.54b)

where M is an arbitrary mobility constant and, in the case of the coarse-grained Ising

model, Eq. 1.40,

δF

δφ(~x)
= −JR ∗ φ+ β−1 arctanh(φ) − h. (1.55)

NGF dynamics is consistent with the Boltzmann distribution Peq; it satisfies Eq. 1.53 as

can be verified from the identity
δPeq

δφ = δF
δφ Peq.
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Monte Carlo dynamics

When working with the Ising model, it is often preferable to define the dynamics in terms

of the spins rather than the coarse grained magnetization. Monte Carlo sampling of spin

configurations yields a Markov process which is naturally interpreted as dynamical evolu-

tion. In Section 2.3.2 I will derive effective Langevin equations for both spin-flip Glauber

(SFG) dynamics,

θ = tanh(β(JR ∗ φ+ h)) − φ (1.56a)

B = 1 − 1

2
tanh2(β(JR ∗ φ+ h)) − 1

2
φ2, (1.56b)

and spin-flip Metropolis (SFM) dynamics,

θ = 2e−|β(JR∗φ+h)|[sinh(β(JR ∗ φ+ h)) − φ cosh(β(JR ∗ φ+ h))] (1.57a)

B = 2 +O(|φ|). (1.57b)

I will also demonstrate consistency with the Boltzmann distribution in the limit R→ ∞.

Kawasaki spin-exchange is a Monte Carlo dynamics which locally conserves magneti-

zation. Two variations are spin-exchange Glauber (SEG) and spin-exchange Metropolis

(SEM) dynamics. In Section 2.3.5 the effective stochastic equation for SEG and SEM dy-

namics is derived. This dynamics is not representable as a Langevin equation, Eq. 1.50; it

involves spatial correlations in the noise term.

1.4.2 Scaled lengths and effectively small noise

When lengths are scaled by R using Eqs. 1.42 and 1.43 the Langevin equation, Eq. 1.50,

becomes

∂u(~r, t)

∂t
= θ̃[u] +R−d/2

√

2B̃[u]η̃(~r, t), (1.58)

where all R dependence has been made explicit. The scaled and unscaled Langevin equa-

tions are equal (i.e., θ̃[u] = θ[φ] and B̃[u] = B[φ]) and differ only in their functional forms

(i.e., (u ∗ J )(~r) versus (φ ∗ JR)(~x)).
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The explicit R dependence comes from the scaling of the noise,

η(~x, t) = R−d/2η̃(~r, t), (1.59)

(readily verified in discretized form; see Section 1.7.3) where η̃ is again white Gaussian

noise with zero mean and second moment

〈η̃(~r, t) η̃(~r ′, t′)
〉

= δ(~r − ~r ′)δ(t − t′). (1.60)

Equation 1.58 makes it apparent that a large interaction range R corresponds to effectively

small fluctuations. This result is consistent with the fact that, in the mean-field limit,

configurations in thermodynamic equilibrium are concentrated at the minimum of the free

energy functional.

1.5 Nucleation

Systems with a first order phase transition exhibit metastable phases. Metastability implies

that the lifetime of the phase is long (compared to, e.g., the decorrelation time).

The metastable phase corresponds to a local, but not global, minimum of the free

energy functional. In the ideal Kac mean-field (R → ∞) limit the metastable phase is

infinitely long lived.2 When R is finite the metastable phase will eventually decay to the

stable phase. This decay process begins with nucleation.

Homogeneous nucleation occurs through a localized thermal fluctuation called the nu-

cleating droplet. The nucleating droplet is the object of least free energy cost, ∆F , that

sits between the metastable and stable phases – it is a saddle point of the free energy

functional. Nucleation occurs at a rate which is proportional to the Boltzmann factor,

P ∝ e−β∆F , when the metastable phase is long lived [11, 1].

2Strictly speaking, it is only in the mean-field limit that the metastable phase is well defined.
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1.5.1 Field theoretic formalism

Using NGF dynamics (Eqs. 1.50, 1.54) I will show directly that the rate of nucleation is

proportional to e−β∆F in the mean-field limit. Consider all possible trajectories which

begin in the metastable phase φm, and reach the stable phase φs after a long time t1,

φ(~x, 0) = φm (1.61)

φ(~x, t1) = φs. (1.62)

Each trajectory occurs with a probability proportional to e−
1
2

R

d~xdtη2
, where η(~x, t) is the

dynamical noise. Thus, the probability to transition from φm to φs satisfies

Pm→s ∝
∫

Dηe−
1
2

R

d~xdtη2 ∝
∫

DφJe−S[φ] (1.63)

where J is the Jacobian associated with the change of variables,

J = det | δη(~x, t)
δφ(~x ′, t′)

|, (1.64)

S is the action associated with the dynamics of Eq. 1.50,

S[φ] =
1

2

∫

d~xdtη2 =
β

4M

∫

d~xdt

(

∂φ

∂t
+M

δF

δφ

)2

, (1.65)

and the functional integral in Eq. 1.63 is over all configurations satisfying the boundary con-

ditions, Eqs. 1.61, 1.62. The Langevin equation is defined using forward time discretization

(see Section 1.7.4) so the Jacobian is 1 [26].

As before, the strategy is to switch to scaled variables (Eqs. 1.42, 1.43, 1.44)

Pm→s ∝
∫

Due−RdS̃[u] (1.66)

S[φ] = RdS̃[u] =
Rdβ

4M

∫

d~rdt

(

∂u

∂t
+M

δF̃

δu

)2

, (1.67)
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justifying the application of Laplace’s method. The transition probability becomes

Pm→s ∝ e−RdS̃ (1.68)

where S̃ minimizes S̃[u],

δS̃[u]

δu(~r, t)
= 0, (1.69)

and u satisfies appropriate boundary conditions.

Evaluate the functional derivative and integrate by parts to obtain the Euler-Lagrange

equation for the minimal action,

∫

d~r ′
(

−δ(~r − ~r ′)
∂

∂t
+M

δ2F̃

δu(~r)δu(~r ′)

)(

∂u

∂t
+M

δF̃

δu(~r ′)

)

= 0. (1.70)

Since

∂

∂t

δF̃

δu(~r)
=

∫

d~r ′ δ2F̃

δu(~r)δu(~r ′)
∂u(~r ′)
∂t

(1.71)

the cross terms in Eq. 1.70 cancel, leaving

−∂
2u

∂t2
+M2

∫

d~r ′ δ2F̃

δu(~r)δu(~r ′)
δF̃

δu(~r ′)
= 0. (1.72)

Two solutions of Eq. 1.72 are

∂u±
∂t

= ±M δF̃

δu±
, (1.73)

as is verified by substitution and the use of Eq. 1.71. The action cost of these solutions is

determined by insertion into Eq. 1.67,

S̃[u−] = 0 (1.74)

S̃[u+] = β

∫

d~rdt
δF̃

δu+

∂u+

∂t
(1.75)

= β

∫

dt
∂F̃

∂t

= β∆F̃ ,

where ∆F̃ is the free energy difference between the initial and final configurations of u.



22

The solution u− corresponds to noiseless relaxation dynamics (i.e., η = 0). The solution

u+ is the time reversal of the trajectory u−. We see that there is no action cost to decay

from any configuration to the local free energy minimum, but the opposite trajectory has

an action cost S̃ proportional to β∆F̃ . Analogous results apply directly to the unscaled

variables,

S[φ−] = 0 (1.76)

S[φ+] = β∆F (1.77)

The results, Eq. 1.76, 1.77, can be directly applied to nucleation. The metastable phase is a

local minimum of the free energy. A trajectory which nucleates out of the metastable phase

must go up in free energy before it goes down. For each trajectory φ(t), the free energy

F [φ(t)] attains a maximum at some time t0. The most likely nucleating trajectory is the

one which minimizes ∆F = F [φ(t0)]−F [φ(0)]. For this trajectory, the saddle point of the

free energy functional occurs at φ(t0). The action cost of this trajectory is the action cost

of reaching φ(t0), namely S = β∆F (there is no action cost for the relaxation dynamics

beyond the saddle point). Therefore the probability of a nucleating trajectory is

P ∝ e−S = e−β∆F , (1.78)

where ∆F is again the free energy difference between the saddle point and metastable

phase.

Langer derived a similar result by analytic continuation of the free energy functional [27],

intepreting the jump discontinuities across the branch cut as the nucleation barrier. The

advantage of the argument given in this section is that it is direct, and the mean-field

assumption is made explicit.

For a sufficiently large system the nucleating droplet is a localized object. Multiple

nucleating droplets at different locations may independently form. Properly speaking, one

should talk about the nucleation rate (the probability of nucleation per unit volume, per
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unit time) – the result of this section is therefore that the nucleation rate is proportional

to e−β∆F .

1.5.2 Classical versus spinodal nucleation

The character of nucleating droplets depends sensitively on the depth of the quench into

the metastable phase.

The classical theory of nucleation applies near the coexistence curve where the free

energy density difference between metastable and stable phases f = (Fm −Fs)/V is small.

The classical theory predicts an extended nucleating droplet with a well defined boundary

separating the stable phase interior and the metastable phase exterior [28]. The free energy

cost of such an object scales as

∆F ∼ σℓd−1 − fℓd (1.79)

where ℓ is the characteristic length of the droplet and σ is the surface tension at the droplet

boundary. As discussed in Section 1.5.1, the nucleating droplet is a saddle point of the free

energy functional. As a saddle point, the nucleating droplet has a length ℓ that maximizes

the value for ∆F given in Eq. 1.79 and which thus scales as

ℓ ∼ σ

f
. (1.80)

The classical theory is self consistent near the coexistence curve: in the limit f → 0 the

droplet size diverges and the droplet boundary is well defined.

For sufficiently deep quenches into the metastable phase, the classical theory of nucle-

ation fails. Near the spinodal limit of metastability (where ∆F is small) the nucleating

droplet does not have a well defined boundary and its interior does not resemble the stable

phase [2, 3].

The nucleation rate is proportional to e−β∆F and we have seen that ∆F = O(Rd).

Systems with long-range interactions are thus very unlikely to nucleate unless they are

quenched near to the spinodal. The theory of nucleation near the spinodal, therefore, is

the relevant one for systems with long-range interactions. Spinodal nucleation is discussed
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in Sections 2.2, 3.2.3, and 3.3. A word of caution: if the quench is so deep that ∆F is of

the order 1, then metastable equilibrium and nucleation become ambiguous (in particular,

the application of Laplace’s method in Section 1.5.1 is questionable).

1.6 The clump model

The Ising model can be interpreted as a lattice gas model where up spins represent occupied

sites. The coarse grained occupation density can be expressed in terms of the coarse grained

magnetization,

ρ(~x) =
1 + φ(~x)

2
. (1.81)

The Ising coarse grained free energy functional, Eq. 1.40, becomes

F =

∫

d~x

(

1

2
ρΛR ∗ ρ+ β−1ρ ln ρ+ β−1(1 − 2ρ) ln(1 − 2ρ) − µρ

)

, (1.82)

where the effective potential between particles is ΛR = −4JR , the chemical potential µ is

analogous the Ising external field h, and additive constants to the free energy have been

dropped. Choose the ΛR to be the radial step function ΘR from Section 1.7.5).

In the dilute gas limit, where ρ≪ 1, derivatives of the term (1− 2ρ) ln(1− 2ρ) are neg-

ligible compared to those of ρ ln ρ. The former, therefore, do not influence thermodynamic

behavior and can be neglected. The result,

F =

∫

d~x

(

1

2
ρΛR ∗ ρ+ β−1ρ ln ρ− µρ

)

, (1.83)

is the so called clump model . Equilibrium stable and metastable phases correspond to the

minima of the functional F and satisfy

0 =
δF

δρ(~x)
= ΛR ∗ ρ+ β−1 ln ρ− µ, (1.84)

where µ is the effective chemical potential. Equation 1.84 is called the Kirkwood-Monroe

equation [29].

In this section the clump model free energy functional has been derived as the dilute
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limit of the antiferromagnetic Ising model, interpreted as a lattice gas. The Kirkwood-

Monroe equation, however, was originally derived for off-lattice particles, and is proven to

be exact [30, 30].

Interestingly, the phase diagram of the clump model can be characterized by a single

physical control parameter. To appreciate this, it is convenient to work at fixed background

density

ρ0 =
1

V

∫

d~xρ≪ 1 (1.85)

rather than chemical potential µ. The free energy becomes

F =

∫

d~x

(

1

2
ψΛR ∗ ψ + β−1(ρ0 + ψ) ln(ρ0 + ψ)

)

(1.86)

where

ρ = ρ0 + ψ. (1.87)

The free energy can be expressed in a simplified form

F =

∫

d~r

(

1

2
ψ̃ΛR̃ ∗ ψ̃ + β̃−1(1 + ψ̃) ln(1 + ψ̃)

)

(1.88)

using the scaled variables

ψ̃(~r) = ρ0ψ(ρ
2/d
0 ~x) (1.89)

β̃−1 = ρ0β
−1 (1.90)

R = ρ
−2/d
0 R. (1.91)

In the mean-field limit the parameter R is infinite. The single remaining parameter in

Eq. 1.88, β̃−1, controls all thermodynamics of the clump model.
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1.7 Useful mathematical tools

1.7.1 The Fourier transform

The Fourier transform of a function f(~x) is defined to be

f̂(~k) =

∫

d~xei
~k·~xf(~x). (1.92)

When there is no risk of confusion I will often recycle notation, f̂(~k) → f(~k).

The inverse Fourier transform is given by

f(~x) =
1

(2π)d

∫

d~xe−i~k·~xf̂(~k), (1.93)

which follows directly from the Dirac δ-function identity

δ(~x) =
1

(2π)d

∫

d~xei
~k·~x (1.94)

It is sometimes convenient to express Fourier and inverse Fourier transforms using operator

notation:

f̂(~k) = F [f(~x)] (1.95)

f(~x) = F−1[f̂(~k)]. (1.96)

The Fourier transform of a product of functions is

F [f1(~x) . . . fn(~x)] = (2π)−(n−1)d(f̂1 ∗ f̂2 ∗ . . . f̂n)(~k) (1.97)

and the inverse transformation is

F−1[f̂1(~k) . . . f̂n(~k)] = (f1 ∗ f2 ∗ . . . fn)(x). (1.98)

The symbol (∗) denotes the convolution operation, defined by

(f1 ∗ f2 ∗ . . . fn)(~x) =

∫

d~x1 . . . d~xnf1(~x1) . . . fn(~xn)δ(~x− ~x1 − . . . ~xn), (1.99)
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An “exponent” notation to indicate a series of convolutions is occasionally useful, e.g.,

F [f(~x)n] = (2π)−(n−1)df̂(~k)n∗ (1.100)

F−1[f̂(~k)n] = f(~x)n∗. (1.101)

A special case of the Fourier transformation identities is Parseval’s theorem,

∫

d~xf(~x)g(~x)∗ = F [fg∗](~k = 0) = (2π)−d

∫

d~kf̂(~k)ĝ(~k)∗, (1.102)

where g∗ indicates the complex conjugate of g.

The asymmetric appearance of 2π factors is admittedly annoying; these factors nearly

always cancel at the end of a calculation. Alternate Fourier transform conventions, such

as

f̃(~ξ) =

∫

ddxei2π~ξ·~xf(~x) (1.103)

f(~x) =

∫

ddxe−i2π~ξ·~xf̃(~ξ), (1.104)

may be advantageous, but are nonstandard in physics.

1.7.2 Functionals and functional derivatives

A mathematical object F which takes a function, φ, and produces a single number, F [φ],

is called a functional . Three examples are

F1[φ] =

∫

dx′(φ(x′))m (1.105a)

F2[φ] =

∫

dx′δ(x′ − 2)φ(x′) = φ(2) (1.105b)

F3[φ] =

∫

dx′(∇φ(x′))2. (1.105c)

To indicate that φ is a function it is conventional to write “φ(x)”, but ambiguities can

sometimes arise. An alternative notation is the single dot, φ = φ(·), which indicates that φ

expects an argument. One should interpret (·) as “hole” to be filled by function application.



28

The functional derivative is defined as

δF [φ]

δφ(x)
= lim

h→0

F [φ(·) + hδ(· − x)] − F [φ(·)]
h

, (1.106)

where we have used the Dirac-δ function (note that, e.g., δ(· − x) evaluated at x′ yields

δ(x′ − x)).

The derivatives of the functionals in Eqs. 1.105 are

δF1

δφ(x)
= mφ(x)m−1 (1.107a)

δF2

δφ(x)
= δ(x− 2) (1.107b)

δF3

δφ(x)
= −2∇2φ(x). (1.107c)

The minus sign in the third derivative follows from integration by parts.

Functional derivatives inherit many properties of ordinary derivatives; they are linear,

δ(aF [φ] + bG[φ])

δφ(x)
= a

δF

δφ(x)
+ b

δG

δφ(x)
, (1.108)

and satisfy multiple forms of the chain rule, e.g.,

δf(F [φ])

δφ(x)
=

df(F [φ])

dF

δF

δφ(x)
(1.109)

δF [f(φ)]

δφ(x)
=

δF

δf(φ(x))

df(φ(x))

dφ
. (1.110)

A special case of the latter is

δ

δφ(x)

∫

dx′g(x′)f(φ(x′)) = g(x)
df(φ(x))

dφ
. (1.111)

Functionals can be Taylor expanded using functional derivatives:

F [φ+ ψ] = F [φ] +

∫

dx
δF [φ]

δφ(x)
ψ(y) +

1

2

∫

dxdy
δ2F [φ]

δφ(x)δφ(y)
ψ(x)ψ(y) + . . . (1.112)

Tricky identities, including Eq. 1.112, are often readily verified by discretization. Let us

see how it works in the case of one dimension (the generalization to higher dimensions is
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direct). An ordinary “well behaved” function can be discretized by sampling its values,

φ(x) → (φ̃1, φ̃2, . . . φ̃n), (1.113)

where φ̃i = φ(i∆x), and ∆x is the discretization length. The continuum limit is recovered

by taking n→ ∞ and ∆x→ 0 such that n∆x, the system length, is the fixed.

The discretization of a functional is an ordinary function which takes n arguments:

F [φ] → F̃ (φ̃1, φ̃2, . . . φ̃n). (1.114)

Integrals naturally discretize to sums,

∫

dx→
n
∑

i=1

∆x. (1.115)

Discretized functional derivatives are partial derivatives with a ∆x−1 “amplification fac-

tor”,

δF [φ]

δφ(x)
→ 1

∆x

∂

∂φi
F̃ (φ̃1, φ̃2, . . . φ̃n). (1.116)

This recipe derives from the relationship between the Dirac δ-function and the Kronecker

δ symbol,

δ(x) → 1

∆x
δi. (1.117)

To test this out, discretize the functional F1 (Eq.1.105a) and evaluate the partial derivative,

F̃1 =
n
∑

i=1

∆xφ̃m
i (1.118)

1

∆x

∂F̃1

∂φ̃i

= mφ̃m−1
i . (1.119)

Comparison of Eqs. 1.107a and 1.119 confirms the discretization recipe of Eq. 1.116. Notice

that, unlike the partial derivative ∂F̃1/∂φ̃i, the functional derivative remains finite in the

continuum limit.

The functional Taylor series of Eq. 1.112 can now be justified. Upon discretization

(using Eqs. 1.115, 1.116) it reduces to the ordinary Taylor series of multi-variate functions.
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1.7.3 White Gaussian noise

White Gaussian noise η(t) is defined by its probability distribution,

P[η] ∝ exp

[

− 1

2σ2

∫

dtη(t)2
]

. (1.120)

The first and second moments completely characterize η,

〈η(t)〉 = 0 (1.121)

〈

η(t)η(t′)
〉

= σ2δ(t − t′). (1.122)

Higher order moments are reducible to the sum of all second order moments (Wick’s the-

orem). For example,

〈η1η2η3η3〉 = 〈η1η2〉 〈η3η4〉 + 〈η1η3〉 〈η2η4〉 + 〈η1η4〉 〈η2η3〉 , (1.123)

where ηi = η(ti). Note that η(t) and η(t′) are uncorrelated for t 6= t′.

Discretization of η(t) yields the sequence (η̃1, η̃2, η̃3 . . .) where η̃i = η̃(i∆t) for some

small discretization length ∆t. The η̃i are chosen to be independent Gaussian variables

with

〈η̃i〉 = 0 (1.124)

〈η̃iη̃j〉 =
σ2

∆t
δij , (1.125)

so that their joint probability distribution

P(η̃1, η̃2, . . .) ∝ exp

[

− 1

2σ2

∑

i

∆tη̃2
i

]

(1.126)

matches Eq. 1.120. An equivalent construction of η̃i is

η̃i =
1

∆t

(i+1)∆t
∫

i∆t

η(t)dt; (1.127)
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η̃i can be thought of as a “coarse grained” η(t). In the limit that ∆t → 0, integrals and

discretized sums are equivalent for all “well behaved” test functions f ,

t1
∫

t0

dtη(t)f(t) =

t1/∆t
∑

i=t0/∆t

∆tη̃if(i∆t). (1.128)

The continuum limits of Eqs. 1.126, 1.128 can serve as the definition of η(t).

Application of Parseval’s theorem to the argument of the exponential in Eq. 1.120

indicates that the Fourier transform of the noise, η̂(ω) = F [η(t)], is again white noise with

zero mean and is characterized by

〈η̂(ω)η̂(ω′)∗〉 = (2π)−1σ2δ(ω − ω′). (1.129)

Note that η̂(ω)∗ = η̂(−ω) since η(t) is real.

White Gaussian noise is readily generalized to take multiple parameters. For example,

if η(~x, t) has zero mean then it is completely characterized by

〈

η(~x, t)η(~x ′, t′)
〉

= σ2δ(~x− ~x ′)δ(t− t′). (1.130)

1.7.4 Langevin equations

The Langevin equation (a stochastic differential equation) takes the form

∂

∂t
φ(~x, t) = θ(φ(~x, t)) +

√

2B(φ(~x, t))η(~x, t). (1.131)

The stochasticity of this equation results from the white Gaussian noise η(~x, t), which is

distributed with probability

P[η] = exp

[

−1

2

∫

d~xdtη(~x, t)2
]

. (1.132)
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The singular character of η forces a careful interpretation of Eq. 1.131. I will discretize,

making the replacements

φ(i∆x, j∆t) → φij (1.133)

∂

∂t
φ(i∆x, j∆t) → φi,j+1 − φi,j

∆t
(1.134)

η(i∆x, j∆t) → (∆dx∆t)−1/2ξi,j, (1.135)

where ξi,j is a Gaussian random variable with zero mean and unit variance (for more

discussion on the discretization of η, see Section 1.7.3). Thus, Eq. 1.131 is actually defined

by

φi,j+1 = φi,j − ∆tθ[φi,j] +

√

∆t

∆xd
2B[φi,j ]ξi,j, (1.136)

in the continuum limit that ∆t→ 0 first, and ∆x→ 0 second [31].

Equation 1.136 represents the Ito interpretion of the Langevin equation. If B[φi,j+1],

rather than B[φi,j ] is chosen to appear on the RHS of Eq. 1.136, the Stratonovich interpre-

tation results. Remarkably, the Ito and Stratonovich interpretations differ in the continuum

limit [32]. (For systems with long-range interactions, however, the noise is effectively small

and the distinction is irrelevant.)

The Langevin equation, Eq. 1.131, has an equivalent Fokker-Planck description. Under

the Ito interpretation, the probability distribution P[φ] evolves according to

∂P
∂t

=

∫

ddx

[

− δ

δφ
θP +

δ

δφ
B
δ

δφ
P
]

. (1.137)

The equilibrium distribution Peq is stationary under Fokker-Planck evolution,

∂Peq

∂t
= 0. (1.138)

1.7.5 The radial step function

A simple choice of Kac potential is the radial step function

ΘR(~x) = R−dΘ(~x/R) (1.139)
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where

Θ(~r) =







Γ[ d
2 ]d

2πd/2 if |r| < 1

0 otherwise
. (1.140)

The normalization is chosen to satisfy

∫

d~xΘR(~x) =

∫

d~rΘ(~r) = 1. (1.141)

The Fourier transform of the radial step function is

Θ̂R(~k) =

∫

d~xei
~k·~xΘR(~x) = Θ̂(|~k|R), (1.142)

where

Θ̂(q) =

(

2

q

)d/2

Γ(d/2 + 1)Jd/2(q), (1.143)

and Jν is the Bessel function of the first kind [33]. An interesting property of the radial

step function is that

d2Θ̂(q0)

dq2
= −Θ̂(q0) (1.144)

whenever d
dq Θ̂(q0) = 0, which follows from the Bessel function identities [33]

k (Jm−1(k) + Jm+1(k)) = 2mJm(k) (1.145)

d

dk
(kmJm(k)) = kmJm−1(k). (1.146)

The maximum of Θ̂(q) occurs at Θ̂(q0 = 0) = 1. The minimum of Θ̂(q) occurs at

q0 ≈







5.1356 d = 2

5.7635 d = 3
, (1.147)

for which

Θ̂(q0) ≈







−0.13228 d = 2

−0.08617 d = 3
. (1.148)



Chapter 2

The long-range ferromagnet

The subject of this chapter is the Ising model with long-range ferromagnetic interactions

which has the coarse grained free energy functional,

F =

∫

d~x

(

−1

2
φ(JR ∗ φ) +

β−1

2
[(1 − φ) ln(1 − φ) + (1 + φ) ln(1 + φ)] − hφ

)

, (2.1)

as in Section 1.3.2. The potential JR is ferromagnetic, i.e., its Fourier transform,

ĴR(~k) = J0 − J2(kR)2 +O((kR)4), (2.2)

has a maximum at k = 0 and satisfies J0, J2 > 0.

The mathematical development in this chapter is general, but a simple choice of ferro-

magnetic potential JR is the radial step function ΘR (cf. Section 1.7.5). With this choice

each spin interacts uniformly with all other spins within a distance R; the normalization is

such that JR ∗ φ represents a local average of O(Rd) spins. For simplicity, all simulations

reported in this chapter were performed using d = 1 and ĴR = Θ̂R = sinkR
kR .

2.1 Phase diagram

For large R, stable and metastable phases correspond to minima of the free energy func-

tional and thus satisfy the Euler-Lagrange equation

β
δF

δφ
= −K ∗ φ+ arctanh(φ) −H = 0, (2.3)

34
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where

K(~x) = βJR(~x) (2.4)

H = βh. (2.5)

Inspection of the free energy functional reveals that uniform solutions φ(~x) = m are favored

in ferromagnetic systems; the Euler-Lagrange equation becomes an ordinary differential

equation,

V β
dF

dm
= −K0m+ arctanh(m) −H = 0, (2.6)

where

K0 = βJ0 (2.7a)

K2 = βJ2 (2.7b)

. . .

The coexistence curve mco(β) between phases of positive and negative spontaneous mag-

netization occurs at h = 0. An approximate solution to Eq. 2.6 at the coexistence curve

K−1
0 ≈ 1 − 1

3
m2

co, (2.8)

is obtained by expanding dF
dm(m) to O(m2); this approximation is valid near the critical

temperature K−1
0 = 1.

Metastable phases are local (but not global) minima of the free energy; they satisfy

the Euler-Lagrange equation dF/dm and the local stability condition d2F/dm2 > 0. The

spinodal limit of metastability occurs when d2F/dm2
sp = 0; this equation has the exact

solution

K−1
0 = 1 −m2

sp. (2.9)

Equations 2.6, 2.9 together specify Hsp, the value of H at which the instability occurs.

The phase diagram of the ferromagnet, including the coexistence and spinodal curves
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Figure 2·1: Phase diagram of the ferromagnet near the critical point h = 0, K−1
0 =

1. The solid line represents equilibrium coexistence between phases with positive
and negative magnetization. The dashed line is the spinodal limit of metastability.
The center region of the diagram, between the spinodal lines, is unstable.

(Eqs. 2.8, 2.9), is plotted in Fig. 2·1.

2.2 Spinodal nucleation

Nucleating droplets in the mean-field limit are saddle points of the free energy functional

(cf. Section 1.5.1) and thus satisfy the Euler-Lagrange equation, Eq. 2.3. I will consider

nucleation near the spinodal limit of metastability, which is relevant for systems with long-

range interactions (cf. Section 1.5.2).

As the spinodal is approached, the metastable phase goes to φ(~x) = msp (cf. Eq. 2.9)

and satisfies the Euler-Lagrange equation

−K0msp + arctanh(msp) −Hsp = 0. (2.10)

I work near the spinodal,

Hsp −H = ∆H ≪ 1, (2.11)
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and seek a nucleating droplet of the form

φnuc(~x) = msp + ψ(~x). (2.12)

By assumption, ψ(~x) is small in magnitude, smooth, and slowly varying on length scales of

order R – these conditions will be justified self consistently. Expansion of the free energy

cost of the droplet in powers of ψ yields

β∆F = β(F [φnuc] − F [msp]) (2.13)

≈
∫

d~x

[

−1

2
ψ(K ∗ ψ) +

1

2
K0ψ

2 +
1

3
K2

0mspψ
3 + ∆Hψ

]

at leading order (O(ψ) terms will be shown to be negligible). The Euler-Lagrange equation

for the nucleating droplet saddle point is

β
δ∆F

δψ
= −K ∗ ψ +K0ψ +K2

0mspψ
2 + ∆H = 0. (2.14)

Since ψ is slowly varying, the convolution can be expanded and truncated,

K ∗ ψ = F−1[K̂ψ̂] (2.15)

= F−1[(K0 −K2(kR)2 + . . .)ψ̂]

≈ K0ψ(~x) +K2R
2∇2ψ(~x),

and the Euler-Lagrange equation becomes

K2R
2∇2ψ(~x) = ∆H +K2

0mspψ
2. (2.16)

Up to this point I have not specified the direction spontaneous magnetization. With the

choice msp < 0 (such that H,∆H > 0) the Euler-Lagrange equation can be written in

scaling form

∇2u = 1 − u2, (2.17)
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where

ψ(~x) = au(~x/b) (2.18a)

a = K0|msp|−1/2∆H1/2 (2.18b)

b =

√

K2

K0
|msp|−1/4R∆H−1/4. (2.18c)

In one dimension Eq. 2.17 has the spherically symmetric solution

u(x) = 3 sech2

(

r − r0√
2

)

− 1. (2.19)

When solutions to Eq. 2.17 exist1 the scaling form of Eqs. 2.18 justifies our initial assump-

tions: when ∆H → 0, the solution ψ becomes both small in magnitude and slowly varying

in space.

Equations 2.18 predict that the droplet free energy cost scales as

∆F ∼ Rd∆H3/2−d/2; (2.20)

the nucleation rate, which is proportional to e−β∆F , dramatically increases as the spinodal

is approached

Note that, near the spinodal, the nucleating droplet represents a minute deviation from

the metastable phase and thus does not “feel” anything near the neighborhood of the

stable phase. Nucleating droplets near the spinodal are substantially different than those

predicted by the classical theory of nucleation (Section 1.5.2).

2.3 Dynamical coarse graining

Given a free energy functional F [φ] (such as that of the Ising ferromagnet, Eq. 1.40) there

are many Langevin dynamics of the form

∂φ

∂t
= θ[φ] +

√

2B[φ]η (2.21)

1Solutions to Eq. 2.17 exist if and only if d < 6 [34, 35]). At d = 6 the nucleating droplets can be
determined asymptotically near the spinodal, but in d > 6 their form is non-universal [35].
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that faithfully reproduce the Boltzmann distribution Peq[φ] ∝ e−βF . One choice is the

noisy gradient flow (NGF) dynamics already considered in Section 1.4,

θ = −M δF

δφ
= −β−1M(−K ∗ φ+ arctanh(φ) −H) (2.22)

B = β−1M, (2.23)

where K and H are given in Eqs. 2.4, 2.5. Other choices of θ and B may also yield the

correct equilibrium distribution, and it is not clear, a priori, which is the most physically

accurate.

In most studies of the kinetic Ising model, some form of Monte Carlo dynamics, rather

than NGF dynamics, is employed. I will review spin-flip Glauber (SFG) and Metropolis

(SFM) dynamics, and show how they can be represented as Langevin equations in the long-

range limit (Kac mean-field). The results, given in Eqs. 2.44, 2.45, differ significantly from

NGF dynamics; for example, in SFG and SFM dynamics the drift term θ never diverges

and the noise term B remains finite at both zero and infinite temperature.

2.3.1 Monte Carlo Ising dynamics

Monte Carlo dynamics is defined as a set of transition probabilities between spin config-

urations. Let W (s → s′) denote the probability that the system transitions between spin

configurations {s} and {s′}. If W satisfies detailed balance condition

e−βE{s}W (s→ s′) = e−βE{s′}W (s′ → s), (2.24)

then the sequence of configurations generated samples the Boltzmann distribution Peq{s} ∝

e−βE{s}. (In fact, the weaker balance condition – invariance of the Boltzmann distribution

under stochastic evolution – is sufficient [36].)

At each update step of spin-flip Monte Carlo dynamics a random spin is chosen and

is flipped with a probability W that depends on the energy cost ∆E of the spin-flip. Two
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common choices of transition probabilities,

WGlauber(β∆E) =
e−β∆E/2

e−β∆E/2 + eβ∆E/2
(2.25)

WMetropolis(β∆E) = min(1, e−β∆E), (2.26)

correspond to spin-flip Glauber (SFG) and spin-flip Metropolis (SFM) dynamics respec-

tively.

In contrast, at each update step of spin-exchange (Kawasaki) Monte Carlo dynamics,

two nearby spins are randomly selected and are exchanged with probability W . The transi-

tion probabilities listed in Eqs. 2.25, 2.26 correspond to spin-exchange Glauber (SEG) and

spin-exchange Metropolis (SEM) dynamics respectively. By construction, spin-exchange

dynamics locally conserves magnetization.

In both spin-flip and spin-exchange dynamics the unit of time is the Monte Carlo step

(MCS). One MCS denotes N individual update steps, where N is the number of spins.

2.3.2 Langevin representation of spin-flip dynamics

In this section I will derive Langevin equations representing the spin-flip Monte Carlo

dynamics (SFG and SFM) of the long-range Ising model. The central limit theorem plays

a key role in the derivation – from it, the noise term arises naturally.

The dynamic coarse graining procedure is similar to the static coarse graining that was

employed in Section 1.3.2 to derive the free energy functional. As before, assume that the

Ising model interactions are of Kac form, JR, with R large. Partition the system volume

into a large number of coarse graining cells; each cell is indexed by i, is centered at ~xi, and

contains ∆xd spins. The coarse graining length ∆x is chosen to satisfy

1 ≪ ∆x≪ R (2.27)

(which is possible for sufficiently large interaction range R).

The coarse grained magnetization φi = φ(~xi) represents the average of all ∆xd spins in

the ith coarse graining cell.
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The energy cost to flip an arbitrary spin in the ith cell from down (−) to up (+),

εi = ∆E(− → +) = −∆E(+ → −), (2.28)

can be expressed as a sum over coarse grained magnetization cells,2

βεi = −2
∑

j

βJR(~xi − ~xj)φj − 2βh (2.29)

= −2(K ∗ φi +H).

where K and H are given in Eqs. 2.4,2.5.

Because ∆x ≪ R, each spin within the ith coarse graining cell is independently

up/down with probability

P{±} =
n±

n+ + n−
=

1

2
(1 ± φi), (2.30)

where n±i , the numbers of up/down spins in the coarse graining cell, satisfy

n+ − n− = ∆xdφi (2.31a)

n+ + n− = ∆xd. (2.31b)

At each Monte Carlo update step a spin (up/down) is selected at random and subse-

quently flipped with probability

P{± → ∓} = W (∓βεi), (2.32)

whereW (β∆E) is the Glauber or Metropolis transition probability (Eqs. 2.25, 2.26). Define

a random variable dφi to represent the change in the coarse grained field φi after such a

spin-flip trial. There are two possible outcomes, dφi = ±2/∆xd, corresponding to a spin

2Note that εi is proportional to the functional derivative of the coarse grained energy functional, Eq. 1.38.
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flipping up/down. As a random variable, dφi has a mean

〈dφi〉 =
2

∆xd
P{−}P{− → +} − 2

∆xd
P{+}P{+ → −} (2.33)

=
1

∆xd
[(1 − φi)W (βεi) − (1 + φi)W (−βεi)] ,

a second moment

〈

dφ2
i

〉

=

(

2

∆xd

)2

P{−}P{− → +} +

( −2

∆xd

)2

P{+}P{+ → −} (2.34)

=
2

∆x2d
[(1 − φi)W (βεi) + (1 + φi)W (−βεi)] ,

and a variance

Var [dφi] =
〈

(dφi − 〈dφi〉)2
〉

=
〈

dφ2
i

〉

− 〈dφi〉2 . (2.35)

Let ∆t denote the temporal coarse graining length (since time is measured in units of

MCS, the expected number of spin-flip trials per spin is ∆t). Choose ∆t to satisfy

(∆xd)−1 ≪ ∆t≪ 1, (2.36)

which is possible for ∆x sufficiently large.

Of primary interest is the total change ∆φi to the field φi after the small time ∆t

passes:

∆φi(t) = φi(t+ ∆t) − φi(t). (2.37)

Since ∆t≪ 1, at most a small fraction of the ∆xd spins contributing to φi flip in this time

interval. Nevertheless, the expected number of spin-flip trials within the coarse graining

cell is large, ∆t∆xd ≫ 1. The random change ∆φi to the field φi is well approximated by

the sum of ∆t∆xd random variables, each distributed like dφi:

∆φi(t) = (dφi)1 + (dφi)2 + . . .+ (dφi)∆xd∆t. (2.38)
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By the central limit theorem, ∆φi(t) is well approximated by

φi(t+ ∆t) − φi(t) = ∆t∆xd 〈dφi(t)〉 +
√

∆t∆xd Var[dφi(t)]ξ(xi, t) (2.39)

where ξ(x, t) is a Gaussian variate with zero mean and unit variance.

Comparison with the discretized Langevin equation, Eq. 1.136, reveals the identifica-

tions

θ[φ] = ∆xd 〈dφ〉 (2.40)

√

2B[φ] = ∆xd
√

Var[dφi]. (2.41)

To proceed, the mean and variance of dφi must be evaluated from Eqs. 2.33, 2.35 using

the acceptance probability W (β∆E) of interest.

For SFG dynamics, Eq. 2.25, the application of Eqs. 2.29, 2.33, 2.35 and straightforward

algebra yield

〈dφi〉 =
1

∆xd
(tanh(K ∗ φi +H) − φi) (2.42)

Var[dφi] =
1

∆x2d

(

2 − tanh2(K ∗ φi +H) − φ2
i

)

. (2.43)

The Langevin equation, Eq. 2.21, that represents SFG dynamics is thus

θ = tanh(K ∗ φ+H) − φ (2.44a)

B = 1 − 1

2
tanh2(K ∗ φ+H) − 1

2
φ2. (2.44b)

For SFM dynamics, Eq. 2.26, similar algebra leads to

θ = 2e−|K∗φ+H| [sinh(K ∗ φ+H) − φ cosh(K ∗ φ+H)] (2.45a)

B = 2e−|K∗φ+H| [cosh(K ∗ φ+H) − φ sinh(K ∗ φ+H)] − θ2

2
(2.45b)

= 2 +O(|φ|).

Equations 2.44 and 2.45 are the main results of this section. The correctness of the
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former has been proved [37, 38]. Although the condition ∆x ≫ 1 was required to derive

these Langevin equations, the coarse graining lengths ∆x and ∆t do not appear in the final

results, as is required for consistency (after all, ∆x and ∆t are essentially arbitrary). It

is thus natural to interpret the Langevin equation in the continuum limit: ∆t → 0 first,

∆x→ 0 second.3

2.3.3 Equilibrium analysis

In this Section I will establish the consistency of the derived Langevin equations, Eqs. 2.44,

2.45, with the coarse grained free energy functional F [φ] of the long-range Ising model,

Eq. 1.40.

Using the Fokker-Plank equation from Section 1.7.4,

∂P
∂t

=

∫

ddx

[

− δ

δφ
θP +

δ

δφ
B
δ

δφ
P
]

, (2.46)

it is straightforward to show that the equilibrium distribution of the Langevin equation is

Peq ∝ e−βG (2.47)

where G[φ] satisfies

δG

δφ
= −β−1 θ

B
. (2.48)

Consistency requires that the dynamical equilibrium distribution e−βG agrees with the

Boltzmann distribution, e−βF . Choosing θ[φ] and B[φ] derived for SFG and SFM dynamics

(Eqs. 2.44, 2.45) one finds the discouraging result δG/δφ 6= δF/δφ and thus G 6= F .

Nonetheless, when R ≫ 1, the dynamical equilibrium distribution e−βG converges to the

Boltzmann distribution e−βF even though the functional G does not converge to F .

To appreciate this, note that the Boltzmann distribution is a sharply peaked Gaussian

centered on the free energy minimum when R ≫ 1 (see Section 1.3.3). Thus, consistency

with the Boltzmann distribution requires only that F and G have identical stationary

3This order of limits is standard (cf. Section 1.7.4). The condition ∆t ≪ ∆x is also a requirement for
the consistency of the coarse graining procedure – it is a direct consequence of Eqs. 2.27, 2.36.
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solutions φ0,

δF

δφ
[φ0] = 0 ⇔ δG

δφ
[φ0] = 0, (2.49)

and also identical second derivatives when evaluated at φ0,

δ2F

δφ2
[φ0] =

δ2G

δφ2
[φ0]. (2.50)

Consider θ and B corresponding to SFG dynamics (Eq. 2.44) and to SFM dynamics

(Eq. 2.45). To verify the first condition, Eq. 2.49, notice the two equations

−β δF
δφ

= K ∗ φ+H − arctanh φ = 0 (2.51)

−β δG
δφ

=
θ

B
= 0 (2.52)

share the same solutions,

φ0 = tanh(K ∗ φ0 +H). (2.53)

To verify the second condition, Eq. 2.50, evaluate the second functional derivatives and

observe agreement:

−β δ
2F

δφ2
[φ0] = K ∗ φ′ − φ′

(1 − φ2)
(2.54)

−β δ
2G

δφ2
[φ0] =

θ′

B
= K ∗ φ′ − φ′

1 − φ2
. (2.55)

The prime notation indicates functional differentiation, evaluation at φ = φ0 is implicit,

and θ[φ0] = 0 by construction.

Through satisfaction of Eqs. 2.49, 2.50, it is established that the coarse grained SFG

and SFM dynamics agree with the Boltzmann distribution in the Kac mean-field limit,

R→ ∞.

2.3.4 Magnetization relaxation

To test of the Langevin equations representing spin-flip Glauber and Metropolis dynamics,

I will consider the process in which the magnetization φ(~x) relaxes to equilibrium following
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a quench of the external field h. As in Section 1.4.2, express SFG and SFM dynamics

(Eqs. 2.44, 2.45) using scaled lengths (Eqs. 1.42, 1.43, 1.44),

∂u(~r, t)

∂t
= tanh(K̃ ∗ u+H) − u+O(R−d/2) (2.56)

∂u(~r, t)

∂t
= 2e−|K̃∗u+H|[sinh(K̃ ∗ u+H) − φ cosh(K̃ ∗ u+H)] +O(R−d/2). (2.57)

where

K̃(~r) = βJ (~r) (2.58)

and J is the scaled Kac potential, Eq. 1.31. Choose, for simplicity, the normalization

J0 =
∫

d~rJ (~r) = 1.

For sufficiently large R the noise term (at O(R−d/2)) is negligible and the magnetization

u(~r, t) = m(t) is nearly uniform. The dynamics becomes

∂m

∂t
= tanh(βm+ βh) − φ (2.59)

∂m

∂t
= 2e−|βm+H|[sinh(βm+ βh) − φ cosh(βm+ βh)]. (2.60)

These equations can be integrated numerically to give m(t) for arbitrary initial conditions

m(0). They are identical to results derived for the fully connected Ising model using a

master equation approach [39].

To test Eqs. 2.59, 2.60, I have performed one dimensional Ising simulations with β−1 =

3/4 and h = 0 following the quench. The system size is 220 spins and the interaction range

R = 216. The potential JR(~x) is chosen to be the radial step function (cf. Section 1.7.5).

Two different initial conditions are considered: m(0) = 0.05 and 1. Following the quench

the magnetization relaxes to its equilibrium value m ≈ 0.78. Figure 2·2 shows the curve

m(t) obtained by averaging 250 independent runs. In Fig. 2·3 the slope dm/dt is plotted

versus m, and is found to agree with the theory.

A difference in character between spin-flip dynamics and NGF dynamics is apparent in

Fig. 2·3 – the slope dm/dt at m = 1 would be infinite for NGF dynamics.



47

0

0.2

0.4

0.6

0.8

1

M
a
g
n
et

iz
a
ti

o
n
m

0 2 4 6 8 10

Time t

Glauber simulation

Metropolis simulation

Figure 2·2: Ising simulations of magnetization relaxation with β = 4/3 and h = 0.
Both SFG and SFM dynamics are employed. The system size is 220 spins and the
interaction range R = 216.
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h = 0, as in Fig. 2·2. The graph of dm/dt versus m is in agreement with the theory,
Eqs. 2.59, 2.60.
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2.3.5 Langevin representation of Kawasaki spin-exchange dynamics

Kawasaki spin-exchange dynamics is an alternative to spin-flip dynamics. At each time-

step, two spins at distance r are randomly selected with probability Γ(r). The pair of spins

is exchanged with either the Glauber or Metropolis transition probability. Spin-exchange

dynamics locally conserves magnetization and is unaffected by the external magnetic field

h.

In this section I will derive a Langevin equation representing coarse grained spin-

exchange dynamics. It is assumed that both the potential JR and the pair selection

probability Γ have the Kac form with a characteristic length R. The Langevin equation to

be derived is valid in the R→ ∞ limit (Kac mean-field).

Since spin-exchange dynamics is significantly more complicated than spin-flip dynamics,

I will assume that φ is small and work only at O(φ). Define 〈dφi〉 to be the mean change

in φi (the coarse grained magnetization, an average of ∆xd spins) after one spin-exchange

trial. The result is calculated to be

〈dφi〉 =
M

∆xd
(−φi +K ∗ φi + Γ ∗ φi −K ∗ Γ ∗ φi) +O(φ2

i ), (2.61)

where M is 1 or 2 for Glauber or Metropolis acceptance probabilities, respectively.

The correlation between dφ at two coarse graining cells is calculated to be

〈dφidφj〉 =

√
M

∆x
(δi,j − Γi,j) +O(φ2), (2.62)

where δi,j is the Kronecker delta and Γi,j = Γ(|~xi − ~xj|).

Equation 2.62 suggests that the noise term η has spatial correlations,

〈

η(~x, t)η(~x ′, t′)
〉

= C(~x− ~x ′)δ(t − t′), (2.63)

where C(~x) is a function to be determined from Eqs. 2.61, 2.62. Proceed by discretization.

The integral of η(~x, t) over a space-time region of size ∆xd∆t (at position ~xi) corresponds
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to the sum of ∆xd∆t random variables dφi,α (labeled by α) minus their expected drift

∆ηi =

∫

∆xd

d~x

∫

∆t

dtη(~x, t) =
∆xd∆t
∑

α=1

(dφi,α − 〈dφi〉) . (2.64)

Using the central limit theorem, it follows that

〈∆ηi∆ηj〉 =

∆xd∆t
∑

α,β=1

〈(dφi,α − 〈dφi〉) (dφj,β − 〈dφj〉)〉 (2.65)

= ∆xd∆tM (〈dφidφj〉 − 〈dφi〉 〈dφj〉) .

Putting (2.61, 2.62, 2.65) together yields the dynamics

∂

∂t
φ(~x, t) = M (−φ+K ∗ φ+ Γ ∗ φ−K ∗ Γ ∗ φ) + η +O(φ2) (2.66)

〈η(~x, t)〉 = 0 (2.67)

〈

η(~x, t)η(~x ′, t′)
〉

= 2M
(

δ(~x− ~x ′) − Γ(~x− ~x ′)
)

δ(t− t′). (2.68)

In Fourier space, the convolution operations disappear,

∂

∂t
φ(~k, t) = M (−1 +K + Γ −KΓ)φ+ η +O(φ2) (2.69)

〈

η(~k, t)
〉

= 0 (2.70)
〈

η(~k, t)η(~k, t)′
〉

= 2M (1 − Γ) δ(~k − ~k ′)δ(t− t′). (2.71)

In Section 2.4.4 these results will be applied to the process of spinodal decomposition and

tested by Monte Carlo simulation.

2.4 Ordering dynamics following a critical quench

An interesting process occurs when a ferromagnet is quenched from above to below the

critical temperature with zero external field h. The coarse grained magnetization φ(~x),

which is initially small, develops local domains of enhanced magnetization. The process is

called continuous ordering or spinodal decomposition if φ(x) is conserved or non-conserved,

respectively.
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For simplicity, assume that the temperature is infinite before the quench so that all

spin configurations are equally likely (each spin is independently up with probability 1/2).

Coarse graining these spins yields a local magnetization φ(~x, t = 0) = ζ(~x), that can be

represented as white Gaussian noise

〈ζ〉 = 0 (2.72)

〈

ζ(~x)ζ(~x ′)
〉

= δ(~x− ~x ′). (2.73)

For systems with Kac-type interactions it is natural to work with scaled variables u(~x/R, t) =

φ(~x, t). One finds that the scaled initial condition becomes u(~r, t = 0) = R−d/2ζ̃(~r), where

ζ̃(~r) is again white Gaussian noise. This small initial condition suggests expanding the

Langevin equation in powers of the magnetization φ, keeping only O(φ) terms. The result

is called the Cahn-Hilliard-Cook (CHC) linear theory [11, 12] which predicts early time

exponential growth of Fourier modes φ(~k). The CHC prediction can be tested through

scattering measurements of the time dependent structure factor

S(~k, t) =
1

V

〈

|φ(~k, t)|2
〉

, (2.74)

where V is the system volume.

I will show that the CHC linear theory is identical (up to a time scale constant) for

continuous ordering in NGF, SFG, and SFM dynamics (Eqs. 2.22, 2.44, and 2.45).

Going beyond the CHC linear theory, however, is tricky. The problem is that a naive

perturbation expansion of S(~k, t) is ultraviolet (UV) divergent! Specifically, corrections to

the CHC theory have an explicit dependence on the ill-defined cutoff, ∆x−1. (Note that

∆x, the arbitrary coarse graining length, is not a physical quantity.) Furthermore, since

all powers of φ appear in the Langevin dynamics, the UV divergence can not be directly

resolved by the standard field theory renormalization procedure [40, 24].

Despite issues of renormalization, numerical evidence will be presented indicating that

corrections to the CHC theory structure factor are O(R−d/2) and O(R−d) for SFM and
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SFG dynamics, respectively. Because SFM and SFG dynamics are generally expected to

qualitatively agree, this observed difference is remarkable.

In the special case of SFG dynamics, it is actually possible to avoid a UV divergence

in the analytical expansion of S(~k, t) in powers of R−d. I will derive the exact leading

order correction to the CHC theory. Numerical results for higher order corrections are also

obtained.

All of the analytical results of this section will be compared with Monte Carlo simula-

tions. Although the mathematics is general, the simulations are performed in one dimension

using the radial step function potential JR = ΘR (in Fourier space ×R(k) = sin(kR)
kR ). Each

system has 220 spins and a large interaction range R. Ordering dynamics is simulated

following a temperature quench from β−1 = ∞ to 4/9. The process is either continu-

ous ordering or spinodal decomposition, depending on whether spin-flip or spin-exchange

dynamics are used.

2.4.1 The CHC linear theory for spin-flip dynamics

Begin with the Langevin equation

∂φ

∂t
= θ[φ] +

√

2B[φ]η (2.75)

where θ and B correspond to NGF dynamics (Eq. 2.22), SFG dynamics (Eq. 2.44), or

SFM dynamics (Eq. 2.45). Both η(~x, t) and the initial condition φ(~x, t = 0) = ζ(~x) are

white Gaussian noise. Upon scaling lengths by R (see Section 1.4.2) the Langevin equation

becomes

∂u

∂t
= θ̃[u] +R−d/2

√

2B̃[u]η̃, (2.76)

where η̃(~r, t) is again white Gaussian noise and where θ̃[u] = θ[φ] and B̃[u] = B[φ] have no

R dependence.

From Eqs. 2.72, 2.73, the scaled initial condition is

u(~r, t = 0) = R−d/2ζ̃(~r), (2.77)
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where ζ̃(~r) is once more white Gaussian noise. Remarkably, at leading order in the (ini-

tially) small variable u(~r, t), the dynamics of NGF, SFG, and SFM all have the same form,

∂u(~r, t)

∂t
= M(K̃ ∗ u− u) +R−d/2

√
2Mη̃ +O(u2), (2.78)

where

M =























β (NGF dynamics)

1 (SFG dynamics)

2 (SFMdynamics)

. (2.79)

Define the scaled Fourier transform of u(~r, t) to be

u(~q, t) =

∫

d~rei~q·~ru(~r, t) = R−d

∫

d~xei
~k·~rφ(~x, t) (2.80)

= R−dφ(~k)

where

~q = ~kR (2.81)

is dimensionless. Fourier transformation of Eq. 2.78 yields

∂u(~q, t)

∂t
= D̃Mu+R−d/2

√
2Mη̃ +O(u2), (2.82)

where

D̃(~q) = K̃(~q) − 1. (2.83)

Analytic solution is possible at leading order,

u(~q, t) = R−d/2



ζ̃eD̃Mt +
√

2M

t
∫

0

dt′eD̃M(t−t′)η̃



+O(R−d). (2.84)

Application of the first and second moments of the white Gaussian noise functions, ζ̃(~q)

and η̃(~q, t), yields

1

δ(~q = 0)

〈

|u(~q, t)|2
〉

= R−d
[

e2D̃Mt
(

1 + D̃−1
)

− D̃−1
]

+O(R−3d/2) (2.85)
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Figure 2·4: Structure factor measurements for continuous ordering using SFG dy-
namics. The system size is 220 spins and the interaction range is R = 216. At the
early times shown (t = 0.1 and t = 0.4) the structure factor is in agreement with the
CHC prediction, Eq. 2.87.

where δ(~q = 0) = Rd/V . The full structure factor, Eq. 2.74, is

S(~k, t) = Sl(k, t) +O(R−d/2) (2.86)

where

Sl(~k, t) = e2D̃Mt(1 + D̃−1) − D̃−1. (2.87)

For R large the CHC linear theory prediction, S ≈ Sl, is a good approximation at early

times. Due to exponential growth, the CHC theory fails at a time t ∼ lnR [7].

The CHC prediction, Eq. 2.87, can be tested by direct simulation of the Ising model

using SFG dynamics. Figure 2·4 shows structure factor measurements of the continuous

ordering process. A one-dimensional system of 220 spins, with interaction range R = 216,

is simulated following a quench from β−1 = ∞ to 4/9. At early times (t = 0.1 and t = 0.4)

the structure factor measurements agree well with Eq. 2.87.
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2.4.2 Breakdown of the CHC linear theory

In the previous section I reviewed the CHC structure factor prediction, Eq. 2.87. The

CHC linear theory is valid when R is large and t is sufficiently small (i.e. t ≪ lnR). It is

natural to ask: what happens when the linear theory breaks down?

Let’s first take a step back and consider the Langevin equation in scaled form, Eq. 2.76.

The noise term is O(R−d/2) and would be negligible were it not for the fact that the initial

condition u(t = 0) is also O(R−d/2). This balance led to the conclusion, in Eq. 2.84, that

u = O(R−d/2) at early times (t≪ lnR). At later times, when t ∼ lnR, exponential growth

yields u = O(1), nonlinear powers of u become relevant, and the linear theory fails. Notice

from Eq. 2.76 that when u = O(1) the noise term (which is O(R−d/2)) is negligible. Thus,

nonlinear powers of u in B̃[u] are irrelevant, and the breakdown of the linear theory is

entirely determined by θ̃[u].

Expansion of the relevant terms of SFG and SFM dynamics (Eqs. 2.44, 2.45) yields

∂v

∂t
=

(

K̃ ∗ v − v +
√

2η̃
)

− 1

3

(

K̃ ∗ v
)3
R−d +O

(

R−2d
)

(2.88)

∂v

∂t
= 2

(

K̃ ∗ v − v + η̃
)

− 2|K̃ ∗ v|
(

K̃ ∗ v − v
)

R−d/2 +O
(

R−d
)

. (2.89)

for SFG and SFM dynamics respectively, where

v(~r, t) = R−d/2u(~r, t) = R−d/2φ(~x, t). (2.90)

The initial condition,

v(~r, t = 0) = ζ̃(~r), (2.91)

is white Gaussian noise with no R dependence. The structure factor, Eq. 2.74, is

S(~k, t) =
1

δ(~q = 0)
〈|v(~q, t)|〉 . (2.92)

Strikingly, Eqs. 2.88 and 2.89 predict that corrections to the linear theory structure factor,

δS(~k, t) = S(~k, t) − Sl(~k, t), (2.93)
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Figure 2·5: Corrections to the CHC linear theory structure factor. A one dimen-
sional Ising model with 220 spins is simulated using SFG dynamics and increasing
values of R. The results are consistent with δS

√
R → 0 as R → 0, supporting the

prediction that δS = O(R−d) for SFG dynamics.

are O(R−d) for SFG dynamics and O(R−d/2) for SFM dynamics:

lim
R→∞

δS(~k, t)Rd/2 =







0 (SFG dynamics)

finite (SFMdynamics)
. (2.94)

This prediction is tested by Monte Carlo using an increasing sequence of R values. A one-

dimensional Ising model is simulated with 220 spins and R = {28, 210, 212}. The corrections

δS to the CHC linear theory at time Mt = 1.4 are plotted in Fig. 2·5 (SFG dynamics)

and Fig. 2·6 (SFM dynamics). The structure factor is measured as an ensemble average

of 2 × 104 quenches, each with different initial conditions. The results are consistent with

Eq. 2.94, establishing a substantial difference between SFG and SFM dynamics.

2.4.3 Expansion beyond the CHC linear theory

In the case of SFG dynamics, there exists well behaved, analytical expansion in powers of

R−d for the structure factor. I will derive the first correction to the CHC theory analytically

and present numerical results for the second order correction.
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Figure 2·6: Corrections to the CHC linear theory structure factor. A one dimen-
sional Ising model with 220 spins is simulated using SFM dynamics and increasing
values of R. The results are consistent with δS

√
R → (const) as R → 0, supporting

the prediction that δS = O(R−d/2) for SFM dynamics.

Fourier transformation of the SFG dynamics, Eq. 2.88, yields

∂v(~q, t)

∂t
= D̃v +

√
2η̃ − (2π)−2d

3

(

K̃v
)3∗

R−d +O
(

R−2d
)

(2.95)

(see Section 1.7.1), which can be reformulated as an integral equation,

v(~q, t) = eD̃tζ̃ +

t
∫

0

dt′eD̃(t−t′)

(√
2η̃ − (2π)−2d

3

(

K̃v
)3∗

R−d +O(R−2d)

)

. (2.96)

It is straightforward to develop a perturbation expansion of the structure factor

S(~k, t) =
1

δ(~q = 0)

〈

|v(~q)|2
〉

(2.97)

in powers of R−d. The steps are the following: (1) insert two factors of v from Eq. 2.96, (2)

separate terms at each order of R−d, (3) apply ensemble averages to the white Gaussian

noise functions, ζ̃ and η̃, to obtain δ-functions, (4) perform the trivial integrals over δ

functions, and (5) perform the remaining non-trivial integrals.
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Although straightforward in principle, the procedure is tedious. Steps (1–4) can be

organized using diagrammatic notation [41, 42, 23, 26]. The diagrams are analogous to

Feynman diagrams [40] but are complicated by a non-trivial t dependence. The number of

loops in the diagram corresponds to the power of R−d.

A rough description of the diagrammatic notation follows. Each diagram has two

external legs corresponding to the two factors of v appearing in the structure factor. The

legs have an “incoming time” t1 of 0. Each leg may either (1) terminate, picking up the

weight

eD̃t1 ζ̃ +
√

2

t1
∫

0

dt2e
D̃(t1−t2)η̃ (2.98)

or (2) pick up the factor

R−d

3

t1
∫

0

dt2e
D̃(t1−t2) (2.99)

and split into three new internal lines, each of which carries the weight K̃ and has an

“incoming time” t2. The newly created internal lines may again either (1) terminate or (2)

split further. At O(R−nd) there are exactly n split vertices in the diagram. To evaluate the

structure factor one sums over all diagrams, connecting together the terminating lines in all

possible ways (but ζ̃ and η̃ don’t connect because they are uncorrelated random variables).

Finally, one integrates over all internal “loop momenta” (a dummy ~q ′ variable).

The structure factor, at one-loop order, is calculated to be

S(~k, t) = S(0) + S(1)R−d +O(R−2d) (2.100a)

S(0) = Sl (2.100b)

S(1) = 2

∫

d~q ′

2π
K̃(~q)K̃(~q ′)2

t
∫

0

daeD̃(~q)(t−a)BC (2.100c)
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Figure 2·7: Structure factor measurements at ~k = 0. A one-dimensional system
of 220 spins is simulated with interaction range R = 216 and SFG dynamics. At
increasing times following the quench an increasing number of corrections to the
CHC linear theory are required to match the data.

where

Sl = e2D̃(~q)t + 2

t
∫

0

dt′e2D̃(~q)(t−t′) (2.101a)

B = e2D̃(~q ′)a + 2

a
∫

0

dbe2D̃(~q ′)(a−b) (2.101b)

C = e2D̃(~q)(a+t) + 2

a
∫

0

dce2D̃(~q)(a−c). (2.101c)

Remarkably, the first correction to the linear theory, S(1), is well behaved: the momentum

integral over ~q ′ is damped by the factor K̃(~q ′)2, and no UV divergence occurs. Higher

order corrections are similarly protected.

The good behavior of SFG dynamics is not shared with NGF and SFM dynamics. If a

nonlinear theory of NGF dynamics (Eq. 2.22) were attempted, the result would be missing

the crucial factor K̃(~q ′)2 (cf. Eq. 2.100) and the integral over ~q ′ would be UV divergent.

The SFM dynamics has the additional challenge of an absolute value singularity at φ = 0.
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Figure 2·8: Structure factor measurements at time t = 1.0 following the quench. A
one-dimensional system of 220 spins is simulated with interaction range R = 216 and
SFG dynamics. The first correction to the CHC linear theory (given analytically in
Eq. 2.100) agrees well with the simulation data.
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Figure 2·9: Structure factor measurements at time t = 1.6 following the quench.
A one-dimensional system of 220 spins is simulated with interaction range R = 216

and SFG dynamics. The second correction to the CHC linear theory (obtained
numerically, of the order R−2d) agrees well with the simulation data.
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Figure 2·10: Structure factor measurements for spinodal decomposition using SEG
dynamics. The system size is 220 spins and the interaction range R = 512. At the
early times shown (t = 0.1 and t = 0.8) the structure factor is in agreement with the
linear theory, Eq. 2.102.

The corrections to the CHC linear theory can be compared to SFG Monte Carlo sim-

ulations. Figures 2·7 – 2·9 show simulation results of a one-dimensional system with 220

spins and R = 512. In Fig. 2·7 the measured structure factor peak, S(~k = 0, t), is compared

with the CHC linear theory, the first correction (obtained analytically in Eq. 2.100), and

the second correction (obtained numerically). At early times the first correction to the

CHC linear theory is in agreement with the simulation data over a range of k magnitudes,

as shown in Fig. 2·8. At later times higher order corrections are required to describe the

data, Fig. 2·9.

2.4.4 The CHC linear theory for Kawasaki spin-exchange dynamics

Kawasaki spin-exchange dynamics locally conserves magnetization. The ordering process

following a quench is thus spinodal decomposition. Using Eqs. 2.69, 2.70, 2.71 it is straight-

forward to calculate the linear theory structure factor,

S(~k, t) = eC(~k)Mt

(

1 +
1 − Γ(~k)

C(~k)

)

− 1 − Γ(~k)

C(~k)
, (2.102)
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where

C(~k) = −1 + Γ(~k) +K(~k) −K(~k)Γ(~k), (2.103)

which can be compared spin-flip case, Eq. 2.87. The prediction for S(~k, t) can be tested

by direct simulation of the Ising model using SFG dynamics. Figure 2·10 shows structure

factor measurements of the spinodal decomposition process. A one-dimensional system of

220, with interaction range R = 512, is simulated following a quench from β−1 = ∞ to

4/9. Spins within the distance R are selected with a uniformly random probability, so

that Γ(~k) = JR(~k) = sin(kR)
kR . At early times (t = 0.1 and t = 0.8) the structure factor

measurements agree well with Eq. 2.102.

Spin-exchange dynamics is substantially more complicated than spin-flip dynamics; I do

not address the breakdown of the CHC linear theory as it applies to spinodal decomposition.



Chapter 3

Long-range repulsive models and modulated

phases

In this chapter I will consider phase transitions in systems with long-range repulsive inter-

actions (e.g., the long-range antiferromagnetic Ising model). Such systems are of interest

because, unlike ferromagnets, they exhibit a wide range of modulated (spatially nonuni-

form) phases at low temperatures. The kinetics of transitions between these phases is

particularly rich due to the associated changes in spatial symmetry.

3.1 Model definition

The starting point is the generic free energy functional

F =

∫

d~x

[

1

2
φ(ΛR ∗ φ) + β−1f(φ) − hφ

]

(3.1)

where the entropy term β−1f(φ) is an arbitrary convex function (i.e., f ′′(φ) > 0) and the

Kac potential

ΛR(~x) = R−dΛ(~x/R), (3.2)

is spherically symmetric and repulsive. This free energy functional can be used to represent

both the long-range Ising and clump models (Sections 1.3.3, 1.6).

As in Section 1.3.3, the free energy functional can be expressed in scaled lengths,

F = Rd

∫

d~r

[

1

2
u(Λ ∗ u) + β−1f(u) − hu

]

, (3.3)

where u(~r) = u(~x/R) = φ(~x). In the limit R → ∞ (Kac mean-field), the minima of the

62
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free energy functional correspond to thermodynamic stable and metastable phases.

As a repulsive potential, Λ(~r) satisfies certain conditions. Its Fourier transform Λ(~q),

considered as a function of the wave vector magnitude q = |~q|, is minimized at

0 < q0 <∞, (3.4)

and is negative at its minimum,

Λ(q0) < 0. (3.5)

Expansion about the minimum yields

Λ(~q) = Λ(q0) +
1

2
Λ′′(q0)(|~q| − q0)

2 + . . . (3.6)

A satisfactory choice for Λ(~r) is the radial step function Θ(~r) described in Section 1.7.5.

The repulsive Gaussian potential e−r2
, however, is not acceptable because the minimum of

its Fourier transform is Λ(|~q| = ∞) = 0.

It is convenient to work in an ensemble with fixed mean magnetization

m =
1

V

∫

d~ru(~r) (3.7)

rather than fixed h; the two ensembles are equivalent in the thermodynamic limit. Express

the order parameter as

u(~r) = m+ ψ(~r), (3.8)

where ψ has been constructed to satisfy

∫

d~rψ(~r) = 0. (3.9)

In anticipation that ψ(~r) will be small, expand the free energy in a power series,

F = Rd

∫

d~r

[

1

2
ψ(A ∗ ψ) + β−1

[

1

3!
f (3)(m)ψ3 +

1

4!
f (4)(m)ψ4 + . . .

]]

, (3.10)
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where

A(~r) = Λ(~r) + δ(~r)β−1f (2)(m) (3.11)

and f (i) is the ith derivative of f .

3.1.1 The disorder phase and spinodal

At high temperatures β−1 the disorder solution ψ = 0 is the stable phase (i.e., the free

energy minimum) because

1. the mean of ψ is zero by construction (Eq. 3.9),

2. the entropic term β−1f(u) becomes the dominant contribution to F (Eq. 3.3),

3. the convexity of f(u) implies the stable phase is uniform.

Consider a system in the higher temperature disorder phase, ψ = 0. When R ≫ 1,

fluctuations are small and the free energy is well approximated by

F ≈ Rd

2

∫

d~rψ(~r)(A ∗ ψ)(~r) =
Rd

2(2π)−d

∫

d~qA(~q)|ψ(~q)|2, (3.12)

where the second step follows from Parseval’s theorem. The stability condition

δ2F/δψ2 > 0 (3.13)

fails if A(~q) < 0 for any ~q. The spinodal limit of metastability occurs when A(~q), evaluated

at its minimum |~q| = q0, is zero,

A(q0) = Λ(q0) + β−1
sp f

(2)(m) = 0. (3.14)

Note that the spinodal temperature β−1
sp has an m dependence.
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3.1.2 The critical point

I will demonstrate that there is a critical point at m = 0 and β−1 = β−1
sp |m=0 when f is an

even function. Begin by expanding f(u) in a power series about u = 0,

f =
1

2!
f (2)(0)u2 +

1

4!
f (4)(0)u4 + . . . (3.15)

Take m to be small and assume that ψ = O(m), which will be justified self consistently.

Therefore insertion of u = m+ ψ into f(u) yields only a few relevant terms,

β−1f(u) ≈ β̃−1

[

1

2

(

a+ 3m2
)

ψ2 +mψ3 +
1

4
ψ4

]

, (3.16)

where

β̃−1 = β−1 f
(4)(0)

6
(3.17)

a =
6f (2)(0)

f (4)(0)
. (3.18)

Using this approximation the free energy functional (Eq. 3.3) becomes

F ≈ R̃d

∫

d~r

[

1

2
ψ(Ã ∗ ψ) +mψ3 +

1

4
ψ4

]

(3.19)

with

Ã(~q) ≈ t+ 3m2 + σ̃2(|~q| − q0)
2 (3.20)

and

t = β̃
(

Λ(q0) + β−1f (2)(0)
)

(3.21)

R̃d = β̃−1Rd (3.22)

σ̃2 = β̃σ2 = β̃
Λ′′(q0)

2
. (3.23)

Note that t is the reduced temperature (i.e., the m = 0 disorder phase spinodal occurs at

t = 0).

Stable and metastable phases correspond to minima of the free energy functional and
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satisfy the approximate Euler-Lagrange equation

R̃−d δF

δψ(~r)
= Ã ∗ ψ + 3mψ2 + ψ3 = 0, (3.24)

which is valid near m = t = 0 (the critical point). When t ∼ m2 the Euler-Lagrange equa-

tion predicts nontrivial solutions which scale as ψ(~q) ∼ m; these solutions are concentrated

at |~q| = q0 and have a characteristic width which scales as (|~q| − q0) ∼ m/σ̃. The existence

of scaling solutions justifies the truncations made in Eqs. 3.16, 3.20.

The assumption that f(u) is an even function is crucial to the existence of a critical

point at m = t = 0. If f(u) were not an even function then the ψ3 term appearing in the

free energy functional would not contain an m prefactor and would therefore dominate the

ψ4 term for small ψ; the non-zero stationary points of the resulting ψ3 field theory (i.e.,

solutions to δF/δψ = 0) would be unstable [43], resulting in a unique stable phase near

m = t = 0.

The free energy functional near the critical point, Eq. 3.19, has only a few physically

relevant parameters, viz.,

• The large interaction range R̃, which enables the mean-field approximation.

• The characteristic nucleating droplet envelope width, σ̃.

• The characteristic angular frequency of spatial modulations, q0.

• The reduced temperature t and the magnetization m.

Near the critical point the phase diagram predicted by the free energy functional, Eq. 3.3,

is parametrized by t and m alone.

3.2 Two dimensions – the disorder, stripe, and clump phases

I will study two dimensional systems near the critical point using the free energy functional,

Eq. 3.19. A main result of this section is the phase diagram illustrated in Fig. 3·3, which

is valid near the critical point. There are three phases: disorder, clump, and stripe. The
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coexistence curves between these phases are derived in Section 3.2.1, reproducing prior

work [44, 45]. In Section 3.2.2 I will derive the complete set of spinodal curves which, to

my knowledge, are new. Nucleation near the spinodal curves is the subject of Section 3.2.3.

3.2.1 Equilibrium phase diagram

A first step towards the determination of the phase diagram is to identify solutions ψ(~r) of

the Euler-Lagrange equation, Eq. 3.24, which represent stationary points of the free energy

functional. The relatively small free energy cost of fluctuations in Fourier modes ψ(~q) with

|~q| ≈ q0 motivates us to consider ψ that are peaked about this point. The ansatz,

ψ(~r) = b
∑

~e∈Qb

cos (q0~e · ~r) + c
∑

~e∈Qc

cos(q0~e · ~r), (3.25)

has two real parameters b, c and involves the unit reciprocal lattice vectors

Qb =







〈+1, 0〉

〈−1, 0〉







(3.26)

and

Qc =
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√
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3
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. (3.27)

Fourier transformation of Eq. 3.25 yields

ψ(~q) = (2π)d



b
∑

~e∈Qb

δ(~q − q0~e) + c
∑

~e∈Qc

δ(~q − q0~e)



 . (3.28)

Note that the ansatz ψ(~q) fixes an angular orientation. Rotational invariance is added “by

hand”: if ψ(~q) is a solution to Eq. 3.24 then so is ψ(R[~q]), where R is an arbitrary rotation.

I will now apply the ansatz to the free energy F [ψ] yielding an ordinary function F (b, c).

The first step is to convert the free energy functional, Eq. 3.19, to its Fourier representation.
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This is achieved through the identity

∫

d~r(ψ(~r))n =
1

(2π)nd

∫

[d~q1 . . . d~qn] [ψ(~q1) . . . ψ(~qn)] (2π)dδ(~q1 + . . .+ ~qn) (3.29)

(see Section 1.7.1). Using the ansatz, Eq. 3.28, considerable simplification is possible:

n-fold products such as [ψ(~q1) . . . ψ(~qn)] contribute to F [ψ] only when the vector sum

(~q1 + . . . + ~qn) is nonzero. The free energy functional, Eq. 3.19, becomes

F [ψ] → F (b, c) = RdV

[

(t+ 3m2)(2c2 + b2) + 12mbc2 +

(

3

2
b4 + 12b2c2 + 9c4

)]

, (3.30)

where V = (2π)dδ(~q = 0) is the system volume. Each of the terms in the RHS of Eq. 3.30

is obtained by summing vectors, drawn from the sets Qb and Qc, that add to zero. For

example,
∫

d~rψ3 = 12bc2 because there are exactly 12 unique ordered triplets (~e1, ~e2, ~e3) ∈

(Qb ∪Qc)
3 that satisfy ~e1 + ~e2 + ~e3 = 0. In each triplet, one vector is contained in Qb and

two vectors are contained in Qc.

Restricted to the ansatz, Eq. 3.28, the Euler-Lagrange equation becomes,

∂F (b, c)

∂b
= 2RdV [(t+ 3m2)b+ 6mc2 + 3b3 + 12bc2] = 0 (3.31a)

∂F (b, c)

∂c
= 4RdV [(t+ 3m2)c+ 6mbc+ 6b2c+ 9c3

]

= 0, (3.31b)

and has several solutions. The disorder phase solution is

b = bd = 0 (3.32a)

c = cd = 0. (3.32b)

There is one other solution with c = 0, the stripe phase,

b = bs = −
√

−1

3
t−m2 (3.33a)

c = cs = 0, (3.33b)

which is unique up to the sign of b. The exchange of sign (b → −b) corresponds to the
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simple translation ψ(~r) → ψ
(

~r +
〈

π
q0
, 0
〉)

and yields no new physics (cf. Eq. 3.25).

Next consider the case c 6= 0; Eq. 3.31b reduces to

c2 = −1

9
(t+ 3m2 + 6mb+ 6b2). (3.34)

Insertion into Eq. 3.31a yields

(t+ 3m2)b+ 3b3 + −1

9
(6m+ 12b)(t+ 3m2 + 6mb+ 6b2) = 0. (3.35)

Equation 3.35 is cubic and has three solutions for b; once b is known, Eq. 3.34 gives c. The

first two solutions are the stable clump phase and unstable clump solution,

bc∓ =
1

5

(

−m∓
√

−5

3
t− 4m2

)

(3.36a)

cc∓ = bc∓. (3.36b)

The third solution is mixed – it is somewhat between stripes and clumps:

bm = −2m (3.37a)

cm = −1

3

√

−t− 15m2. (3.37b)

The solutions given in Eqs. 3.36, 3.37 are unique up to the sign of c. The exchange of

sign (c → −c) corresponds to the translation ψ(~r) → ψ
(

~r +
〈

0, 2π√
3q0

〉)

, yielding no new

physics (cf. Eq. 3.25).

Equations 3.32, 3.33, 3.36, 3.37 represent the complete set of solutions to the Euler-

Lagrange equation and are listed in Table 3.1. The solutions are graphically depicted in

Fig. 3·1 and 3·2.

For given t and m, the free energy (Eq. 3.30) can be evaluated for each of the solutions

listed in Table 3.1. The stable phase is the solution with minimum free energy. The

resulting phase diagram, shown in Fig. 3·3, reproduces prior work [44, 45]. Notice that the

disorder, clump, and stripe solutions are each the stable phase in some region of the (t,m)

parameter space. The exact coexistence curves for the disorder-clump and clump-stripe



70

Disorder phase
bs = 0
cs = 0

Stripe phase
bs = −

√

−1
3t−m2

cs = 0

Clump phase/clump saddle point
bc∓ = 1

5

(

−m∓
√

−5
3t− 4m2

)

cc∓ = bc∓

“Mixed” saddle point
bm = −2m

cm = −1
3

√
−t− 15m2

Table 3.1: The four stationary points ψ of the free energy functional that are
consistent with the ansatz of Eq. 3.25. Each has a physical interpretation as either
a stable phase, metastable phase, or unstable saddle point.

(a) (b)

Figure 3·1: The metastable stripe phase (a) and the unstable “mixed” saddle point
(b) at t = −17.5m2. Both configurations are stationary points of the free energy
functional. The two solutions merge at the t = −15m2 spinodal.
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(a) (b)

Figure 3·2: The metastable clump phase (a) and the unstable “mixed” saddle
point (b) at t = −35m2. Both configurations are stationary points of the free energy
functional. The two solutions merge at the t = −51m2 spinodal.

Disorder phase

Stripe

phase

Clump

phase

Clump

phase

−2

−1.5

−1

−0.5

0

t

−1 −0.5 0 0.5 1

m

Figure 3·3: Phase diagram showing the disorder, clump, and stripe phases meeting
at the critical point t = m = 0. The solid lines are coexistence curves between phases
and the dashed lines are spinodal curves. The exact functions are given in Table 3.2.
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Disorder-clump coexistence curve t = −37
15m

2

Clump-stripe coexistence curve t = −3
5(19 + 6

√
6)m2

Clump → disorder spinodal curve t = −12
5 m

2

Disorder → clump spinodal curve t = −3m2

Stripe → clump spinodal curve t = −15m2

Clump → stripe spinodal curve t = −51m2

Table 3.2: Coexistence and spinodal curves between disorder, stripe, and clump
phases.

transitions are listed in Table 3.2. Note that the mixed solution, Eqs. 3.37, is nowhere

a stable phase; in the next section it is seen that the mixed solution is a saddle point of

the free energy functional and plays an important role in nucleation between stripes and

clumps.

One might wonder whether Table 3.1 lists all relevant solutions to the original Euler-

Lagrange equation (Eq. 3.24) – might the ansatz, Eq. 3.25, have been too restrictive?

Numerical solution of the original Euler-Lagrange equation indicates that the phase dia-

gram in Fig. 3·3 is correct [45].

3.2.2 Spinodal instabilities

Now that the equilibrium phase diagram is understood, I will turn attention to metasta-

bility and the kinetics of phase transitions near the critical point. The disorder-stripe

transition is a special case: it occurs at the critical point, t = m = 0, and is continuous

in mean field (although fluctuations may induce a weak first order transition [46, 47]).

There are also two first-order transitions: disorder-clump and clump-stripe.1 Associated

1The first-order nature of these transitions predicted by the Landau rules [48], and has been numerically
verified [45]
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with first order phase transitions are metastability and nucleation. For systems with long-

range interactions, nucleation is most relevant near the spinodal limit of metastability (cf.

Section 1.5.2). The initial concern, therefore, is the determination of the spinodal curves.

There are four spinodal curves near the critical point: two are associated with the

disorder-clump transition (one for each direction) and two more for the clump-stripe tran-

sition. Choose ψ to represent the disorder, clump, or stripe phase (see Table 3.1). By

definition, ψ is stable if

F [ψ + ∆ψ] > F [ψ] (3.38)

for all infinitesimal perturbations ∆ψ. A functional Taylor series gives (cf. Section 1.7.2)

F [ψ+∆ψ] = F [ψ]+

∫

d~r
δF [ψ]

δψ(~r)
∆ψ(~r)+

1

2

∫

d~rd~r ′ δ2F [ψ]

δψ(~r)δψ(~r ′)
∆ψ(~r)∆ψ(~r ′)+ . . . (3.39)

Since ψ is a stationary point of the free energy functional it satisfies δF/δψ = 0. The

stability condition of Eq. 3.38 becomes

∫

d~rd~r ′ δ2F [ψ]

δψ(~r)δψ(~r ′)
∆ψ(~r)∆ψ(~r ′) > 0. (3.40)

The elements of the Hessian operator,

Hr,r′ =
δ2F [ψ]

δψ(~r)δψ(~r ′)
, (3.41)

are symmetric (Hr,r′ = Hr′,r). This permits us to work in the eigenbasis of H. An arbitrary

∆ψ can be expressed as a linear combination of eigenvectors with real eigenvalues. The

onset of a spinodal instability is indicated by the existence of a zero eigenvalue.

The strategy for determining the spinodals in the disorder-clump and clump-stripe

transitions is to (a) guess where the spinodal curve is and (b) prove that the guess is

correct by finding an eigenvector ∆ψ of H with zero eigenvalue. The eigenvector ∆ψ

can be interpreted physically as a mode which becomes unstable at the spinodal limit of

metastability.

We search for eigenvectors ∆ψ(~r) using the same ansatz as we used for ψ(~r) in Eq. 3.25.
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With this restriction, the Hessian operator of Eq. 3.41 becomes a 2×2 Hessian matrix and

the stability condition of Eq. 3.41 becomes

(

∆ψ1 ∆ψ2

)





∂2
aF ∂a∂bF

∂a∂bF ∂2
bF









∆ψ1

∆ψ2



 > 0. (3.42)

The 2 × 2 Hessian matrix is easily diagonalized.

Disorder-clump transition

The coexistence between disorder and clump phases occurs at t = −37
15m

2. There is a

metastable clump region for t > −37
15m

2 and a metastable disorder region for t < −37
15m

2.

The metastable phases terminate at the spinodal curves, which are to be determined.

To find the spinodal curves, consider the unstable clump solution which lies between

the disorder and clump phases. For positive m the disorder and clump phases are given by

(bd, cd) and (bc−, cc−). The unstable clump solution, (bc+, cc+), is a saddle point between

these two. These three solutions are given in Table 3.1. Note that in all three cases, b = c.

Figure 3·4 indicates that, at fixed t, there is a specific value of m where the unstable

clump solution matches the disorder phase (and another for the clump phase). I will now

demonstrate that these matching points (listed in Table 3.2) are exactly the spinodals being

sought.

The Hessian matrix evaluated at the disorder phase, bd = cd = 0, is

H =





∂2
aF ∂a∂bF

∂a∂bF ∂2
bF



 ∝





t+ 3m2 0

0 2(t+ 3m2)



 . (3.43)

The unstable clump solution matches the disorder phase when bc+ = 0, which occurs at

t = −3m2. (3.44)

Inserting this value into the Hessian matrix yields H = 0; the instability of the disorder

phase confirms our guess that t = −3m2 is the spinodal curve. In fact, the location of this
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Figure 3·4: The disorder and clump phases. The amplitude of modulations (b = c)
is plotted against m for t = −1. Solid lines represent stable phases, dashed lines
represent metastable phases, and the dotted line represents unstable saddle points.
The two squares represent spinodal limits of metastability.
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spinodal had already been deduced in Section 3.1.1.

The disorder phase spinodal is unique in that multiple modes become unstable. In

Section 3.1.1 it was shown that the disorder phase is unstable to all Fourier modes with

|~q| = q0. This fact leads to surprising nucleating droplet structures, as will be demonstrated

in Section 3.3.

Now turn to the metastable clump phase. The candidate spinodal (where bc+ = bc−) is

t = −12

5
m2. (3.45)

The Hessian matrix evaluated at the candidate spinodal is

H ∝





1 −1

−1 1



 . (3.46)

The Hessian matrix has an eigenvector, (1, 1), with eigenvalue zero. This demonstrates

an instability to fluctuations with ∆b = ∆c, and establishes that Eq. 3.45 identifies the

spinodal. Interestingly, the clump-to-disorder spinodal coincides with a branch point of

the metastable phase – a situation unique to this transition.

Clump-stripe transition

The unstable mixed solution (bm, cm in Eqs. 3.37) plays the same role in the clump-stripe

transition as the unstable clump solution (bc+, cc+ in Eqs. 3.36) plays in the disorder-clump

transition. Specifically, the mixed solution interpolates between clump and stripe phases

in a manner analogous to that shown in Fig. 3·4. This leads us to investigate the points in

which the mixed solution matches the clump or stripe phases.

For the metastable clump phase, the candidate spinodal (where bm = bc, cm = cc) is

t = −51m2. (3.47)
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Evaluation of the clump phase Hessian matrix at the candidate spinodal yields

H ∝





1 2

2 4



 . (3.48)

The eigenvector (2,−1) has zero eigenvalue, establishing that Eq. 3.47 identifies the spin-

odal of the clump-to-stripe transition.

Going in the other direction, the candidate spinodal (where bm = bs, cm = cs) is

t = −15m2 (3.49)

and the corresponding Hessian matrix is

H ∝





1 0

0 0



 . (3.50)

The eigenvector (1, 0) has zero eigenvalue, establishing that Eq. 3.47 identifies the spinodal

of the clump-to-stripe transition.

This concludes our investigation of spinodals. The results, Eqs. 3.44, 3.45, 3.47, 3.49,

are collected in Table 3.2 and plotted in Fig. 3·3.

3.2.3 Nucleation

In this section I will discuss nucleation – the initial decay of the metastable phase – near the

spinodal limits of metastability that were derived in Section 3.2.2. A general introduction

to nucleation in systems with long-range interactions is given in Section 1.5.

The nucleating droplet is a saddle point of the free energy functional that sits between

the metastable and stable phases. Among all such saddle points, the nucleating droplet is

the one with minimum free energy cost (Section 1.5.1). Saddle points are unstable solu-

tions to the Euler-Lagrange equation, Eq. 3.24. We have already met some saddle points,

viz., bc+, cc+ (when m > 0) and bm, cm from Eqs. 3.36, 3.37 (see Figs. 3·1, 3·2); these

saddle points extend over the entire system volume and have an extensive free energy cost.
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For sufficiently large systems (in particular, systems much larger than Rd) the nucleat-

ing droplet is an alternate saddle point – it has a non-extensive free energy cost and its

deviations from the metastable phase are localized.

To determine the nucleating droplets near the metastable clump and stripe phase spin-

odals, consider configurations of the form

ψ(~r) = ψ0(~r) + ξ(~r), (3.51)

where ξ represents a small perturbation about the disorder, clump, or stripe metastable

phase ψ0(~r) (cf. Table 3.1). Expand the free energy of Eq. 3.19,

F [ψ] = F [ψ0] +

∫

d~r
δF

δψ0(~r)
ξ(~r) +

1

2

∫

d~rd~r ′ δ2F

δψ0(~r)δψ0(~r ′)
ξ(~r)ξ(~r ′) + . . . (3.52)

= f0 + f1 + f2 + f3 +O(ξ4),

where

f0 = F [ψ0] (3.53a)

f1 = 0 (3.53b)

f2 =

∫

d~r
1

2
(A ∗ ξ)ξ + (3mψ0 +

3

2
ψ2

0)ξ
2 (3.53c)

f3 =

∫

d~r(m+ ψ0)ξ
3, (3.53d)

and terms higher order in ξ are negligible near the spinodal. The Euler-Lagrange equation,

Eq. 3.24, becomes

δF

δξ(~r)
= A ∗ ξ + (6mψ0 + 3ψ2

0)ξ + 3(m+ ψ0)ξ
2 = 0. (3.54)

Fourier transformation of Eq. 3.54 gives

0 = A(~q)ξ(~q) + 6m
(ψ0 ∗ ξ)(~q)

(2π)d
+ 3

(ψ0 ∗ ψ0 ∗ ξ)(~q)
(2π)2d

(3.55)

+3m
(ξ ∗ ξ)(~q)

(2π)d
+ 3

(ψ0 ∗ ξ ∗ ξ)(~q)
(2π)2d

.
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We seek solutions ξ(~r), which represent localized saddle points of the free energy functional.

Nucleation from the disorder phase is a special because (1) Eq. 3.55 is significantly

simplified when ψ0 = 0, (2) all Fourier modes with |~q| = q0 become unstable at the

spinodal, and (3) the droplets have a surprising onion-structure for all dimensions d ≥ 3.

This transition is the topic of Section 3.3.

In the remainder of this section I will discuss clump-to-disorder nucleation when the

distance from spinodal

ε = t+
12

5
m2 ≪ 1 (3.56)

is small (cf. Eq. 3.45). The physics of the remaining two transitions (clump-to-stripe,

stripe-to-clump) is analogous.

The metastable clump phase is

ψ0(~q) = b(2π)d
∑

~e∈Qb∪Qc

δ(~q − q0~e), (3.57)

where Qb ∪Qc is the set of six vectors from Eqs. 3.26, 3.27 and where

b = −m
5

+O(ε), (3.58)

which follows from Eqs. 3.36, 3.56. Seek solutions to Eq. 3.54 of the form

ξ(~q) =
ε

3m
(2π)d

∑

~e∈Qb∪Qc

( σ

ε1/2

)d
f~e

( σ

ε1/2
(~q − q0~e)

)

, (3.59)

where the the six envelope functions f~e are, as yet, unknown and where σ̃ is given in

Eq. 3.22. This scaling form is self consistent in the limit that ε → 0: the function ξ

becomes the sum of six δ function peaks and indeed satisfies Eq. 3.54.

To make further progress I will assume that the six envelope functions f~e are identical.

Inserting Eq. 3.59 into Eq. 3.55 gives, after some algebra,

(1 + (~v · ~e)2)f(~v) − (f ∗ f)(~v) = 0, (3.60)
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where

~v =
σ

ε1/2
~q. (3.61)

This equation must be simultaneously satisfied for all vectors ~e ∈ Qb∪Qc. The convolution

(f ∗ f) is with respect to the variable ~v.

Interestingly, there is a strong resemblence between Eq. 3.60 and the equation for the

nucleating droplet in the ferromagnet (cf. Section 2.2 and Ref. [2]). If one makes the

uncontrolled approximation

(~v · ~e)2f → ~v2f (3.62)

then the identification would be exact [3], and spherically symmetric solutions f(~v) would

exist for d < 6 [35].

If solutions to Eq. 3.60 exist (besides the δ-function solution) then the scaling form

Eq. 3.59 implies that nucleating droplets have a radius of the order ε−1/2 and an amplitude

of the order ε. Unfortunately, the symmetry breaking appearance of ~v ·~e in Eq. 3.60 makes

it doubtful that solutions exist! Thus, the assumption that each of the f~e(~v), indexed by

~e, are identical is most likely incorrect.

Despite its flaws, this argument is suggestive of an appealing connection between anti-

ferromagnetic and ferromagnetic nucleation near the respective spinodals (e.g., with respect

to the scaling of the reduced temperature ε). Numerical solution of the full Euler-Lagrange

equation, Eq. 3.54, is an important task left for future work.

3.3 Nucleation from the disorder phase

In Section 3.1.1 it was demonstrated that a generic model with long-range repulsive in-

teractions (viz., Eq. 3.10) exhibits disorder at high temperatures. At lower temperatures

(and away from the critical point) the disorder phase becomes metastable and eventually

unstable. The topic of this section is nucleation near the disorder phase spinodal.

In has previously been suggested that nucleating droplets near the spinodal have a core

with hexagonal symmetry in two dimensions and either body centered cubic (BCC) or
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icosahedral symmetry in three dimensions [49, 3, 43]. This class of droplets has a lattice-

structure (LS). Such droplets are modulated by an envelope with well defined scaling

behavior near the spinodal: the amplitude and radius scale as ε and ε−1/2 respectively

where ε is the reduced temperature. The free energy cost of LS droplets scales ε3−d/2 [3].

I introduce the onion-structure (OS) droplet – an alternative to LS droplets. The OS

droplet is spherically symmetric; it is composed of concentric waves of enhanced magneti-

zation. I will show that the OS droplet has an amplitude that scales as ε1/2 and (within

the relevant regime) decays algebraically with distance. The free energy cost of the OS

droplet scales as ε3/2, independent of the dimension d.

The difference between LS and OS droplets is most striking in Fourier space: as the

spinodal is approached LS droplets tend to a discrete set of δ-function peaks (Eq. 3.76)

while the OS droplet tends to a single spherical δ-function shell (Eq. 3.86). Slightly away

from the spinodal the δ-functions become sharply peaked, but non-singular, regions.

A comparison of the LS and OS droplet free energy scaling formulas indicates that,

near the spinodal, the former are preferred when d = 2 while the latter are preferred when

d > 3. A more refined argument suggests that OS droplets are also preferred at the critical

dimension, d = 3.

3.3.1 Preliminaries

Assume a generical free energy functional F with repulsive long-range interactions, as given

in Eq. 3.10. An expansion in powers of ψ yields

R̃−dF = F̃ = F̃2 + F̃3 +O(ψ4) (3.63)

where

F̃2 =
1

2

∫

d~q1d~q2A(~q1)ψ~q1
ψ~q2

δ(~q1 + ~q2) (3.64)

F̃3 = −1

3
B

∫

d~q1d~q2d~q3ψ~q1
ψ~q2

ψ~q3
δ(~q1 + ~q2 + ~q3) (3.65)
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and

R̃d =
Rd

(2π)d
(3.66)

B = − 1

2(2π)d
β−1f (3)(m). (3.67)

Recall that the total magnetization is fixed,

ψ(~q = 0) = 0. (3.68)

The quantity F [ψ] represents the free energy cost for deviations ψ(~q) from the disorder

phase. As before, expand the spherically symmetric function A(~q) about its minimum,

A(~q) = ε+ σ2(|~q| − q0)
2 +O((|~q| − q0)

3) (3.69)

where q0 6= 0 and

ε = Λ(q0) + β−1f (2)(m) (3.70)

σ2 =
1

2
Λ′′(q0). (3.71)

The reduced temperature ε denotes the distance from the spinodal (cf. Section 3.1.1).

The nucleating droplet is a saddle point of the free energy functional (cf. Section 1.5.1)

and is obtained by solving the Euler-Lagrange equation,

δF

δψ(~q)
= 0. (3.72)

Insertion of the free energy functional, Eq. 3.63, yields

A(~q)ψ(~q) = B

∫

d~q ′ψ(~q ′)ψ(~q − ~q ′) +O(ψ3) (3.73)

= B × (ψ ∗ ψ)(~q) +O(ψ3).

I will seek both LS and OS type droplet solutions using the following strategy. Ansatz

functional forms are proposed (cf. Eqs. 3.75, 3.84) and are inserted into the Euler-Lagrange
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equation, which is solved near the spinodal limit

0 < ε≪ 1; (3.74)

terms that do not contribute to the leading order free energy cost are dropped. If no incon-

sistencies arise, the method of dominant balance [50] indicates that the droplet solutions

that are found are valid near the spinodal.

Note that, upon truncation of the expansions in Eqs. 3.63, 3.69, there is only a small set

of relevant parameters (viz., ε, σ, q0, andB). Because of this fact, predictions for nucleation

near the spinodal are universal.

3.3.2 Lattice-structure droplets

Following Klein and Leyvraz [3], consider lattice-structure (LS) droplets of the form

ψLS =
ε

B

∑

~e∈Q

( σ

ε1/2

)d
f~e

( σ

ε1/2
(~q − q0~e)

)

. (3.75)

The set of unit vectors Q determines the lattice symmetry of the droplet and is, for the

moment, unspecified. A general argument, originally due to Alexander and McTague [49],

restricts the possible sets Q that must be considered.

The functions f~e, indexed by the unit vectors ~e ∈ Q, are to be determined. It is,

however, assumed each f~e is localized, implying that

lim
ε→0

ψLS ∝
∑

~e∈Q
δd(~q − q0~e). (3.76)

From Eq. 3.76 it follows that, for ε sufficiently small, the overlap between the terms in

the sum of Eq. 3.75 are negligible. It is also assumed that the f~e inherit the rotational

symmetries of Q, i.e.,

f~e(~v) = fR(~e)(R(~v)), (3.77)

for all ~e ∈ Q and all rotations R under which the set Q is invariant. This assumption is

natural because the Euler-Lagrange equation, Eq. 3.73, is isotropic.
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For arbitrary functions g, h, the following is an identity

g(~r − ~r0) ∗ h(~r − ~r1) =

∫

d~r ′g(~r ′ − ~r0)h((~r − ~r ′) − ~r1) (3.78)

=

∫

d~r ′g(~r ′)h((~r − ~r0 − ~r1) − ~r ′)

= (g ∗ h)(~r − ~r0 − ~r1).

We apply Eq. 3.78 to the expansion of ψ in Eqs. 3.73 using the ansatz of Eq. 3.75, and

work at leading order in ε. The result is,2

A(~q)f~e

( σ

ε1/2
(~q − q0~e)

)

= ε
∑

~e2+~e3=~e

( σ

ε1/2

)d
(f~e2

∗ f~e3
)
( σ

ε1/2
(~q − q0~e)

)

, (3.79)

where the choice of ~e ∈ Q is inconsequential due to rotational symmetry, Eq. 3.77. The

sum in Eq. 3.79 is over all vectors ~e2, ~e3 ∈ Q which add to ~e. Equation 3.79 can be satisfied

only if triples of vectors from Q form equilateral triangles – a result due to Alexander

and McTague[49]. In two dimensions, a natural choice of Q is the set of reciprocal lattice

vectors for the hexagonal crystal (cf. Qb ∪ Qc from Eqs. 3.26, 3.27). In three dimensions,

the three main options are the sets of reciprocal lattice vectors for (a) hexagonally packed

cylinders, (b) the icosahedral quasicrystal and (c) the BCC crystal. Other choices of Q

are possible but energetically unfavorable (e.g., superpositions of the above sets of lattice

vectors).

Both the LHS and RHS of Eq. 3.79 represent functions that are sharply peaked about

~q = q0~e1.

Define the scaled wave vector

~v =
σ

ε1/2
(~q − q0~e), (3.80)

2Expansion of Eqs. 3.73, 3.75 also yields terms (fej
∗fek

) for which |ej + ek| 6= 1. These can be balanced
with extra contributions to ρ which are higher order in ε, and therefore are neglected in our calculation.



85

At leading order in ε, the LHS of Eq. 3.79 can be simplified using Eq. 3.69,

A(~q)f~e(~v) = (ε+ σ2(|~q| − q0)
2 +O((|~q| − q0)

3))f~e(~v) (3.81)

= ε(1 + (~v · ~e)2)f~e(~v).

The approximation |~q| ≈ ~q · ~e is valid for ~q near q0~e; its application to Eq. 3.81 is exact at

leading order in ε.

The full Euler-Lagrange equation, Eq. 3.79, becomes

(1 + (~v · ~e)2)f~e(~v) =
∑

~e2+~e3=~e

∫

d~v ′f~e2
(~v ′)f~e3

(~v − ~v ′) (3.82)

=
∑

~e2+~e3=~e

(f~e2
∗ f~e3

)(~v).

The convolution operation appearing in the RHS of Eq. 3.82 is with respect to the new

variable, ~v.

Equation 3.82 admits multiple solutions. The trivial solution f~e = 0 represents the

metastable disorder phase. A second, somewhat less trivial solution of Eq. 3.82 is f~e(~v) ∝

δ(~v). This solution was first thought to describe a stable phase [49] but was later shown

to be unstable [43]. Although this solution is a saddle point of the free energy, it is not

a localized nucleating droplet; the free energy cost of this solution is proportional to the

system volume.

Nontrivial solutions to Eq. 3.82, if they exist, would be smooth functions f~e(~v). The

expression (~v ·~e) which appears in the LHS of Eq. 3.82 indicates that f~e(v) is anisotropic. In

two dimensions, I have obtained numerical solutions to Eq. 3.82. In three dimensions, the

same method fails to find LS solutions (OS droplets are found instead, see Section 3.3.3).

Making the replacement (~v · ~ei)2 → v2 brings rotational invariance to Eq. 3.82,

(1 + ~v2)f(~v) ≈? (f ∗ f)(~v), (3.83)

and reproduces the equations describing spinodal nucleation in the ferromagnet [2] (cf.

Section 2.2 and Ref. [2]). Solutions for the envelope function f(~v) of Eq. 3.83 are spherically
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symmetric and exist when d < 6 [35]. It is emphasized, however, that Eq. 3.83 is an

uncontrolled approximation to Eq. 3.82, even in the spinodal limit ε→ 0.

3.3.3 Onion-structure droplets

Droplets with a real-space onion-structure (OS) have the Fourier space scaling form

ψOS = a
σ

ε1/2
g
( σ

ε1/2
(|~q| − q0)

)

, (3.84)

which is different than that of LS droplets, Eq. 3.75. The parameters q0, σ, and ε are as

before. The constant a and the function g will be determined exactly at leading order in

ε≪ 1. The function g is normalized such that

∫

dug(u) = 1 (3.85)

and is sufficiently peaked about the origin such that

lim
ε→0

ψOS = aδ(|~q| − q0). (3.86)

In real space, OS droplets have spherically symmetric density oscillations resembling the

layers of an onion.

The first task is to determine a and g in Eq. 3.84. Begin with the Euler-Lagrange

equation, Eq. 3.73, again truncating the O(ψ3) terms (which are self-consistently negligible

at leading order in ε). Application of Eqs. 3.69, 3.84 to the left hand side of Eq. 3.73 yields,

at leading order in ε,

A(|~q|)ρ = ε(1 + u2)a
σ

ε1/2
g (u) (3.87)

where

u =
σ

ε1/2
(|~q| − q0). (3.88)

Now turn to the RHS of Eq. 3.73 and apply Eq. 3.86, which is justified at leading order in
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ε. The result is

B × (ρ ∗ ρ)(~q) = Ba2

∫

d~q ′δ(|~q ′| − q0) ∗ δ(|~q − ~q ′| − q0) (3.89)

= Ba2

(

√

q20 − ~q2/4

)d−2

Sd−2

= Ba2
(√

3q0/2
)d−2

Sd−2 +O(|~q| − q0)

where Sn is the surface area of the n-sphere,

Sn =
2π(n+1)/2

Γ [(n+ 1)/2]
=























2 n = 0

2π n = 1

4π n = 2

(3.90)

The second step in Eq. 3.89 uses the fact that the convolution of (d− 1)-sphere δ-function

shells is the surface area of overlap, a (d− 2)-sphere. After some algebra, Eqs. 3.73, 3.87,

3.89, give g(u) at leading order in ε,

g (u) =
1

π(1 + u2)
. (3.91)

The constant

a =
ε1/2σ

Bπ
(√

3q0/2
)d−2

Sd−2

(3.92)

is determined by the normalization of g given in Eq. 3.85. Collecting Eqs. 3.84, 3.91, 3.92

yields a final expression for the onion-structure droplets in Fourier space,

ψOS =
σ2

Bπ2
(√

3q0/2
)d−2

Sd−2

(

1 + u2
)−1

, (3.93)

where u is defined in Eq. 3.88.
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The OS droplets can be transformed to real-space,

ψOS(|~r|) = (2π)−d

∫

d~qe−i~q·~rψOS(|~q|) (3.94)

=
Sd−2

(2π)d

π
∫

0

dθ(sin θ)d−2

∞
∫

0

dqqd−1e−iq|~r| cos θψOS(q),

where θ is the zenith angle. The shorthand notation r = |~r| is used in the following steps.

Since ψOS(q) is sharply peaked at q = q0, it is justified to extend the bounds of the

radial integral in Eq. 3.94 to the entire real line. Application of Eqs. 3.84, 3.91 yields

∞
∫

0

dqqd−1e−iqr cos θψOS(q) = qd−1
0

∫

du exp[−i(q0 + ε1/2σ−1u)r cos θ]ag(u) (3.95)

= aqd−1
0 exp[−iq0r cos θ] exp[−ε1/2σ−1r| cos θ|],

which is valid at leading order in ε. Terms of the order ε1/2r have been retained in

anticipation of large r. The second step in Eq. 3.95 uses the identity

+∞
∫

−∞

du
eibu

π(1 + u2)
= e−|bu|. (3.96)

For d = 3, Eqs. 3.94, 3.95 can be integrated, with the result

ψOS,3d(r) = exp[−ε1/2σ−1r]
ε1/2σq0

B2
√

3π4

(

sin q0r

q0r

)

. (3.97)

For general d, we set ε = 0 and integrate Eqs. 3.94, 3.95,

ψOS(r) =
ε1/2σq0 (8/3)d/2−1

Bπ1/2(2π)d
Γ[(d− 1)/2]

Jd/2−1(q0r)

(q0r)d/2−1
. (3.98)

Both Eqs. 3.97 and 3.98 are valid at leading order in ε, for fixed r. When d = 3 and r

is large (e.g. r . ε−1/2) then Eq. 3.97 is more precise. Equations 3.97, 3.98 are obtained

using Eq. 3.92 and an integral representation of the Bessel function [33],

Jν(r) =
1

π1/2Γ(ν + 1/2)

(r

2

)ν
π
∫

0

e−ir cos θ sin2ν θdθ. (3.99)
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3.3.4 Droplet free energy costs

Both LS and OS solutions are candidate descriptions of nucleating droplets. In the mean-

field, large R, limit the droplet with smallest free energy cost, F̃ , dominates nucleation (cf.

Section 1.5.1). In this section the free energy costs of LS and OS droplets are evaluated

and compared.

When ε ≪ 1, the O(ψ4) terms in the free energy functional (Eqs. 3.63, 3.64, 3.65) are

negligible for both LS and OS droplets (Eqs. 3.75, 3.84). The evaluation of the free energy

cost for LS and OS droplets can be simplified through the identity

F̃ = F̃2 + F̃3 (3.100)

= F̃2 −
B

3

∫

d~q1d~q2ψ(~q1)ψ(~q2)ψ(−~q1 − ~q2)

= F̃2 −
1

3

∫

d~q1ψ(~q1) [B(ψ ∗ ψ)(−~q1)]

= F̃2 −
2

3
× 1

2

∫

d~q1ψ(~q1) [A(~q1)ψ(−~q1)]

=
1

6

∫

d~qA(~q)|ψ(~q)|2

=
1

3
F̃2,

where Eqs. 3.65, 3.73, and 3.64 were applied in steps 2, 4, and 5 respectively.

Apply Eq. 3.100 to calculate the free energy cost of the OS droplets at leading order in

ε,

F̃ [ψOS] =
1

6

∫

d~qA(|~q|)ψOS(|~q|)2 (3.101)

=
1

6
Sd−1

∫

dqqd−1ε(1 + u2)ψ2
OS

=
ε3/2σ3

B2qd−3
0

[

6π3 (3/4)d−2
]−1 Sd−1

S2
d−2

,

where substitutions from Eqs. 3.69, 3.88, and 3.93 have been made. Extension of the

bounds of integration in step 2 is justified because ψOS(q) is sharply peaked about q = q0.
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Similarly, the free energy cost of LS droplets is,

F̃ [ψLS] =
1

6

∫

d~qA(|~q|)ψLS(~q)2 (3.102)

=
1

6
n

∫

d~qε(1 + (~v · ~e)2)
( ε

B

)2 ( σ

ε1/2

)d
f~e(~v)

2

=
ε3−d/2σd

B2

[

n

6

∫

d~v(1 + (~v · ~e)2)f~e(~v)
2

]

=
ε3−d/2σd

B2

[ cn

6m2

]

where substitutions from Eqs. 3.75, 3.81, and 3.80 have been made, and

c =

∫

d~v(1 + (~v · ~e)2)(mf~e(~v))
2 ≈? 1. (3.103)

Equation 3.102 is independent of the choice ~e ∈ Q because of rotational symmetry, Eq. 3.77.

The symbol n represents the number of reciprocal lattice vectors,

n = |Q| =























6 hexagonal

12 BCC

30 icosahedral(quasicrystal).

(3.104)

and m represents the number of pairs ~e ′, ~e ′′ ∈ Q which sum to a specific ~e ∈ Q,

m =







2 hexagonal

4 icosahedral,BCC .
(3.105)

Although f~e is not known analytically, Eq. 3.82 indicates that f~e scales like m−1 and is

otherwise dimensionless. It is therefore natural, but not rigorously justified, to assume that

c ≈ 1, as in Eq. 3.103.

3.3.5 Droplets categorized by spatial dimension

Equations 3.101 and 3.102 are exact scaling forms for the OS and LS droplet free energy

costs in the limit ε≪ 1, and imply the following:

• In d = 1 both the OS and LS droplets are ill-defined (OS because Sd−2 diverges, LS
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because wave vectors cannot form equilateral triangles so m = 0). The absence of

nucleating droplets is consistent with the mean-field prediction of a continuous phase

transition (no metastability) [48, 45].

• In d = 2 the OS and LS free energies scale as ε3/2 and ε2 respectively. LS droplets

are therefore preferred for ε ≪ 1. The reciprocal vectors Q represent the hexago-

nal lattice, which is verified by numerical solution of the Euler-Lagrange equation,

Eq. 3.72.

• In d = 3 the OS and LS free energies scale identically in all physically relevant pa-

rameters (ε, σ,D, q0) and the universal dimensionless constants in Eqs. 3.101, 3.102

determine the preferred droplet structure. In the following, assume that c ≈ 1.

Among LS droplets, BCC symmetry is preferable to hexagonal and icosahedral sym-

metries because of the smaller value of n/m2. More significantly, OS droplets have

a free energy which is approximately 50 times smaller than that of BCC droplets!

Numerical solution of the Euler-Lagrange equation, Eq. 3.72, is consistent with the

conclusion that OS droplets are preferred.

• In d > 4 the OS and LS free energies scale as ε3/2 and ε3−d/2, and OS droplets

are therefore preferred for ε ≪ 1. Unlike nucleation in ferromagnetic models (Sec-

tion 2.2), there is no singularity in OS droplets at d = 6.

3.4 Spatial symmetry breaking and the emergent CHC theory

The subject of this section is the early time dynamics of a system quenched into an unstable

state, when the initial and final phases differ in spatial symmetry. For example, if a two-

dimensional system in the disorder phase is quenched below the spinodal, how does it

acquire the spatial oscillations associated with the stripe or clump phases (cf. Sections 3.1.1

and 3.2.1)? As usual, long-range Kac-type interactions are assumed.

I will show that the CHC theory, originally developed to describe continuous ordering

and spinodal decomposition processes (cf. Sections 2.4.1 and 2.4.4, [11, 12]) can be general-
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ized to describe order-to-order transitions. The main prediction of the CHC theory, initial

exponential growth of Fourier modes, is generalized in two ways: (1) the modes which grow

exponentially are linear combinations of Fourier modes and (2) exponential growth does

not begin immediately after the quench. This section largely follows the presentation of

Barros et al. [51].

The CHC theory applies only when the system configuration is stationary following

the quench. That is, in the absence of noise3 the system would not evolve at all. The

CHC theory, as is, therefore fails to describe continuous ordering following an off-critical,

h 6= 0, quench [52] and most solid-to-solid phase transitions. In the case of solid-to-solid

transitions, however, a generalized theory, analogous to CHC, applies.

For large interaction range R, the effective noise scales like R−d/2. The dynamical order

parameter can be expanded in powers of R−d/2 [23], separating the noise independent back-

ground (of order R0 = 1) from the noise dependent fluctuations (of order R−d/2). Roughly

speaking, the background represents the overall shape of the system configuration and the

fluctuations represent typically small deviations from the background. The CHC theory

requires the background to be stationary and describes the evolution of the fluctuations at

leading order in R−d/2 (cf. Section 2.4.1).

A phase transition involves spatial symmetry breaking if the initial phase contains a

rotational or translational symmetry not present in the final phase.4 The noiseless evolu-

tion of the background preserves these spatial symmetries. Thus, when spatial symmetry

breaking is present, the background evolves toward a configuration that minimizes the free

energy functional subject to spatial symmetry constraints. This configuration is a station-

ary point of the free energy functional and is unstable to symmetry breaking fluctuations.

It is possible to distinguish between two stages of early time evolution: stage 1, in which

the background is evolving, and stage 2, in which the background has nearly converged

to the constrained free energy minimum. For R sufficiently large, it is predicted that

3The generic term noise refers to both noise in the initial conditions and dynamical noise. In any case,
noise in the initial conditions is a reflection of dynamical noise before the quench.

4In ferromagnetic systems with spontaneous magnetization, all stable phases exhibit the same uniform
spatial symmetry.
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the growth of symmetry breaking fluctuations changes from non-exponential (stage 1) to

exponential (stage 2).5 Stage 2 evolution in many ways resembles the CHC theory.

Assume the generic free energy functional given in Eq. 3.1 and apply NGF dynamics

(Section 1.4)

∂φ(~x, t)

∂t
= −M δF [φ]

δφ(~x, t)
+
√
Mη(~x, t). (3.106)

F [φ] is the free energy of the configuration φ at time t. The Gaussian white noise η(~x, t)

has zero mean and second moment 〈η(~x, t)η(~x ′, t′)〉 = 2β−1δ(t − t′)δ(~x − ~x ′). Set M = 1

corresponding to the rescaling of time, t→ t′ = t/M . The drift term is given by

δF [φ]

δφ(~x)
=

∫

d~x ′ΛR(~x ′)φ(~x− ~x ′) + β−1df(φ(~x))

dφ
− h (3.107)

= (ΛR ∗ φ)(~x) + g′(φ(~x)) − h,

where ΛR is a Kac potential of the form ΛR(~x) = R−dΛ(~x/R). The function g′ = β−1df/dφ

represents entropic forces deriving from the degeneracy in coarse-graining φ. Without loss

of generality, set g(φ)|φ=0 = 0. The symbol h either represents an external field or chemical

potential.

Scale all lengths by R so that Eq. (3.106) simplifies to

∂u(~r, t)

∂t
= − δF̃ [u]

δu(~r, t)
+R−d/2η̃(~r, t), (3.108)

where ~r = ~x/R, F̃ [φ] = R−dF [u], and

u(~r, t) = φ(~x, t) (3.109)

δF̃ [u]

δu(~r)
= (Λ ∗ u)(~r) + g′(u(~r)) − h. (3.110)

The parameter R in Eq. (3.106) appears solely as a prefactor to the noise term. The term

η̃(~r, t) = Rd/2η(~x, t) represents Gaussian white noise with zero mean and second moment

〈η̃(~r, t)η̃(~r ′, t′)〉 = 2β−1δ(t− t′)δ(~r−~r ′), which follows from the identity a−dδ(~x/a) = δ(~x).

5Corberi et al. have also reported a rich structure in early stage phase ordering kinetics which, notably,
is not associated with an evolving background [53]



94

The form of Eq. (3.108) suggests expanding u in the small parameter R−d/2:

u = u(0) +R−d/2u(1) +R−du(2) + . . . (3.111)

Substitute Eq. (3.111) into Eq. (3.108) and obtain the dynamical equations

∂u(0)

∂t
= −δF̃ [u(0)]

δu
= −Λ ∗ u(0) − g′(u(0)) + h (3.112)

∂u(1)

∂t
= Lu(1) + η̃, (3.113)

where

Lu(1) = −Λ ∗ u(1) − g′′(u(0))u(1), (3.114)

and g′′(u) = d2g/du2. Note that the nonlinear dynamics of u(0) in Eq. (3.112) is deter-

ministic and decoupled from higher orders. The dynamics of u(1) is stochastic, linear, and

depends on u(0) through L.

As already mentioned, the CHC theory emerges as the evolution of u(1) when u(0) is a

stationary point of the free energy. Let us see how this works for a disorder-order transition

occurring after a rapid quench from infinite to finite temperature and h = 0 (recall that

g(0) = 0). At t = 0 the system is initially disordered so Eq. (3.112) has the trivial solution

u(0) = 0 for all time. With this solution, Eq. (3.113) can be solved in Fourier space,

u(1)(~q, t) = u(1)(~q, 0)eD̃(~q)t +

t
∫

0

dt′eD̃(~q)(t−t′)η̃(~q, t′), (3.115)

where D̃(~q) = −Λ(~q) − g′′(u(0) = 0). The structure factor S(k, t) =
〈

|φ|2
〉

/V can be

calculated using Eq. (3.109), thus reproducing the CHC theory. For spin systems the

volume V equals the total number of spins because the lattice spacing is taken to be unity.

Let us determine the time scale for which the CHC theory is applicable. Equa-

tion (3.111) is meaningful when the neglected O(R−d) terms are small. One requirement

is that R−d/2u(1) ≪ u(0) ≃ 1. The exponential growth of u(1) from Eq. (3.115) suggests

that the linear theory breaks down at a time t ∼ lnR [7, 14].
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For many phase transitions (such as solid-to-solid) one must consider the evolution of

both u(0) and u(1). Equation (3.113) predicts exponential growth of u(1)(t) whenever L is

time independent, which from Eq. (3.112) occurs when δF̃ /δu(0)(x, t) = 0. In general, the

initial configuration u(0)(t = 0) will not be such a stationary point. I will show that, due

to symmetry breaking, u(0) converges to an unstable stationary configuration u∗. Corre-

spondingly, L will converge to a time independent operator. This instability of u∗ means

that L will have positive eigenvalues, corresponding to the unstable symmetry breaking

growth modes.

Let G be the symmetry group containing rotations under which both u(0)(~r, 0) and Λ(~r)

are invariant, and containing translations under which u(0)(~r, 0) is invariant. To show that

Eq. (3.112) preserves these symmetries, discretize

u
(0)
t+∆t = u

(0)
t + ∆t

(

− Λ ∗ u(0)
t − g′(u(0)

t ) + h
)

. (3.116)

A short calculation establishes that if u
(0)
t is invariant under G then so is u

(0)
t+∆t. By

induction, this establishes that u(0)(~r, t) is invariant under G for all t.6

How does u(0) evolve for a phase transition with symmetry breaking? It is determined

from Eq. (3.112) that F̃ [u(0)] is non-increasing. Physically, F̃ must be bounded from

below, so u(0) converges to some configuration u∗. This convergence occurs on a time scale

independent of R because R does not appear in Eq. (3.112). It is known that u∗ is not the

stable phase for a symmetry breaking transition because Eq. (3.112) preserves the spatial

symmetries of the initial configuration. Therefore one expects that u∗ is an unstable free

energy stationary point. Parallel to the evolution of u(0), symmetry breaking fluctuations

R−d/2u(1) evolve according to Eq. (3.113). These fluctuations are unstable and, if u(0)

has sufficiently converged to u∗, will grow exponentially for a time proportional to lnR,

analogous to the predictions of CHC.

The conclusion is that spatial symmetry breaking phase transition kinetics can be

6Note, however, that u(0) is a meaningful approximation to u only when the R−d/2 expansion is valid,
i.e., t . ln R.
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u(0)

u(∞)

(a)

u(0) u
∗

u(∞)

(b)

u(0) u(∞)

(c)

Figure 3·5: (a) The CHC theory is applicable if the initial configuration u(0) is
a free energy stationary point. CHC describes the immediate exponential growth
of Fourier modes, lasting a time t ∼ lnR. (b) For symmetry breaking transitions
(e.g., solid-to-solid) the early time kinetics of u(t) has two stages. In the first stage
the leading order contribution to u evolves deterministically and non-linearly toward
a symmetry-constrained (shaded plane) free energy minimum u∗ over a time scale
t ∼ 1. In the second stage, symmetry breaking modes grow exponentially for a time
t ∼ lnR. (c) Without symmetry breaking (e.g., solid-to-fluid) the leading order
contribution to u evolves deterministically toward the stable phase u(∞) over a time
scale t ∼ 1.

decomposed into two stages:

1. t . t0: Nonlinear evolution of u(0) toward u∗, a configuration of minimum free energy

subject to symmetry constraints. The configuration u∗ is not the stable phase. The

dynamical equation for u(1) is linear but has an explicit time dependence. Note that t0

is independent of R.

2. t0 . t . lnR: To a good approximation u(0) has converged to u∗. The linear theory

of u(1) becomes analogous to the CHC theory, and describes exponential growth of the

unstable symmetry breaking modes.

These two stages are illustrated in Fig. 3·5(b). In contrast, there is no stage 1 process in

the CHC theory, as illustrated in Fig. 3·5(a).

Phase transition kinetics without spatial symmetry breaking, such as solid-to-fluid, are

qualitatively different. Here u(0) will evolve toward u∗ but, unlike the symmetry breaking

case, u∗ is the stable phase because no spatial symmetries are lost in the transition from

initial to final configuration (symmetry breaking does not occur). Note that all the inter-
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esting dynamics in this transition occurs through u(0), which is independent of the noise.

This process is illustrated in Fig. 3·5(c).

Let us see how exponential growth arises in the second stage of a symmetry breaking

transition by considering Eq. (3.112). Because L is a real and symmetric linear operator,

it has a complete orthonormal eigenbasis and real eigenvalues.7 The eigenvectors of L

are Fourier modes only if u(0) is uniform. The dynamics of u(1) can be expressed in the

eigenbasis of L:

∂u
(1)
v

∂t
=
∑

v′

Lvv′u
(1)
v′ + η̃v = λvu

(1)
v + η̃v, (3.117)

where v and λv represent the corresponding eigenvectors and eigenvalues of L. The

subscripts indicate eigenbasis components, for example uv =
∫

d~rv(~r)u(~r) and Lvv′ =
∫

d~rv(~r)Lv′(~r) = λvδvv′ . The eigenvectors are normalized and satisfy 〈η̃v(t)η̃v′(t
′)〉 =

δvv′δ(t − t′).

For times t & t0 the operator L is time independent and Eq. (3.117) can be solved

directly:

u(1)
v (t) = u(1)

v (t0)e
λv(t−t0) +

t
∫

t0

dt′eλv(t−t′)η̃v(t
′). (3.118)

The exponential growth of u(1) is apparent. In the Fourier basis u(1) becomes

u(1)(~q, t) =
∑

v

v(~q)u(1)
v (t), (3.119)

where v(~q) is the Fourier representation of the eigenvector v. If R is sufficiently large and

there is a single largest eigenvalue λv, then a single eigenvector v will grow exponentially

faster than all others. In this case, and at sufficiently large times, one can approximate

u(1)(~q, t) ≈ v(~q)
[

u(1)
v (t0)e

λv(t−t0) +

t
∫

t0

dt′eλv(t−t′)η̃v(t
′)
]

. (3.120)

Thus, the exponential growth of the eigenvector v implies exponential growth of all the

Fourier modes of u(1),
〈

|u(1)(~q, t)|2
〉

∝ e2λvt. These Fourier modes eventually dominate all

7It is assumed that L is a finite matrix, corresponding to a finite system volume discretized in space.
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Figure 3·6: Evolution of the structure factor peak (
〈

|φmax|2
〉

/V ) for the fluid-stripe
transition following a critical (h = 0) quench. The CHC theory correctly predicts
exponential growth, beginning immediately after the quench for this transition.

other contributions to the structure factor S =
〈

|φ(~k, t)|2
〉

/V , provided that the linear

theory is valid (t . lnR).

To test the generalized CHC theory, consider the 2D antiferromagnetic Ising model

with a long-range square interaction. This model contains a disordered fluid phase, as

well as clump and stripe solid phases (cf. Section 3.2.1). In the clump phase, localized

regions of enhanced magnetization are arranged on a square lattice. In the stripe phase,

regions of enhanced magnetization are arranged in periodic stripes. All fluid-to-solid phase

transitions involve symmetry breaking, as do the transitions between clump and stripe

phases. In contrast, solid-to-fluid transitions do not involve symmetry breaking because

the uniform fluid phase contains all possible spatial symmetries.

I simulated the antiferromagnetic Ising model using SFG dynamics (cf. Section 2.3.1).

Figures 3·6 and 3·7 display the peak of the structure factor, S(~k, t) =
〈

φ(~k, t)2
〉

/V , for

fluid-to-solid phase transitions following critical (h = 0) and off-critical (h = 0.8) quenches.

The final phases are stripes and clumps respectively. In both cases the temperature is

reduced from T = ∞ to 0.05. The critical and off-critical transitions are described, respec-
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Figure 3·7: Evolution of the structure factor peak (
〈

|φmax|2
〉

/V ) for the fluid-
clump transition following an off-critical (h 6= 0) quench. The initial growth has
two stages, confirming the prediction the theoretical predictions. The first stage is
non-exponential and is independent of R. The second stage is exponential growth of
the symmetry breaking modes (in this case Fourier modes) in analogy to the CHC
theory.
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tively, by the CHC theory and its generalization. As predicted, the off-critical dynamics

can be separated into two stages: initial non-exponential growth followed by an extended

period of exponential growth. The growth modes are Fourier modes for both types of

quenches considered because the initial phase is disordered. In the case of the stripe-to-

clump transition, however, the growth modes are not Fourier modes [54].

To summarize, the CHC theory can be generalized to describe solid-to-solid transitions.

The key ingredient of this generalization is spatial symmetry breaking. The predictions

of the generalized theory differ from those of the CHC theory in two fundamental ways:

(1) the exponential growth of the symmetry breaking modes does not immediately follow

the quench, and (2) these symmetry breaking modes are not generally Fourier modes. I

have presented simulations of the long-range antiferromagnetic Ising model for the off-

critical fluid-to-solid transition which confirm the existence of a transient stage preceding

exponential growth of the structure factor. An important limitation of this theory is that

it assumes defect free initial conditions.



Chapter 4

Closing remarks

Phase transition kinetics, including both nucleation and unstable growth, have been in-

vestigated in models with effective long-range, Kac-type interactions. Two categories of

interactions have been considered: ferromagnetic, and antiferromagnetic (repulsive).

It is known that the long-range ferromagnet undergoes non-classical nucleation near the

spinodal, and that the corresponding nucleation rate scales in a universal way [2]. This pre-

diction, spinodal-aided nucleation, is applicable to real systems, at least in principle. The

concept of spinodal-aided nucleation also applies to antiferromagnetic systems with modu-

lated phases [3]. Through a careful asymptotic analysis, I have shown that disorder-to-solid

nucleation near the spinodal occurs through onion-structure nucleating droplets above two

dimensions. This result is dependent on a minimal set of assumptions (viz., a scalar order

parameter, metastable equilibrium, homogeneity, and pairwise interactions that are spher-

ically symmetric and long-range). In truth, all of these assumptions are questionable; more

realistic studies of nucleation often involve non-trivial order parameters, complex interac-

tions, heterogeneities, and limited equilibration times [55, 56]. Nonetheless, the value of

simple models is their potential to reveal the essence of universal mechanisms. In this case,

there is experimental evidence that onion-structure droplets appear in a lyotropic liquid

crystal within the context of nucleation [57] (the connection to spinodal-aided nucleation

is, admittedly, uncertain).

One difficulty faced by non-equilibrium statistical mechanics is the enormous variety of

dynamical behaviors that are consistent with a single equilibrium model. An example is the

equilibrium Ising model and its dynamical extensions. The process of continuous ordering

can be studied in the Ising model using spin-flip Glauber (SFG), spin-flip Metropolis (SFM),

101
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or some other dynamics. When the model is endowed with long-range interactions, the

Cahn-Hilliard-Cook (CHC) linear theory provides an excellent, universal description of the

early time ordering process. Immediately after the CHC theory fails, however, the process

is surprisingly sensitive to the choice of dynamics. Indeed, nonlinear corrections to the CHC

theory are O(R−d) and O(R−d/2) for SFG and SFM dynamics, respectively. This is an

important negative result regarding the universality of intermediate stage unstable ordering

kinetics. Interestingly, in the late stages of continuous ordering the dynamics becomes well

described by curvature driven domain growth and universality is restored [16, 58]. Another

example of emergent dynamic universality occurs in early stages of unstable order-to-order

transitions, where a CHC-like theory appears following initial transients [51].
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