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The range of interacting scales encountered in fluid and magnetofluid flow prob-

lems of geophysical and astrophysical interest is well beyond expected computer reso-

lutions in the next several decades. For this reason, closure schemes are employed to

model in a computation the effect on the larger scales of those scales that are too small

to be resolved. One such closure is called the “Lagrangian-averaged alpha model” or

simply the “alpha model.” The alpha model differs from large eddy simulations (LES)

in that it preserves the invariants (under a different norm) of a given flow. Testing of

this method, at least for non-conductive flows, has been extensive, but so far an eval-

uation of intermittency via high-order statistics has not been done because of lack of

resolution.

The intermittent, or bursty, nature of turbulence is an enhancement of the likeli-

hood of rare and extreme events. It is an essential feature of turbulence and it signifies

a departure from self-similarity. Intermittency is typically measured as anomalous scal-

ing of structure functions and these statistics require high resolution. For this reason,

our simulations are carried out for two-dimensional magnetohydrodynamics (2D-MHD)

which is known to have a direct energy cascade to small scales and to be intermittent

(as is the three-dimensional (3D) case). As shown by previous tests [55] the alpha model

accurately reproduces large-scale spectra, and, in the absence of forcing, time evolution

of the energies and large-wavelength components of the field. We find that intermittency

is reproduced by the alpha model as represented by the high-order structure functions

(up to order 5 or 6). The results for velocity fields are found to be even more accurate

than for magnetic fields and a proposal for improvement of the latter is made.
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Chapter 1

Introduction

Equations are necessary if you are doing accountancy, but they are
the boring part of mathematics. Most of the interesting ideas can be
conveyed by words or pictures.

-Stephen Hawking

When we are young, science is a very exciting thing for most of us. Just consider

the science museums for children where you get to walk around and experience the

wonder of nature first hand. This excitement often only lasts a little while. For many,

probably because of algebra and calculus, it is over by high school. This certainly

helps reduce job-market competition (and boost self esteem) for those who enjoy the

compulsive allure of equations and keeping track of all those little terms. I for one,

however, agree with Stephen Hawking that the ideas can be conveyed in other ways.

What may be a very handy notation for some, may obscure otherwise accessible ideas for

many. At times, the notation may even obscure the ideas for many who find the notation

handy. If nothing else, it can certainly reduce public interest and, therefore, public

funding. I set out writing this thesis with the lofty ambition of making it accessible to

a slightly wider audience than usual. But, I found it unavoidable to do anything else

than include loads of equations. Like Stephen Hawking, the reader is likely to agree

that they are quite boring. I have settled on the attempt to describe the main ideas

in ordinary English in a few introductory sections, and, where possible therein, to use

words and pictures that make the equations redundant for understanding. The reader



2

will have to decide if I have succeeded.

1.1 Goals

In this thesis, we will motivate the need for closure schemes in computationally

modeling turbulence in fluids (and magnetofluids). We will present one such closure

scheme, the Lagrangian-averaged alpha model and test its ability to model turbulence at

lower resolutions than for fully resolved direct numerical simulations. More specifically,

we aim to test intermittency in the alpha model by studying high-order statistics.

1.2 Outline

In Chapter 2, we provide the necessary background in the modeling of fluids.

We begin by motivating the need for closure schemes to model turbulent flows. We

then consider a simplistic derivation of the Navier-Stokes equations to describe fluid

flow. Next, we discuss the pseudospectral method for solving fluid-flow problems on

a computer. In particular, we examine a simple one-dimensional (1D) toy model for

compressible flow, Burgers equation, and its numerical solution. We conclude with

a derivation of the magnetohydrodynamic (MHD) equations that describe the flow of

a non-relativistic conducting liquid metal and approximate the large-scale flow for a

plasma like the sun. In Chapter 3, we introduce the topics of turbulence theory ad-

dressed in this thesis. We discuss energy spectra and the dissipation length from a

phenomenological or dimensional-analysis point of view. Then, we consider intermit-

tency through somewhat everyday examples and make a heuristic connection to the

structure functions. Finally, we present the Lagrangian-averaged alpha model (or, sim-

ply, the alpha model) and express the possibilities it presents to give some insight into

the aforementioned problems. In Chapter 4, we present the two-dimensional magne-

tohydrodynamic (2D-MHD) equations and our motivation for studying them in the

context of intermittency. We develop the ideal invariants of the flow, the direct cas-
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cade of an invariant to small scales, and the inverse cascade of an invariant to large

scales. We discuss the design of both our numerical code and our experiments. We also

present the results of the Lagrangian-averaged magnetohydrodynamic alpha (LAMHD-

α) model compared to direct numerical solutions (DNS) in regards to reproduction of

large-wavelength component behavior. In Chapter 5, we discuss our techniques in de-

termining the inertial ranges of our experiments and comparisons of intermittency in

LAMHD−α versus DNS via high-order statistics (the structure functions). Finally, in

Chapter 6, we summarize this work and make further concluding remarks.



Chapter 2

Fluids

Many things behave like a fluid: a liquid like water or molten lead, a gas like air or

Helium, or a conductive fluid (i.e. any fluid that conducts electricity) like molten iron or

plasma in the sun and in other astrophysical objects. With modern computation, many

fluid flows can be accurately modeled. It can be difficult, when watching a contemporary

movie, to tell if the water we see is a real photograph of surface waves or a computer-

generated one. For engineering and science, computers have also led to many advances

in the modeling and understanding of fluid motions. Yet, there are many problems of

interest for which we would need computing speeds that will be unattainable for decades

(or longer), or we would need new techniques. Such problems can arise in very fast flows

or very large flows. By the latter, we could want to model, for instance, the atmosphere

or oceans of the earth, the earth’s liquid metal core, the sun, or even the interstellar

medium. For these problems, we run into difficulties. While we can clearly make the

scale of our model very large to encompass the grandest scales of interest, we find that

it must also include the relatively quite small details to be an accurate model.

2.1 Non-Mathematical Description of the Direct Cascade

To illustrate this, let us begin by examining how large scale variations excite

small scale fluctuations. Consider, for example, an imaginary one-dimensional flow of

an idealized fluid. Picture this fluid as a compressible gas like air and that it is all
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blowing from left to right. There is no motion in the up-down nor in the in-out of the

paper directions. We concern ourselves with only one kilometer of the flow and observe

the speed (velocity) of the fluid at each point (see Figure 2.1, panel (a)). Notice that

for the speeds we have chosen (in fact it is one half-period of a sinusoid), fluid in the

center starts out moving much faster than at either end. As we watch the flow, the

part of the fluid in the middle will begin to catch up with those on the right end.1 This

changes our picture from one where the speed slowly rises and then slowly falls to one

where the speed drops off at the end very rapidly (see Figure 2.1, panel (b)).

It is this effect that makes fluid flow so difficult to solve. Consider solving this

flow on a computer. No computer has infinite memory, so we must choose to only keep

track of the speed of the fluid at some limited number of points;2 for instance, at the

seven points we have marked with dotted lines in Figure 2.1, panels (a) and (b). As

time progresses, our steep drop in speed will occur completely between two adjacent

points that we have chosen to watch (see Figure 2.1, panel c). Now our computer model

is missing the velocity gradient, an essential detail of what is going on, and, in the end,

is not a very good model of reality.3 Naturally, we might then try adding even more

points to our discrete model (this is called adaptive mesh refinement). These are the

new dashed lines in Figure 2.1, panel (c). This solves our immediate problem, but as

time goes on the change in speed of the fluid becomes steeper and steeper until we

would have to watch an infinite number of points to solve the problem. This is, of

course, neither possible today with a computer nor with analytical math.4

1 It would eventually catch up and even pass them. This, however, involves things like shocks which
we will not consider here.

2 This process is called discretization. Think of what happened to Jeff Bridges as he entered the
computer in the movie Tron.

3 Or our imaginary, idealized flow in this case.
4 In reality, fluids have some viscosity (the property that makes molasses run slow) which acts against

this piling up becoming too steep. And, in this simple example, there is only the one point where things
pile up. Successively refining resolution just there is very effective on a computer (this problem also
has an analytical solution). In a churning, turbulent fluid, however, there are many, many points with
steep gradients in fluid properties (e.g. velocity–see, for instance, Figure 4.7) and we are interested in
looking at more and more turbulent flows. This means, effectively, with smaller and smaller viscosities.
In the end, the effect is the same. Computer resolution severely limits the problems of interest that we
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Figure 2.1: Imaginary one-dimensional flow of an idealized fluid. The flow is all left
to right as indicated by the large flow direction arrow and the small flow speed arrows
(atop) which indicate the ‘wind’ speed at selected positions. Panel (a) shows the situa-
tion at time, t = 0 seconds, panel (b) is at t = 1.25 minutes, and panel (c) is at t = 2.5
minutes. The second row depicts the energy spectra (or Fourier transforms) of the ve-
locity profiles shown in the first row. In log-log are plotted energy versus wavenumber
(inverse length).
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To achieve the required resolution (evolve enough points) to model a typical atmo-

spheric boundary layer5 flow would require a one-hundred-million increase in computing

power over today’s largest computers [51]. If we assume that computer technology could

continue its present rate of growth known as Moore’s Law [61], that is, double every 18

months, it could take 40 years before such a computer exists! This is the central problem

addressed in this thesis. Since we would rather not wait 40 years to answer our scientific

questions, we would like very much to have some model that will recover some of the

information of what is happening between the points. More importantly, we desire that

the model will tell us what is happening at the points because of what occurs between

the points. This would allow us to achieve a “closure” by evolving only the larger scales

and modeling the effects of the smaller scales on them. The Lagrangian-averaged alpha

model can be such a closure scheme. Of course, no model to date can tell us every-

thing about what is happening between the points without us actually resolving it. If

one could, turbulence would be a solved and understood phenomenon. So, what we

will accomplish in this thesis is examine how good the alpha model is in modeling the

statistics of what happens between the points.

2.2 Heuristic Description of the Direct Cascade

Burgers equation was introduced by Burgers [10] as a toy model for turbulence in

1D. We will not focus here on the similarities, and some big differences, between Burgers

turbulence and Navier-Stokes turbulence. Instead, we use this comparatively simple

equation as a good example of how simple advection (the movement of a fluid) causes

the direct cascade of mechanical energy to smaller scales. The successive excitation of

smaller and smaller scales is expressed through the advective term and the nature of its

nonlinearity (see e.g. (2.1) or (2.7)). In one dimension this term is u∂yu and is related

are able to model accurately.
5 The atmospheric boundary layer is the part of the atmosphere in contact with the ground.
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to the time derivative through the total derivative,

du

dt
= ∂tu + u∂yu = F(u, t), (2.1)

where F(u, t) represents all the density-normalized influences on the fluid flow. Taking

F(u, t) = ν∂2
yyu we have Burgers equation as the illustrative model of turbulence used

in §2.1 (Figure 2.1),

∂tu + u∂yu = ν∂2
yyu. (2.2)

u∂yu provides for coupling between spatial scales. Consider that we have for instance,

u(y, 0) = sin y. Then ∂yu = cos y and u∂yu = sin y cos y = 1
2 sin 2y. On the next step,

we will obtain more modes:

sin 2y cos y =
1

2
(sin 3y + sin y),

sin 2y cos 2y =
1

2
sin 4y,

and

sin y cos 2y =
1

2
(sin 3y − sin y).

0 1 2 3 4
k

0 1 2 3 4
k

0 1 2 3 4
k

Figure 2.2: Cascade of energy to smaller scales. The vertical axis is arbitrary and not
to scale. The horizontal axis is the wave-number, k (k = 1 corresponds to a wavelength
λ = 2π, k = 2 to λ = π, k = 4 to λ = π

2 , etc.). Time progress from left to right.

A spectral picture of this process (see Figure 2.2 or refer to Figure 2.1 for the

cascade in our idealized example) illustrates the cascade of energy from large scales

to smaller scales (see [77] and [62] for this process carried out further and in more
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dimensions for the Navier-Stokes equation). This cascade will proceed to smaller and

smaller scales without limit and excite an infinite number of Fourier modes.6 It is

this infinite amount of information that makes turbulent fluid flow problems difficult

to solve. The large amount of information in the solutions also suggests a statistical

approach to describe what can be known.

2.3 Navier-Stokes

Here, we present a heuristic derivation of the Navier-Stokes equations. To begin

with, we make the continuum hypothesis that we are always able to choose a small

enough volume so that the property we are measuring (e.g. average density, pressure,

velocity) is local and independent of the number of particles in that volume (i.e. the

volume contains a large number of particles) [3]. This assumption can be invalid for

extremely low gas density or in a shock wave. Next, we consider a fluid element with

one corner at the point (x, y, z) and volume, δxδyδz = δV (see Figure 2.3). Newton’s

second law for the motion of this volume is

F = ma = m
du

dt
. (2.3)

The forces are the fluid pressures on each of the faces times the area of each face,

(Px(x) − Px(x + δx)) δyδz+(Py(y) − Py(y + δy)) δxδz+(Pz(z) − Pz(z + δz)) δyδx = ρδV
du

dt
,

(2.4)

where ρ is the average density of the fluid element. If we divide both sides by δV and

take the limit limδx,δy,δz→0 we find we have the definition of the derivative and

ρ
du

dt
= −∇P. (2.5)

Taking a dimensional analysis of (2.5), we find

ρ[L][T ]−2 ∼ P [L]−1,

6 In a real system this infinite cascade would be stopped after reaching the dissipative scale discussed
in §3.2. This could still be well outside the limits of modern computing.
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δz

δy

δx

P (y)y

P (z)z

P (x)x

(x,y,z)

x

y

z

δ

δx−P (x +   x)

−P (z +   z)z

y δ−P (y +   y)

Figure 2.3: Fluid element at (x, y, z) with volume δxδyδz = δV . The bold ar-
rows indicate pressures on the six faces with the following shorthand, Px(x) ≡
∫ y+δy
y dy

′ ∫ z+δz
z dz

′
P (x, y

′
, z

′
)/δyδz.
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or

u2 ∼
∆P

∆ρ
.

If we interpret this variation of pressure with density, ∆P/∆ρ, as a derivative we have

the sound speed squared, ∂P
∂ρ = C2

S [63]. We see, then, that the condition for incom-

pressibility, ∆ρ
ρ ¿ 1, is the same as requiring our velocities to be sub-sonic,

u2

C2
S

∼
∆ρ

ρ
¿ 1.

In other words, if the changes we are interested in propagate very much slower than

pressure waves, the fluid will be able to adjust to the changes fast enough that it cannot

be compressed, ∇ ·u = 0. Returning to (2.5) and dividing by the density and expanding

the total derivative into its Eulerian components, we have Euler’s equation,

∂tu + u · ∇u = −∇p, (2.6)

where p ≡ P/ρ. We assume the initial mass density to be constant and uniform.

From the incompressibility condition and the continuity equation, then, we can infer

the density to remain constant and uniform, and, therefore, normalize it out of our

equations. With the addition of an arbitrary external force, F , and a dissipative term,

ν∇2u, we arrive at the (incompressible) Navier-Stokes equations,

∂tu + u · ∇u = −∇p + F + ν∇2u

∇ · u = 0. (2.7)

2.4 Pseudospectral Method

The main premise of the pseudospectral method is that it is computationally effi-

cient and far more accurate to compute spatial derivatives in the Fourier domain. The

pseudospectral approximate derivative can be understood as the limit of a finite differ-

ence approximation approaching infinite order. Thus, the pseudospectral approximation
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approaches the true derivative exponentially as the grid spacing decreases. Considering

the computational cost, the nonlinear advective term previously discussed in §2.2 is a

multiplication of two vectors (in 1D), the velocity at all positions and the space deriva-

tive at all positions, and takes order N operations. N is the number of data points

in our discretization. From the convolution theorem (see e.g. [12]), this multiplication

becomes a convolution, the multiplication of a N by N matrix and a vector, in Fourier

space and requires order N2 operations. Through an algorithm known as the Fast

Fourier Transform (FFT), the operation count to go between real (spatial) and Fourier

(spectral) spaces is order N log N . For very high resolution (large N) calculations,

then, it is much cheaper to calculate the derivative in Fourier space and return to real

space for the multiplication. This mixing of operations in both spaces is the reason for

the ‘pseudo’-spectral pseudonym. In two dimensions, we square the operation account

advantage of 1D for pseudospectral and in three dimensions the advantage is cubed.

2.4.1 Example Application: Burgers Equation

We return to Burgers equation (2.2) for an illustrative example.

∂tu + u∂yu = ν∂2
yyu

Fourier transforms are commonly used in the analysis of partial differential equa-

tions [31]. The forward transform is taken to be7

F [f(y)] ≡ f̂(k) =

∫ ∞

−∞
f(y)e−ikydy, (2.8)

and the inverse transform to be8

F−1[f̂(k)] =
1

2π

∫ ∞

−∞
f̂(k)eikydk. (2.9)

7 Other normalizations are possible.
8 The Riemann-Lebesgue lemma guarantees that F−1[f(k)] = f(y) (except at discontinuities) if f(y)

has a finite number of discontinuities, is Lp integrable with p ≥ 1, and is bounded. Dirichlet’s theorem
makes the same guarantee for f(y) continuous, periodic, and bounded.
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Expressing velocity, u, as a function of its transform, û, we have

u(y) =
1

2π

∫ ∞

−∞
û(k)eikydk. (2.10)

From this, we can easily evaluate the spatial derivatives in Burgers equation.

∂yu =
i

2π

∫ ∞

−∞
û(k)keikydk

∂2
yyu =

−1

2π

∫ ∞

−∞
û(k)k2eikydk

(2.11)

Therefore, we require one FFT for u → û, two vector multiplications to find the

transforms of the derivatives, and two FFTs to return to real space for multiplication

of the nonlinear term and computation of the temporal derivative.

For computation, our problem is discretized, and we must consider the discrete

Fourier transform9 which is just an approximation to the Fourier series over the dis-

cretized domain [1, N ],

ck =
1

N

∫ N

1
f(x)e−ik 2π

N
xdx ≈

1

N

N
∑

1

f(x)e−ik 2π
N

x, (2.12)

and

f(x) =
∞

∑

−∞

cke
ik 2π

N
x ≈

N
2

∑

−N
2

cke
ik 2π

N
x ≈

∫ N
2

−N
2

c(k)eik 2π
N

xdk. (2.13)

Often, this last sum is rewritten using the fact that eiN 2π
N = 1. Defining, then, the ck

above N
2 to be the ck−N ,

f(x) ≈

N
∑

1

cke
ik 2π

N
x. (2.14)

An important consequence of the discrete transform is aliasing. Aliasing is the

corruption of the transform coefficients, ck, for frequencies below the Nyquist frequency,

k = N
2 , by those above the Nyquist frequency. Aliasing is easily explained pictorially

(see Figure 2.4). Here we can see that the Nyquist frequency is the highest frequency

9 All implementations of the pseudospectral method employed in this work make use of the Fastest
Fourier Transform in the West (FFTW) library [23].
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we can unambiguously represent on our grid. Because of our limited sampling, we are

unable to distinguish between a frequency k and a frequency N −k. We are guaranteed

by the sampling theorem (see e.g. [9]) that our discretized representation contains all

the information of the continuous function it represents if the continuous function has

a Fourier transform that is zero above the Nyquist frequency. For a simulation starting

from low frequency initial conditions, we might then zero all Fourier modes above the

N/2 and be assured that our representation is complete. The nonlinear advection term

transfers energy to higher modes, however, as discussed in §2.1 and §2.2. This would

again introduce the aliasing problem as our modes just below N/2 would introduce

energy beyond it. For this reason, the so-called two-thirds rule is often employed. That

is, all modes above kmax = N/3 are zeroed.

Figure 2.4: Example of aliasing for N = 6. Plots of f(x) = cos 2πkx for Left: k = 1
(dashed line) and k = 5 (solid line), Center: k = 2 (dash-dotted line) and k = 4 (long-
dashed line), and Right: k = 3 (dash-triple-dotted line). The data is sampled at N = 6
points (0 and 2π are identical). Therefore, the Nyquist frequency is N/2 = 3 and this
is the highest frequency mode captured by the grid (alternating ±1 at sampled points).
Higher frequency modes, N − k, are “aliased” onto lower frequency modes, k, because
at the sampled points there is no way to distinguish between the two signals.

Parseval’s relation (see §A.3) for the Fourier series is

< |f(x)|2 >=

∞
∑

−∞

|ck|
2

1

N

∫ N

1
|f(x)|2dx =

∞
∑

−∞

a2
k + b2

k, (2.15)

where we have defined ck = ak+ibk. This is important for accurate dissipation of energy
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(see §3.2). Using our finite summation we have

1

N

N
∑

1

|f(x)|2 ≈
−1
∑

−N
2

a2
k + b2

k + a2
0 + b2

0 +

N
2

∑

1

a2
k + b2

k

N
∑

1

|f(x)|2 ≈ 2N





a2
0

2
+

b2
0

2
+

N
2

∑

1

a2
k + b2

k



 (2.16)

where we have used a−k = ak and b−k = −bk for f real. The counting of grid points,

x ∈ [1, N ], is the scale used by the FFT library. Our domain is y ∈ [0, 2π] with periodic

boundary condition, y(p)(0) = y(p)(2π) ∀ p ∈ N. Using y = 2π
N x and dx = N

2πdy,

ck =
N

N2π

∫ N

1
f(y)e−ikydy =

1

2π
f̂(k), (2.17)

and
∫ N

2

−N
2

c(k)eik 2π
N

xdk =
1

2π

∫ N
2

−N
2

f̂(k)eikydk ≈ f(y). (2.18)

Taking the derivative with respect to y of this last relation,

∂yf(y) ≈
1

2π

∫ N
2

−N
2

ikf̂(k)eikydk =

∫ N
2

−N
2

ikc(k)eik 2π
N

xdk ≈

N
2

∑

−N
2

ikc(k)eik 2π
N

xdk. (2.19)

Taking the derivative is a simple multiplication by ik in Fourier space followed by the

inverse transform, just as it was for the continuous transforms.

Testing the FFTW library in double precision for N = 128 on a few simple sine

waves (k = 1 to k = 64) gave derivatives with an accuracy of 10−4 to 10−7 depending

on how well resolved the signal was, forward followed by inverse transforms with an

accuracy of 10−16, and Parseval’s relations with an accuracy of 10−15 to 10−17.

2.5 The Magnetohydrodynamic (MHD) Approximation

Electrically-conductive fluid flows occur commonly in nature. Some examples are

the fluid motion in the earth’s core which maintains the earth’s magnetic field, the

sun’s convective zone and corona, the solar wind, the earth’s magnetosphere and up-

per ionosphere, the interstellar medium, and numerous other astrophysical phenomena.
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We present here a heuristic derivation of the simple, incompressible, one-fluid MHD

equations (see e.g. [63]). We begin with the Navier-Stokes equations (2.7) and, there-

fore, with the continuum hypothesis, the incompressibility assumption, and a constant

uniform density. Note that we have assumed there to be essentially one fluid, though

for a plasma there could arise situations where the “positively-charged fluid” and the

“negatively-charged fluid” should be considered separately. To the Navier-Stokes equa-

tions we add a Lorenz forcing term and Maxwell’s equations. Additionally, we assume

there is no creation or loss of particles and no pair productions or recombinations. We

assume that the flow is non-relativistic, u
c ¿ 1, and that, therefore, there will be no

Maxwell displacement current and no charge separation (and hence no net forces from

electric fields). Finally, we assume the fluid has a constant conductivity. We consider

Maxwell’s equations.10 Ampere’s law,

∇ × b = µj +
1

c2
∂tE, (2.20)

states that a current, j, or the time rate of change of the electric field, E, produces

a curl in the magnetic field, b, and vice-versa. The speed of light is c and µ is the

permitivity. The term, 1
c2

∂tE, is called the Maxwell displacement current and can be

neglected in the non-relativistic limit. Faraday’s law is

∇ × E = −∂tb, (2.21)

that the time rate of change of the magnetic field produces a curl in the electric field

and vice-versa. Ohm’s law is

j = σ (E + u × b) , (2.22)

that the current is proportional to the electric field and the curl of fluid velocity and

the magnetic field by the conductivity, σ, which we assume to be constant. Combining

Ohm’s law with Ampere’s law, minus the Maxwell displacement current, we find

∇ × b = σµ (E + u × b) . (2.23)

10 We employ Alfvénic units (i.e. the magnetic field is expressed in units of velocity).
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Applying a curl and using the absence of magnetic monopoles (∇ · b = 0), we derive

∇ × ∇ × b = −∇
2b = σµ (∇ × E + ∇ × (u × b)) . (2.24)

Finally, upon insertion of Faraday’s law (2.21), we derive the induction equation

∂tb = ∇ × (u × b) + η∇
2b (2.25)

where we have defined the diffusivity from the permitivity and the conductivity, η = 1
µσ .

The Lorenz force is

F = j × b. (2.26)

Upon combining Navier-Stokes (2.7), the induction equation (2.25), and the Lorenz

force (2.26), we arrive at the MHD equations

∂tu + u · ∇u = −∇p + j × b + ν∇2u + FK (2.27a)

∇ · u = 0 (2.27b)

∇ · b = 0 (2.27c)

∂tb = ∇ × (u × b) + η∇
2b + FM , (2.27d)

where FK and FM are external forces we may wish to apply.



Chapter 3

An Approach to Turbulence Theory

Big whorls have little whorls that feed on their velocity, and little whorls
have lesser whorls, and so on to viscosity.1

-Lewis Fry Richardson [71]

3.1 What is Turbulence?

Figure 3.1: Leonardo da Vinci’s illustration of the swirling flow of turbulence. (The
Royal Collection c©2004, Her Majesty Queen Elizabeth II.) Taken from http://www.

maths.monash.edu.au/~jjm/jjmsph.shtml.

Turbulence is the wake of a speedboat, water from a fire hose, boiling water, and,

yes, that which shakes your airplane ride about.

1 A poetic adaptation of “So, the nat’ralists observe, a flea \ hath smaller fleas that on him prey;
And these have smaller yet to bite ‘em, And so proceed ad infinitum. Thus every poet, in his kind \ Is
bit by him that comes behind.” by Jonathan Swift, Poetry a Rhapsody.
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Strong fluid turbulence [. . . ] can be defined as a solution of the Navier-
Stokes equations whose statistics exhibit spatial and temporal fluctuations.[20]

That is, turbulence is typified by large velocity differences and not, necessarily, by large

velocities (see Figure 3.1). And the challenge, as we alluded to in the previous chapter is

that these fluctuations occur over a large range of coupled spatial and temporal scales.

That is, what happens over great distances influences what happens between very small

elements and vice versa. For this reason, a detailed understanding from first principles

still eludes turbulence theory.

3.2 Kolmogorov 41 Phenomenology

In 1941, Andrei Nikolævich Kolmogorov [46, 47, 48] fathered modern turbulence

theory. He made a few essential assumptions and predictions that are still used today as

a measuring stick for contemporary models and simulations.[24] These four assumptions,

or hypotheses, are homogeneity, isotropy, self-similarity, and universality. Turbulence is

homogeneous if, at least for the small scales, the statistical properties of the fluid flow

are invariant under space-translations (the same at any point in the fluid).2 Turbulence

is isotropic if, at least for the small scales, the statistical properties of the fluid flow are

invariant under rotations (independent of which direction we are looking). Universality

applies to turbulence if, at least for the small scales,3 there are quantifiable statistical

properties common to all turbulent flows regardless of the type of flow, the fluid that

is flowing, the boundary conditions, or the energy-input mechanisms (stiring, shaking,

or shearing) [51]. Self-similarity, simply stated, is the idea that any small portion of

the flow looks essentially the same as the larger flow if it is blown up to the same size.

His results can also be derived from an approach by Robert Kraichnan (1967) that is

described by the term “phenomenology” and at times seems to be nothing more than

dimensional analysis. But, it has met with considerable success in both experimental

2 This is the same word as for “homogenized” milk.
3 Or, rather, for some range of scales.
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and numerical verification. We will examine some of the results in simplified form here.

The time rate of change of the energy in a fluid flow is given by the dissipation equation,

we have

dE

dt
= −2νΩ, (3.1)

in the absence of forcing (see §A.2 for a derivation of Burgers dissipation). Here, E ≡

∫

1
2u2dV represents the energy (per unit mass) integrated over the entire domain, ν is

the kinematic viscosity, and 2νΩ = 2ν
∫

1
2(∇×u)2dV is called the enstrophy. Enstrophy

is the dissipation into heat due to internal fluid friction. In the presence of forcing, we

denote the energy injection rate by the forcing as ε. Then, for steady state we require

dE

dt
= ε − 2νΩ ≈ 0 (3.2)

or

ε ≈ −2νΩ. (3.3)

From here we employ dimensional analysis or phenomenology as it is called.

Burgers Equation

We return again to Burgers equation, (2.2), for an illustrative example,

∂tu + u∂yu = ν∂2
yyu.

The dimensional analysis for this equation is

[T ]−1[L][T ]−1 + [L][T ]−1[T ]−1 ∼ ν[L]−1[T ]−1

which tells us the dimensions for the viscosity, ν, are [L]2[T ]−1 as expected. Now, if we

use Parseval’s theorem (A.35),
∫ ∞
−∞ f2dx = 1

π

∫ ∞
0 f̂∗f̂dk for E, we will have

E =

∫ ∞

−∞

1

2
u2dy =

∫ ∞

0

1

2π
û∗ûdk =

∫ ∞

0
E(k)dk. (3.4)

where we have reasonably defined the spectral energy density, E(k) ≡ 1
2π û∗û. Here we

have used the notation ∗ for complex conjugation and û for the Fourier transform4 of

4 Introduced in §2.4.
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u. Using (2.8)

F [u(y)] ≡ û(k) =

∫ ∞

−∞
u(y)e−ikydy

we can find the dimensions of û.

û ∼ [L][T ]−1[L] (3.5)

From this, we can see the dimensions of spectral energy density, E(k), are [L]4[T ]−2.

Parseval’s theorem for the enstrophy is

Ω =

∫ ∞

−∞

1

2
(∂yu)2dy =

∫ ∞

0

1

2π
F [∂yu]∗F [∂yu]dk. (3.6)

Evaluating the Fourier transform using integration by parts,

F [∂yu] ≡

∫ ∞

−∞
∂yue−ikydy = ue−iky|∞−∞ + ik

∫ ∞

−∞
ue−ikydy = ikû. (3.7)

Using either periodic boundary conditions or requiring the velocity to vanish at infinity

will eliminate the first term leaving us with F [∂yu] = ikû which has dimensions [L][T ]−1.

Now we can write the enstrophy as a function of the spectral energy density.

Ω = −

∫ ∞

0
k2E(k)dk (3.8)

Returning to the balance between the energy injection and dissipation rates (3.3),

ε ≈ −2νΩ,

from which dimensional analysis gives us

ε ∼ [L]3[T ]−3.

Energy is assumed to be injected only into the larger, integral scales and dissipated

only at the much smaller, dissipative scales for very high Reynolds number (i.e. very

small ν).5 See Figure 3.2. The dissipation term in Burgers equation, ν∂2
yyu, will go

5 The ratio of the nonlinear term to the viscous dissipation term is a good measure of the strength
of the turbulence. This ratio is called the Reynolds number, Re. For Burgers we can easily see

u∂yu

ν∂2
yy

u
∼

u·u/D

ν·u/D2 = uD
ν

≡ Re where u and D are some typical velocity and length, respectively.
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Figure 3.2: Log-log plot of energy density spectrum showing energy injection, ε, at the
integral scale, energy dissipation, ε, at the dissipative scale, and inertial range with a
k−2 spectrum corresponding to Burgers equation.
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as νk2û in Fourier space. Therefore for very small viscosity, dissipation only becomes

significant at very large wavenumbers (very small lengths). If the Reynolds number is

high enough, there will be many orders of magnitude (decades) in wavenumber between

the energy injection scales and the energy dissipation scales. This range is called the

inertial range. In the inertial range energy is assumed, by the argument just given, to

be transferred from larger scales to smaller scales without loss and thus with a constant

rate ε. This is the assumption of universality.6 From this reasoning, the spectral energy

density in the inertial range must be independent of the viscosity, ν. It can only depend

on the energy injection rate, ε, and the wavenumber, k,

E(k) ∼ εβkγ . (3.9)

This relation (called a power law) will, then, be derived from dimensional analysis,

[L]4[T ]−2 ∼ [L]3β [T ]−3β [L]−γ .

And, finally, we have

E(k) ∼ ε
2

3 k−2. (3.10)

This analysis can also be used to calculate the Kolmogorov dissipation length.

The Kolmogorov dissipation length, lν , is the length scale below which there is no

energy contained in the system. Combining enstrophy as a function of the spectral

energy density (3.8) and the balance between the energy injection and dissipation rates

(3.3), we find

−
ε

2ν
≈ Ω ≈ −

∫ kν

0
k2E(k)dk. (3.11)

Here the Kolmogorov dissipation wavenumber, kν , is chosen so that practically all of

6 Actually, universality can be stated [24] as the assumption that “in the limit of infinite Reynolds
number, all the small-scale statistical properties are uniquely and universally determined by the scale l

and the mean energy dissipation rate ε.”
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the enstrophy is accounted for. Upon integration, we find

ε

2ν
≈ ε

2

3 kν

ε
1

3

2ν
≈ kν ,

or that lν ∼ 2ν. That is, if a simulation is at its resolution limit and we halve the

viscosity, we must also halve our length scales (double our linear resolution).7 This

defines the term “well resolved” for pseudospectral methods. When kν < kmax, all the

injected energy is dissipated at small scales by the viscous term.

Navier-Stokes Equations

The Navier-Stokes equations, (2.7), are

∂tu + u · ∇u = −∇p + ν∇2u

∇ · u = 0.

For (2.7), the spectral energy density dimensional analysis relation is found to be

E(k) ∼ ε
2

3 k− 5

3 . (3.12)

Using the relation between energy density and the energy injection rate (3.11), we find

that

ε

2ν
≈

∫ kν

0
k2E(k)dk = ε

2

3

∫ kν

0
k

1

3 dk =
3

4
ε

2

3 k
4

3
ν (3.13)

and k
4

3
ν ∼ ε

1
3

ν which yields

kν ∼
( ε

ν3

) 1

4

. (3.14)

That is, if a simulation is at it’s resolution limit and we halve the viscosity, we must

increase our resolution by a factor of 8
1

4 . For a linear resolution, N , the computational

cost will be proportional to N3 for 2D simulations and N4 for 3D. From this we can see

that if we wish to double our Reynolds number we quadruple and octuple our computer

time for 2D and 3D, respectively.

7 The total resolution will grow as the number of dimensions
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This can be related to the continuum hypothesis from §2.3. If all the energy

containing scales are larger than lν , and l3ν contains a very large number of individual

particles, then scales small enough for the continuum hypothesis to be invalid have no

influence on the dynamics of the fluid.

3.3 Intermittency and Structure Functions

3.3.1 Description

Something is intermittent if it has short bursts separated by relatively sedate

periods. This is temporal intermittency (being intermittent in time). Spatial intermit-

tency (being intermittent in position) displays isolated regions of fluctuations separated

by relatively unchanging regions. Intermittency in time is the more often experienced

of the two. Consider the intermittent problem with your car that is never there when

the mechanic looks at it, or the intermittency of natural phenomena like earthquakes

and solar flares. They happen at irregular intervals that are difficult to predict but

are extremely energetic when they do occur. Using the example of turbulent boiling

water, the times at which the water boils over and out of the pan are temporally in-

termittent. On the other hand, the position of all the bubbles in the boiling water is

spatially intermittent. For turbulence, intermittency is “associated with [its] violent,

atypical discontinuous nature” [20]. It is both spatially and temporally intermittent. In

Figure 3.3, we illustrate temporal intermittency by comparing a regular, periodic signal

(not intermittent), an earthquake seismogram8 (intermittent), a random signal (not

intermittent), and a chaotic signal9 (not intermittent). Randomness can be thought of

as the simple process of rolling a die or picking a card from a shuffled deck.10 A defi-

8 Data is from 9 September 2001, 16:59:16 PDT, at Hollywood Boulevard and Hillhurst, Los Angeles
(CGS Station No. 24982) obtained from the California Integrated Seismic Network. http://www.quake.
ca.gov/cisn-edc/search/24982.HTM

9 Data is from the quadratic map, xt+1 = x2
t − 1.5 (see for instance [73]).

10 These are examples of an even random distribution. Other distributions, such as Gaussian, are
possible as well.



26

nition of chaos is a little harder to pin down. A chaotic system is a deterministic one.

If the value of all the variables of a system is known with infinite precision, all futures

values can be predicted. Chaos, however, exhibits sensitivity to initial conditions. A

small error in one of the variables grows exponentially in time (see e.g. [2]). These same

signals can be used to generate examples of spatial intermittency as seen in Figure 3.4.

From these pictures we can see why intermittency is sometimes described as the degree

of spottiness. Extreme events are more likely than for a random, or Gaussian process.

These events will stand out as “spots” in a 2D visualization.

We would like to have some measure of the amount of burstiness in a given

data set. One such measure is the structure function. It measures the burstiness of

a signal by the deflection of its structure-function plot from a straight line. In other

words, it measures the statistics of violent events as higher order (smaller scales) are

considered. Any deviation from a straight line indicates complex behavior of the system

with the scale, or departures from self-similarity. In Figure 3.5 we can see both how

intermittency is a violation of the assumption of self-similarity and how the structure

functions measure it. Here we have cut out a small portion of the earthquake signal

and and blown it up. The result does not look at all similar to the original signal,

and, hence, we can see that the signal is not self-similar. The structure functions are

formed by looking at the difference in the signal at two separate times. Consider, for

instance, the two times indicated and marked τ1 in the figure. Such a stencil is moved

along the signal and an average is made over the entire signal. This is the structure

function of order one. Different stencil lengths are employed, such as τ2 in the figure.

For a length longer than the typical burst length (e.g. τ1), such a stencil will pick

up at most half the amplitude of the burst, A/2. For a length shorter than the burst

length (e.g. τ2), the stencil could pick up the full amplitude, A. Now the higher-

order structure functions are made by raising the stencil differences to higher powers

before averaging. Whereas, for our first-order structure function, we had a factor of two
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Figure 3.3: Example of temporal intermittency. The top frame (blue line) is a regular,
periodic, and in this case sinusoidal signal (not intermittent). The upper-middle frame
(green line) is an earthquake seismogram in units of g (intermittent). The lower-middle
frame (red line) is a random signal (not intermittent). The bottom frame (cyan line) is
a chaotic signal (not intermittent).

Figure 3.4: Example of spatial intermittency. The leftmost image is completely reg-
ular (not intermittent), the middle image is intermittent, and the rightmost image is
completely random (not intermittent).
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difference depending on τ , for the second-order structure function we square our terms

for a factor of four. For the third-order we have a factor of eight, and so on. As the

powers, p, become larger the effect becomes more nonlinear as can bee seen in Figure 3.6

A

τ 2

τ 1

Figure 3.5: Intermittency as a violation of the self-similarity hypothesis.

which is a structure-function plot for the four data sets depicted in Figure 3.3. Notice

that the non-intermittent data sets lie along straight lines while the intermittent data

set curves below an imaginary straight line. This last curve will be seen to be similar to

curves for intermittent turbulence we will see later. Intermittency is an essential part

of turbulence, and we would like for any model we use of turbulence to reproduce it.

These structure functions will be the tools we use to test for it.

3.3.2 Mathematics

In the late nineteenth century Osborne Reynolds brought about the introduction

of statistics and probability to turbulence theory by regarding the flow as a superposi-

tion of mean and fluctuating parts. Modern analysis discovers the generic properties of
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Figure 3.6: Scaling of structure functions: ζp versus p for a regular, periodic signal (sine
wave) as blue diamonds, for an earthquake signal as green pluses, for a random signal
as red triangles, and for a chaotic signal as cyan squares. Error bars are shown only
for the earthquake signal as the errors for the other signals are very small. The dotted
lines are present only to highlight the earthquake’s deviation from a straight line.
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turbulence in the statistics of the velocity increment [20]. We can see how these statistics

measure intermittency by considering a time series. The typical scale-dependent quan-

tities constructed from the increments are known as structure functions. The structure

function of a time series f is defined as Sf
p (τ) ≡ 〈|δf(τ)|p〉11 where δf(τ) = f(t+τ)−f(t)

is the increment of f . The assumption of self-similarity can be written mathematically

as

δf(λT ) = λhδf(T ), (3.15)

where h is some scaling exponent [24]. Defining τ = λT , we find

Sf
p (τ) = 〈|λhδf(T )|p〉 = λh·p〈|δf(T )|p〉 ∼ τ ζf

p , (3.16)

where ζf
p = h · p are the scaling exponents of the structure functions. If the statistical

features of the system are independent of spatial scale, it is described as self-similar and

it’s scaling will be linear, ζf
p ∼ p.

Frisch [24] gives a precise definition of an intermittent function. “It displays

activity during only a fraction of the time, which decreases with the scale under consid-

eration”. He goes on to define the flatness,

F (ω) ≡
〈(f>

ω (t))4〉

〈(f>
ω (t))2〉2

, (3.17)

of a time series f where f>
ω (t) has been high-bandpass filtered with frequency ω. If this

quantity grows without bound as ω increases, f is said to be intermittent.12 To justify

this choice, Frisch considers a signal f that is derived by being zero most of the time

with short intervals copied from a random signal v for a fraction γ of the time. Then,

〈fp〉 = γ〈vp〉 and F (ω) = 1
γ · 〈(v>

ω (t))4〉

〈(v>
ω (t))2〉2

. Heuristically speaking, as the high-bandpass

frequency is increased, there will be less and less of v left non-zero effectively decreasing

γ and F will grow. Extending this idea, he defines a hyper-flatness,

Fp(τ) ≡
Sp(τ)

(S2(τ))p/2
, (3.18)

11 Angle brackets, 〈·〉, denote integration over the entire domain.
12 In practice, the “filtered” flatness will decrease again after reaching the dissipation scale.
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from the structure functions. If this hyper-flatness grows without bound as τ → 0,

the signal is intermittent. In other words, for intermittency, the statistics of velocity

increments become extremely non-Gaussian as the scale decreases. If the structure

functions have scaling exponents, we find

Fp(τ) ∼ τ ζf
p−ζf

2
· p
2 . (3.19)

Under the assumption of self-similarity, ζf
p ∼ p and we find Fp(τ) ∼ τp−2· p

2 = 1 and the

hyper-flatness does not grow as τ → 0. If, however, ζf
p < ζf

2 · p
2 then the graph of ζf

p

versus p will lie below the line of ζf
2 · p

2 , Fp(τ) will grow without bound as τ → 0, and

the signal will be intermittent (by definition) as in Figure 3.6.

For instance, for the sine function, the increment takes the form

δ sin(λT ) = sin (t + λT ) − sin(t) = 2 sin(
λT

2
) cos

(

t +
λT

2

)

.

In the limit as λT ≡ τ → 0, we have

δ sin(λT ) ≈ λT cos (t) = λ1δ sin(T ).

Then in the asymptotic limit sine is self-similar and not intermittent. This is shown

in Figure 3.6. For a completely random signal, δf(τ) will also be a random quantity

with no τ -dependence and Srand
p will be constant. We should expect ζrand

p = 0 as we

do indeed see in Figure 3.6. When there are isolated small patches of rapid fluctuations

(intermittency), we expect 〈|δf(τ)|p〉 to be enhanced for τ smaller than the typical patch

length and the more so the greater the value of p. It is this enhancement at smaller τ

that leads to smaller ζp for higher order, p.

3.3.3 von Kármán-Howarth Theorem

From the von Kármán-Howarth equation Kolmogorov [46] derives the four-fifths

law,

〈(δuL(l))3〉 = −
4

5
εl, (3.20)
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for the third-order longitudinal structure function of the velocity (δuL(l) = (u(x + l)−

u(x)) · l/l), the energy dissipation rate ε, and length l in the inertial range. This is one

of the few “exact” results for turbulence. It is beyond the scope of this work to derive

this result, the result for MHD, or the result for the Lagrangian-averaged alpha model

(the alpha model is presented in the following section). Instead, we will develop the

so-called twelfth law for Burgers equation (2.2),

∂tu + u∂yu = ν∂2
yyu.

We define an independent point y
′
and denote u

′
= u(y

′
, t). Following [46] we momen-

tarily neglect the energy dissipation. Multiplying Burgers equation by u
′
from the left,

we obtain

u
′
∂tu = −

1

2
∂y(u

2u
′
), (3.21)

where we have made use of the fact that u
′
is independent of y. Denoting ∂

′
= ∂

∂y
′ , we

find similarly

u∂tu
′
= −

1

2
∂

′
(uu

′2
). (3.22)

Defining l = y
′
− y, we have ∂l = ∂

′
= −∂y and

2∂t(uu
′
) = −∂l(uu

′2
− u2u

′
). (3.23)

Letting angle brackets denote averaging over space we have a relation for the time

evolution of the two-point correlation function for velocity

2∂t〈uu
′
〉 = −∂l〈uu

′2
− u2u

′
〉. (3.24)

In our notation, the increment of the velocity becomes δu(l) = u
′
− u. Assuming

homogeneity, we find

〈δu2〉 = 2〈u2〉 − 2〈uu
′
〉, (3.25)

and

〈δu3〉 = −3〈uu
′2
− u2u

′
〉. (3.26)
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Substituting (3.24) into (3.26) we find

〈δu3〉 = 6l∂t〈uu
′
〉. (3.27)

Under assumption of stationarity (see e.g. [24]) the spatially-averaged increments are

time independent and (3.25) yields the relation ∂t〈uu
′
〉 = ∂t〈u

2〉 = −2ε, where we have

also employed the definition of the energy dissipation rate, ε. Finally, substitution of

this relation into (3.27) we have our twelfth law:

〈δu3(l)〉 = −12εl. (3.28)

The third-order structure function scales linearly with length. Under the additional

assumption of isotropy and with the use of tensor analysis, similar relations are found

for Navier-Stokes [46], MHD [14, 66, 68], the Lagrangian-averaged Navier-Stokes alpha

model [35], and for the Lagrangian-averaged MHD alpha model [56].

3.4 The Lagrangian-Averaged Alpha Model

In §2.1 we presented the idea of a closure scheme to solve fluid flow problems

by evolving only the larger scales in a direct solution while the closure models the

effects of the smaller scales. One possible closure is variously called the “Lagrangian-

averaged alpha model”, the “Camassa-Holm” equations, or simply the “alpha model”

[11, 34, 1, 22, 36]. Two excellent reviews were recently written [44, 43] and are summa-

rized here. The Lagrangian-averaged Navier-Stokes alpha (LANS-α) model began as a

one-dimensional model of nonlinear shallow-water wave dynamics [11] and was later red-

erived from Hamilton’s principle of least action as follows [38, 39, 15, 18, 33]. One begins

with the Lagrangian density13 in Hamilton’s principle14 for incompressible fluid motion.

The fluid velocity and volume element are decomposed into their average and fluctu-

ating parts (using Lagrangian coordinates fixed to the fluid current). Then Taylor’s

13 The Lagrangian density is the density of the kinetic energy minus the potential energy.
14 Variational methods will not be discussed in this work.
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frozen-in turbulence hypothesis, that small-scale turbulent fluctuations (those smaller

than the length alpha) are swept along by the larger scale motions [76], is taken. In this

way the averaging occurs along the Lagrangian fluid trajectory (see Figure 3.7). Also,

we assume that these small-scale fluctuations are homogeneous and isotropic. That is,

under any lateral translations and under any rotations they look the same. Finally, the

energy in the small-scale turbulence can be derived from the energy of the mean fluid

velocity by the hypotheses. Similar derivations have also extended the alpha model to

the compressible fluid case [6] and to the anisotropic case, by dynamically varying the

length alpha [79].

2 * alpha

Figure 3.7: Illustration of Lagrangian averaging. The solid line depicts the flow of a fluid
parcel. The dashed line is the Lagrangian average of this motion removing fluctuations
smaller than size alpha. Twice alpha is depicted by the double-headed arrow.

By making the approximation before applying Hamilton’s principle important

fluid dynamical properties are retained such as conservation both of energy and po-

tential fluid vorticity in the absence of viscosity and Kelvin’s theorem which insures

the proper dynamics of circulation. Other methods to model turbulent flows include

Reynolds-averaged Navier-Stokes (RANS) simulations which separate the ensemble av-
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eraged motions and the fluctuating fluid motions at fixed positions in space and the

large eddy simulations (LES) framework which spatially low-bandpass filters the flow

(see Figures 3.8 and 3.9). In this way, most of the modeling effort happens after Hamil-

ton’s principle and the conservation of invariants is lost. In other words, the dissipation

is modified (LES model the small scales as eddy viscosity and, hence, are intrinsically

dissipative). LANS−α modifies the nonlinearity in the Lagrangian-averaged Euler alpha

model and adds the dissipation add hoc.
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Figure 3.8: Illustration of Reynolds decomposition. Figures depict one-dimensional
velocity fluctuations at a fixed position in space versus time. Panel (a) shows the
complete fluctuations. Panel (b) shows the average motions. Panel (c) shows the
fluctuations about the average motions.

LANS−α solutions for pipe flow were compared with experimental data for Reynolds

numbers from 105 to over 107 and were found to match the measured mean velocity

all the way across the pipe [15, 17]. Reference [18] shows that for scales larger than

alpha (kα < 1), the energy spectrum for homogeneous isotropic Navier-Stokes turbu-

lence (∼ k−5/3) is preserved. That is, for the energy spectrum at least, LANS−α is

correctly mimicking the effect of the small scales on the large scales. For scales smaller

than alpha (kα > 1), the LANS−α energy spectrum is ∼ k−3 as predicted by [22].

This faster decay of energy is what makes numerical solutions at lower resolutions than

for exact Navier-Stokes possible. Reference [16] found that they were able to reduce

the resolution by a factor of 8 (saving a factor of 256 in computation time) for 3D,

homogeneous, isotropic LANS-α.
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Figure 3.9: Example of spatial filtering: two-dimensional field of 1D velocities. White
represents out of the page velocity, black represents into the page, and shades of grey
for intermediate values. The leftmost image is the complete field, the middle image
has small fluctuations filtered out, and the rightmost image is those small fluctuations
(amplitude scale magnified).

Three-dimensional incompressible, decaying (and forced [57]) turbulence was in-

vestigated under a variety of initial conditions [37, 26, 27, 59, 58, 57]. LES methods and

the LANS−α model were compared to direct numerical solutions of the Navier-Stokes

equation at much higher resolution. In all cases LANS−α was found comparable with

the best of standard LES models. To model the small scales, LES introduces addi-

tional dissipation. Consequently, [26, 27] found that the alpha model produces sharper

more-pronounced coherent structures than even dynamic LES models in turbulent shear

mixing.

The alpha model also tested well for boundary effects, jets, wakes, and plumes

[19, 41, 70]. For quasi-geostrophy it has yielded mixed results [30, 40]. Results for

rotating shallow water were better [42, 40] but bring up the question of determining the

optimal length alpha for good predictions. LANS−α preserves but modifies the elliptic

instability (conversion of 2D fluid motion into 3D convection) [21]. For the baroclinic

instability it was found that for LANS−α it occurs at the same forcing values as for

exact Navier-Stokes [42].
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3.4.1 Simplified rederivation of LANS−α

A simplified rederivation of the LANS−α model was made [60] by defining a local

spatial averaging and neglecting fluctuations about that average. Starting from the

velocity u in the Navier-Stokes equations (2.7), we define15 a smoothed velocity field in

Fourier-space,

ûs =
û

1 + α2k2
, (3.29)

then,

us = F−1[ûs] = F−1[û ·
1

1 + α2k2
] =

∫

Gα(x − x
′
)u(x

′
, t)d3x

′
, (3.30)

where

Gα(r) =

∫

eik·r

1 + α2k2

d3k

(2π)3
(3.31)

is the inverse transform of (1+α2k2)−1. α is the length scale over which u is smoothed.

Taking the inverse Fourier transform of û = ûs + α2k2ûs, we find

u = us +
α2

(2π)3

∫

k2eik·rûsd
3k = (1 − α2∇2)us. (3.32)

Substituting u ≡ us + δu into the vorticity equation for Navier-Stokes (A.10),

∂tw + u · ∇w = w · ∇u + ∇ ×F + ν∇2w,

we find

∂tw + (us + δu) · ∇w − w · ∇(us + δu) = ∇ ×F + ν∇2w. (3.33)

Recall that vorticity is the curl of velocity, w ≡ ∇ × u. Neglecting fluctuations about

the smoothed velocity, we approximate δu ¿ us while leaving the source term w alone.

∂tw + us · ∇w − w · ∇us = ∇ ×F + ν∇2w (3.34)

Using the identity, ∇× (A×B) = B ·∇A−A ·∇B −B(∇ ·A) + A(∇ ·B) and that

w and us are divergence free, we find

∂tw + ∇ × (w × us) = ∇ ×F + ν∇2w. (3.35)

15 Other filters are possible.
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If we remove a curl, the result is

∂tu + w × us = F + ν∇2u. (3.36)

Using tensor math notation (see §B), we see that

w × us = εiklw
kul

s = εkliε
kjmul

s∂jum = uj
s∂jui − uj

s∂iuj (3.37)

where we made use of identity (B.7). We can see that uj
s∂jui is just us · ∇u. Upon

using ∂i(uju
j
s) = uj∂iu

j
s + uj

s∂iuj , we finally arrive at the LANS−α model

∂tu + us · ∇u + ∇P + ∇uT
s · u − ν∇2u = F (3.38)

where P = −uju
j
s is a pressure-like scalar and ∇uT

s · u is just uj∂iu
j
s.

From the Courant Friedrich Levy (CFL) condition, we know that a numerical

solution will be unstable if the maximum velocity allowed by the discretization, ∆x
∆t ,

is less than the maximum propagation velocity of the solution. This places an upper

limit on the time step of ∆t ∼ 1
uN . Thus, the total computation cost to reach a fixed

time will go as Nd, d being the dimension of the space, for the number of grid points

and another power of N for the time stepping, ∼ Nd+1.16 If the LANS−α reduces the

required resolution by a factor of 2, the time savings will be a factor of 8 in 2D and 16

in 3D.17 A reduction of resolution by a factor of 4 would be a savings of a factor of 64

or 256, respectively.18

3.4.2 Lagrangian-Averaged Magneto-Hydrodynamic Alpha (LAMHD−α)

Model

Following the method of §3.4.1, we derive the LAMHD−α equations from the

MHD equations (2.27). We do no smoothing to either the vorticity or the current,

16 This is an over-simplification. Actually, the spatial number of degrees of freedom in 3D, and hence
the memory requirements, goes as Re9/4. Taking into account CFL, the total computation time is
proportional to Re3.

17 Actually, for the alpha model we find Re3/4 for memory requirements and computation time ∼ Re.
This translates to a memory savings of Re3/2 and a computation time savings of Re2.

18 Falling back on our Moore’s law calculations, this would mean having the numerical solution to a
given problem 12 years early!
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which are the curl of the velocity and magnetic field, respectively. We do define the

smoothed velocity, us, and the smoothed magnetic, bs, fields in the same way as for

LANS-α,

u = (1 − α2∇2)us (3.39)

and

b = (1 − α2∇2)bs. (3.40)

Note that here we have made the simplification of the smoothing length α being the

same for magnetic and velocity fields. This need not be so. There is the possibility

of assigning one value for v and a different value b (αK and αM , respectively) but

αK = αM = α is appropriate considering our choice of η = ν in the simulations. Upon

substituting b ≡ bs+δb into the LANS−α equation (3.38) with the Lorenz force (2.26),

we find

∂tu + us · ∇u + ∇uT
s · u = −∇P + j × (bs + δb) + ν∇2u (3.41)

and all that remains is to neglect fluctuations about the smoothed magnetic field and

approximate δb ¿ bs. For the induction equation (2.25), we note that the absence of

magnetic monopoles, ∇ · b = 0, and Ampere’s law imply

η∇
2b = −ηµ∇ × j. (3.42)

Therefore upon substitution of b = bs + δb and u = us + δu into (2.25) we find

∂t(bs + δb) = ∇ × ((us + δu) × (bs + δb)) − ηµ∇ × j. (3.43)

Again, we neglect fluctuations about the smoothed magnetic and velocity fields while

leaving the source term, j, alone and reuse (3.42) to complete the derivation of the

LAMHD−α equations,

∂tu + us · ∇u + uj∇uj
s = −∇P + j × bs + ν∇2u + FK (3.44a)

∂tbs + us · ∇bs = bs · ∇us + η∇2b + FM (3.44b)
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using, of course, that the smoothed fields are divergence free.

LAMHD−α has been considered before in the non-dissipative case [36] and in

the turbulent regime for 2D [55], for 3D [54], and for low magnetic Prandtl number,

PM = ν
η , dynamos [69]. In [55] it was discovered that LAMHD−α recovers the main

features of the long wavelength behavior of 2D MHD turbulent flows whereas small-scale

detailed information is lost. For instance, the locations of specific features are virtually

never reproduced after short times. In addition non-Gaussian wings of the probability

density functions (for the current density, for example) were found. These are indicative

of intermittency but are not as quantitative a measure of it as the structure functions

studied here. Another difference of small note between this study and [55] is that the

induction equation only is forced in [55] while both equations are subject to forcing

here.



Chapter 4

2D MHD and LAMHD−α Turbulence

Three-dimensional (3D) calculations are very expensive in computer resources

(for example between a 10243 3D experiment and a 10242 2D experiment, the 2D choice

is one-thousand times cheaper). It is preferable, then, to study intermittency in two

dimensions if we can. This is not possible for Navier-Stokes because in 2D hydrodynam-

ics the energy has an inverse cascade to large scales.1 Without the transfer of energy

to small scales strong, localized events are not possible. For 2D MHD, however, the

energy has a direct cascade to small scales. This makes 2D MHD similar to the 3D

case and allows us to study intermittency at high resolution. To test LAMHD−α we

make a fully resolved, direct numerical simulation (DNS) run at the highest attainable

Reynolds number for our computer resources and compare the results to LAMHD−α

results obtained at lower resolutions. Direct numerical simulation means that we solve

the equations numerically by resolving all scales down to the scale of viscous dissipation.

We will also variously call this solution the MHD solution as it is the solution to the

MHD equations as opposed to the LAMHD−α equations.

1 For instance, looking at a national weather map, one can see the large-scale systems formed in the
nearly 2D flows of a stratified atmosphere.
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4.1 Two-Dimensional Magnetohydrodynamics (2D MHD)

In two dimensions, the velocity and magnetic field can be expressed as the curl

of a scalar stream function Ψ and a scalar vector potential az, respectively:

v = ∇× (Ψẑ), vs = ∇× (Ψsẑ) (4.1a)

b = ∇× (azẑ), bs = ∇× (asz ẑ) (4.1b)

Upon substitution into (2.27) combined with taking the divergence of the momentum

equation (2.27a) and removing a curl from the induction equation (2.27d), our 2D MHD

equations become

∂t∇
2Ψ = [Ψ,∇2Ψ] − [az,∇

2az] + ν∇2∇2Ψ (4.2a)

∂taz = [Ψ, az] + η∇2az (4.2b)

where

[F, G] = ∂xF∂yG − ∂xG∂yF. (4.3)

Similarly, the 2D alpha model equations are

∂t∇
2Ψ = [Ψs,∇

2Ψ] − [asz ,∇
2az] + ν∇2∇2Ψ (4.4a)

∂tasz = [Ψs, asz ] + η∇2az (4.4b)

where Ψ = (1−α2∇2)Ψs and a = (1−α2∇2)as. Evolution of these equations for scalar

fields is clearly more computationally efficient than for the vector field equations.

4.2 Invariants

4.2.1 Invariants in 2D MHD

In this section we develop the expressions for the ideal invariants (in the case for

which there is no viscous or Ohmic dissipative terms) and for the decay laws (in the
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presence of dissipation). For 2D MHD, the ideal invariants are the total energy,

E =

∫

dA
1

2
(u2 + b2), (4.5)

the total cross helicity,

HC =

∫

dA
1

2
u · b, (4.6)

and the total mean-square vector potential,

A =

∫

dA
1

2
a2

z. (4.7)

The decay laws (or dissipation rates) of these invariants under the influence of dissipation

are2

dE

dt
= −ν

∫

dAw2 − η

∫

dAj2 = −ν〈w2〉 − η〈j2〉 (4.8a)

dHC

dt
= −

1

2
(ν + η)

∫

dAw · j (4.8b)

dA

dt
= −ν

∫

dAb2. (4.8c)

To calculate the energy dissipation rate for 2D MHD (4.8a), we take the dot product

of the velocity with the Navier-Stokes equation (2.27a) added to the dot product of the

magnetic field with the induction equation (2.27d) and integrate,

∫

dAu · ∂tu + b · ∂tb +

∫

dAu · u · ∇u =

−

∫

dAu · ∇p +

∫

dAu · j × b + b · ∇ × (u × b) +

∫

dAu · ν∇2u + b · η∇2b. (4.9)

Using 1
2∂t(u · u) = u · ∂tu, we derive

∫

dAu · ∂tu + b · ∂tb =
d

dt

∫

dA
1

2

(

u2 + b2
)

≡
dE

dt
, (4.10)

the time rate of change of the total energy in the system. It can easily be shown that

the integral of a divergence (or a gradient) over a periodic domain is zero
∫

dA∇p = 0.

2 Angle brackets, 〈·〉, denote integration over the entire domain and will be our preferred notation
where square vorticity and square current are concerned.
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Using integration by parts, we have the same for an advection-like term (movement

across periodic boundaries is conservative),

∫

dAu · ∇p =

∫

dA∇ · (pu) −

∫

dAp∇ · u = 0, (4.11)

by using that the integral of a divergence is zero and the incompressibility condition.

For the second left-hand term in (4.9), we use what could be called the velocity-cross-

vorticity identity, u × w = 1
2∇u2 − u · ∇u,

∫

dAu · u · ∇u =

∫

dAu ·
1

2
∇u2 −

∫

dAu · (u × w) = 0. (4.12)

The advection-like term is zero and u × w being perpendicular to u has a zero dot

product with it. For the first part of the second right-hand term, we reuse our identity

to find

u · j × b = u · b · ∇b − u ·
1

2
∇b2. (4.13)

The advection-like term again being zero, we are left with u · b · ∇b. From ∇ · u =

∇ · b = 0, we have ∇ × (u × b) = b · ∇u − u · ∇b for the second part of the second

right-hand term. Recalling that dot products do not commute in tensor analysis, we

have for the second-right hand term in (4.9),

u · b · ∇b + b · b · ∇u − b · u · ∇b. (4.14)

These terms represent the exchange of magnetic and kinetic energy. In tensor notation

(see §B), we write

umbj∂jbm + bmbj∂jum − bmuj∂jbm. (4.15)

Integrating the middle term by parts,

umbj∂jbm + bj∂j(bmum) − umbj∂jbm − bmuj∂jbm. (4.16)

Whether a quantity is advection-like with velocity or with the magnetic field, it will still

integrate to zero over periodic boundary conditions, and we are left with −bmuj∂jbm.
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This we can recognize as being the same as −u ·∇b2/2 which gives a zero contribution.

Now, (4.9) can be reduced to

dE

dt
= ν

∫

dAu · ∇2u + η

∫

dAb · ∇2b. (4.17)

These terms have the same form and we will simplify it only once. In tensor notation,

b · ∇2b = bm∂j∂jbm which, upon integration by parts, is ∂j(bm∂jbm) − (∂jbm)(∂jbm).

After ignoring the divergence term this only differs from (∇×b)2 by the term ∂j(∂mbmbj)

which is also a divergence. Finally, we arrive at

dE

dt
= −2νΩ − 2ηΩM , (4.18)

where E ≡ 1
2〈u

2 + b2〉, Ω ≡ 1
2〈w

2〉, and ΩM ≡ 1
2〈j

2〉.

The mean-square vector potential dissipation rate (4.8c), can be found by not-

ing that the magnetic field is the curl of the square vector potential which in 2D is

represented by b = ∇ × (azẑ). Substituting this into the induction equation (2.27d),

∂t∇ × (azẑ) = ∇ × (u × b) + η∇
2
∇ × (azẑ). (4.19)

After removing a curl, we find

∂taz = (u × b)z + η∇
2az. (4.20)

Multiplying by az and integrating gives us

d

dt

∫

dA
1

2
a2

z =

∫

dAaz(u × b)z + η

∫

dAaz∇
2az. (4.21)

The first term on the right hand side can be seen to vanish as follows.

a · (u × (∇ × a)) = u · ((∇ × a) × a) = u ·

(

a · ∇a −
1

2
∇a2

)

(4.22)

Upon integration, the advection-like term is zero and in two dimensions, we have u ·a ·

∇a = uzaz∂zaz. As uz = ∂zaz = 0 there is no contribution from this term. Integrating

by parts will simplify the dissipation term az∂i(∂iaz) = ∂i(az∂iaz) − (∂iaz)
2. The
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divergence term, of course, gives no contribution. Further simplification results from

noticing that

b2 = (∇ × a) · (∇ × a) = ∂man∂man − ∂n(∂maman) = (∂iaz)
2 (4.23)

after integration. This also gives us the Fourier-space relation k2a2 = b2. Finally, we

have the relation

dA

dt
= −2ηEM , (4.24)

where A ≡
∫

dA1
2a2

z and EM ≡
∫

dA1
2b2.

These two relations (4.18) and (4.24) define the energy, E, and square vector

potential, A as invariants of 2D MHD ((4.8b) can be derived in the same way). In the

absence of dissipation, they are conserved quantities.

4.2.2 Cascades in 2D MHD

“Selective decay” refers to

turbulent processes in which one or more ideal invariants are dissipated
rapidly relative to another, due to the transfer of the dissipated quan-
tities to short wavelengths where the dissipation coefficients become
effective.[55]

The system seeks a state where the dissipated quantity is as close to zero as can be

for the surviving value of the nearly-conserved quantity. In 2D MHD with negligible

cross helicity (the case we study),3 the dissipated quantity is energy. For 2D Navier-

Stokes, the dissipated quantity is enstrophy (which therefore must experience a direct

cascade to smaller scales). Fjortoft’s theorem (see [53]) suggests such a direct cascade

for enstrophy and an inverse cascade (to larger scales) for energy for the 2D Navier-

Stokes case. We now apply the same argument for 2D MHD to illustrate its dynamics.

In Fourier space we consider only three modes, k1, k2 = 2k1, and k3 = 3k1. Let E(ki, t)

3 We use random phases for u and b either in the initial conditions or in the forcing. This implies
negligible correlation between them and, hence, negligible cross helicity.
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and A(ki, t) be the energy and the square vector potential, respectively, in the mode ki

at time t. Defining the variation δEi = E(ki, t2)−E(ki, t1), we see that conservation of

energy between times t1 and t2 implies

δE1 + δE2 + δE3 = 0. (4.25)

Similarly, conservation of square vector potential will imply

δA1 + δA2 + δA3 = 0, (4.26)

or, using k2A ∼ b2,

1

k2
1

δEM1
+

1

k2
2

δEM2
+

1

k2
3

δEM3
= 0. (4.27)

Assuming the system is initially in equipartition, EM = EK = 1
2E. Using this and the

relation between our modes, we find

36δE1 + 9δE2 + 4δE3 = 0. (4.28)

Solving (4.25) and (4.28) we find δE1 = − 5
32δE2 and δE3 = −27

32δE2. If energy moves

away from the middle energy band (δE2 < 0), more of it goes to smaller scales (k3)

than to larger scales (k1). This suggests a direct cascade of energy. Conversely, for

square vector potential, we find δA1 = −5
8δA2 and δA3 = −3

8δA2 which suggests an

inverse cascade (more energy goes from k2 to k1 than to k3). Given this inverse cascade

of square vector potential, in a freely decaying run with negligible cross helicity, it is

expected that A will cascade to larger scales where it will dissipate slowly. As a result,

the final state is expected to be dominated by magnetic energy.

4.2.3 Invariants in 2D LAMHD−α

For 2D LAMHD−α , the ideal invariants are the total energy,

E =

∫

dA
1

2
(u · us + b · bs), (4.29)
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the total cross helicity,

HC =

∫

dA
1

2
u · bs, (4.30)

and the total mean-square vector potential,

A =

∫

dA
1

2
a2

sz
. (4.31)

The decay laws (or dissipation rates) of these invariants under the influence of dissipation

are

dE

dt
= −ν

∫

dAw · ws − η

∫

dAj2 = −ν〈w · ws〉 − η〈j2〉 (4.32a)

dHC

dt
= −

1

2
ν

∫

dAw · j −
1

2
η

∫

dAw · js (4.32b)

dA

dt
= −ν

∫

dAb · bs. (4.32c)

The conservation of the invariants under the alpha model is one the greatest strengths of

this closure. In the limit α → 0, we recover the MHD invariants and decay laws. As the

invariants are crucial for turbulence, it is the comparison between the MHD invariants

and the LAMHD−α invariants that shall be our test of the alpha model. The decay

laws of LAMHD−α have forms similar to

d

dt

∫

dA(us · u) =

∫

dA∂t(us · u) =

∫

dA(us · ∂tu + u · ∂tus). (4.33)

As the Helmholtz operator, (1 − α2∇2), is Hermitian we can use a significant simplifi-

cation in the derivation of the invariants.

∫

dAus · ∂tu =

∫

dAus · ∂t(1 − α2∇2)us =

∫

dA(1 − α2∇2)us · ∂tus =

∫

dAu · ∂tus

(4.34)

Therefore,

d

dt

∫

dA(us · u) = 2

∫

dAus · ∂tu (4.35)

and

d

dt

∫

dA
1

2
(us · u + bs · b) =

∫

dA(us · ∂tu + b · ∂tbs). (4.36)

The remainder of the derivation is then similar to §4.2.1.
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4.3 Numerical Technique

Pseudospectral methods are preferred for their accuracy and ease of solution to a

Poisson equation, which is needed to remove the pressure term from flow equations (see

§A.1.2). It also is important to ensure energy dissipation is due to the viscous terms in

the modeled equations rather than the numerical method used. Again, pseudospectral

methods are preferred as they are non-dissipative and non-dispersive. In the absence

of physical dissipation, energy piles up and a k2 spectrum is obtained. The nonlinear

advection term, however, can transfer energy to frequencies higher than can be resolved

by the numerical grid. This contamination of resolved frequencies is called aliasing (see

§2.4). For this reason we implement the two-thirds rule for dealiasing by zeroing all

Fourier modes above kmax = N/3, where N is the linear resolution of the simulation,

and require a resolution of ∆y ≤ 3lν . As the highest possible Reynolds numbers can be

achieved for homogeneous turbulence in a square box with periodic boundary conditions

[51], this is the geometry, with edge length 2π, and boundary conditions that we will

employ. We use the same parallel pseudospectral code as [55]. The FFTW [23] is

employed, parallelized as described in [25], with a second-order Runge Kutta method

for the time derivative. The balance equation, dE
dt = ε − ν〈w2〉 − η〈j2〉, was verified to

be satisfied up to the machine precision.

4.4 Numerical Experiments

We test LAMHD−α against the fully resolved MHD (α ≡ 0) results for a freely

decaying run with identical initial conditions, dissipation and time-stepping and also

for a forced run with identical forcing, dissipation, and time-stepping. Statistics for the

forced run are averaged over 20 turn over times. The eddy turnover time is defined to be

the length scale of the largest eddies divided by the root-mean-square (r.m.s.) velocity,

τ ≡ l/vrms. That is, the time scale for the largest eddies to go around once.
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4.4.1 Freely Decaying Turbulence

We study a MHD run using 20482 grid points, a 10242 LAMHD−α run with

αK = αM = 6/1024, and a 5122 LAMHD−α run with αK = αM = 6/512 all started

with identical initial conditions. We specify the initial conditions in Fourier space with

u and b represented as the Fourier series

u(x, t) =
∑

k u(k, t)eik·x, b(x, t) =
∑

k b(k, t)eik·x.

The non-vanishing initial Fourier coefficients are to confined to a ring in k-space between

k = 1 and k = 3. Random phases within this ring and unit r.m.s. values of the fields

are employed. Kinetic viscosity and magnetic diffusivity, ν = η, are 10−4 and the

experiments are evolved in time without external forcing. The initial Reynolds number

of the flow, R = lurms
ν , based on a unit length scale in a square of edge 2π is 10,000.

The Taylor Reynolds number,

Rλ =
λurms

ν
, (4.37)

where

λ = 2π
√

〈u2〉/〈w2〉, (4.38)

for peak dissipation, t ≈ 6.5, is 1500 for DNS and 1700 for LAMHD−α as shown in

Table 4.3.

4.4.2 Forced Turbulence

In designing the forced turbulence experiments, we begin with low resolution

(N = 128) calculations. Due to the fact that computing time is proportional to N3, it

is helpful to determine the experimental parameters at relatively little computational

cost and then reduce the viscosity as we increase resolution. We are seeking to have the

magnetic and kinetic energies somewhat balanced (near equipartition), to reach the peak

in vorticity (dissipation) relatively quickly and to have as high a Reynolds number as
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we can for our resolution. The inverse cascade of square vector potential constrains the

magnetic energy from going to zero, while the kinetic energy has a direct cascade. We

therefore find 2D turbulent MHD flows to be magnetically dominated. For this reason

we will require more forcing in the momentum equation than in the vector potential

equation. After a few trials, we settle for FM = 0.2 in the vector potential equation and

FK = 0.45 in the momentum equation. These values are space averages. We force at

large scales as we are not interested in the inverse cascade for studying intermittency.

This leaves more resolution for the direct cascade. The expressions of the external forces

were loaded with random phases in the Fourier ring between k = 1 and k = 2, and the

phases were changed randomly with a correlation time ∆t = 5×10−2. For time-stepping

we chose ∆t = 10−2.

As our code is fully dealiased, all modes above N/3 are suppressed. When the

dissipation scale is of higher wave number than this, our solution will not be valid.

Such a run is under-resolved. For an example, see Figure 4.1. For this run we have

kε ≈ 105 > N/3 ≈ 42.4 Examination of the current and vorticity spectra also clearly

indicate that there is dissipation left unresolved as the spectra of current and vorticity

are flat and there is little decrease in the Fourier domain. Note, however, that the kinetic

and magnetic energies differ only by a factor of two and that the maximum dissipation

is reached by t ≈ 30 (a few turnover times). Several more experiments are made at this

resolution as summarized in Table 4.1.

Parameters for new experiments are derived from previous runs as follows. As is

well known, in the Kolmogorov limit of R → ∞, we expect (3.14)

k ∝
( ε

ν3

) 1

4

,

or, equivalently,

k4ν3 = const

4 kε ≡ ( |ε|

ν3 )
1

4 and should be similar to the Kolmogorov dissipation scale assuming 〈w2〉 ≈ 〈j2〉.
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Figure 4.1: Example of under-resolved, forced run (experiment 3 from Table 4.1). Panel
(a) shows energy versus time. Panel (b) shows kinetic energy (green, solid line), mag-
netic energy (blue, dotted line), average square vorticity (cyan, dashed line), and aver-
age square current (red, dash-dot line). Panel (c) is for the dissipative wavenumbers.

Wavenumber of approximate Kolmogorov-like dissipation scales, kε ≡ ( |ε|
ν3 )

1

4 (running

average over ∆t = 0.1) versus time as a solid black line. kν ≡ ( 〈w
2〉

ν2 )
1

4 is indicated by

a cyan dashed line while kη ≡ ( 〈j
2〉

η2 )
1

4 is indicated by a red dash-dot line. The N/3

resolution limit (solid line) and a reference line at N/6 (dotted) are also shown. Panel
(d) shows the energy spectra for t = 100 with labels as in panel (b).

Table 4.1: N = 128 forced experiments. Table shows viscosity, ν = η, and approximate
wave numbers for the Kolmogorov dissipative scale.

experiment ν = η kε ≡ ( |ε|
ν3 )

1

4 kν ≡ ( 〈w
2〉

ν2 )
1

4 kη ≡ ( 〈j
2〉

η2 )
1

4

3 5.88 · 10−4 105 54 58

4 1.0 · 10−3 71 37 41

5 1.25 · 10−3 59 30 34

6 2.0 · 10−3 42 22 25

7 3.0 · 10−3 31 17 19
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to hold for 2D MHD as it does for 3D Navier-Stokes (if we assume 〈w2〉 ≈ 〈j2〉). As

an illustration we use the results of experiments 4 and 5 from Table 4.1 to predict the

dissipative parameters, ν = η, for k = 42. From experiment 4 we calculate

424ν3 = 714(10−3)3 → ν ≈ 2.01 · 10−3.

While from experiment 5 we calculate

424ν3 = 594(1.25 · 10−3)3 → ν ≈ 1.97 · 10−3.

The accuracy of these predictions compared to experiment 6 is an indication that we

have reached sufficiently high Reynolds number to make accurate predictions for higher

resolution runs without concern for wasting much computation time due to poor pa-

rameter choices. For an example of a resolved run see Figure 4.2. Here we see that both

the peak of the vorticity and of the current are well resolved (both decrease by three

orders of magnitude) and that the dissipative scale approximations are all less than the

resolution limit of N/3.

Figure 4.2: Example of resolved, forced run (experiment 7 from Table 4.1). Labels are
as in Figure 4.1. Panel (a) shows the dissipative wavenumbers versus time. Panel (b)
shows the spectra for t = 2000.

To safely scale our experiments to higher resolutions and Reynolds number, we

increase our resolution by a factor of two. In going from the N = 128 experiment 7
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to N = 256, we cut the time step and the viscosity/diffusivity in half. Our prediction

from (3.14) is kε ≈ 52 and the computed dissipation scale is kε ≈ 54 (see Table 4.2).

For LAMHD−α experiments, we will make experiments with one-half and one-quarter

of the DNS resolution. It is reasonable, then, to design an experiment with N/6 = 43 <

kν < 85 = N/3 so that dissipation would be unresolvable at the lower resolution. Our

prediction for ν = 7 · 10−4 is kν ≈ 50 which would provide a better test for LAMHD−α

than kν ≈ 30.5

Table 4.2: N = 256 forced experiments. Table shows viscosity, ν = η, and approximate
wave numbers for the Kolmogorov dissipative scale.

experiment ν = η kε kν kη

7 1.5 · 10−3 54 26 29

8 7 · 10−4 106 48 53

Doubling the resolution going to N = 512 and doubling the dissipative wavenum-

ber should be accomplished by ν ≈ 2.8 · 10−4 (for kν ∼ 100 > 85 = N/6 and

kε ∼ 200 > 171 = N/3). Therefore a better resolved choice is ν = 3.2 · 10−4 (predicting

kε ∼ 180) and we employ ∆t = 1 · 10−3. For this choice we find kε ∼ 200 > 171 = N/3

(kν ∼ 90). Doubling our resolution for the last time (N = 1024) we halve the viscosity,

ν = 1.6 ·10−4, which should give dissipative scales kν ∼ 151 and kε ∼ 331 < 341 = N/3.

For time step we impose the CFL condition,

∆t <
1

uN
=

1

1024
= 9.77 · 10−4.

We employ ∆t = 5 · 10−4 hoping to deal with reconnection events as large as b = 2.

The actual scales were found to be kν ∼ 155 and kε ∼ 319. The time chosen as a quasi-

steady-state is t = [50, 150] (see Figure 4.3). A true steady state will only be achieved

when the magnetic field at k = 1 saturates, after a large-scale magnetic diffusion time

which is given by τ = l2

η ∼ 15, 000. This we cannot afford to compute.

5 kν ≡ ( 〈w2〉

ν2 )
1

4 and should be also be similar to the Kolmogorov dissipation scale. Experience
indicates that allowing this value to be too small wastes resolution.
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Figure 4.3: Final forced-run experiment (run d). Labels are as in Figure 4.1. Panel
(a) shows energy versus time. Panel (b) shows kinetic energy, magnetic energy, av-
erage square vorticity, and average square current. Panel (c) shows the Kolmogorov
dissipative wavenumber versus time as well as the N/3 resolution limit (solid line) and
a reference line at N/6 (dotted). Panel (d) shows the spectra for t = 100.
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4.4.3 Results

All experiments used in our final study are summarized in Table 4.3. In addition

to the fully resolved MHD simulations, alpha model simulations are made at 1/2 and

1/4 resolutions. This corresponds to 1/4 and 1/16 the number of grid points and, hence,

the same reduction in statistics. As many data points are essential for calculation of

high-order structure functions, no lower resolution calculations are made. Two values of

alpha are employed for both types of experiments corresponding to 12/N
′
and 24/N

′
,

where N
′
is the resolution of the MHD run.

Table 4.3: Turbulence experiments (runs a-f). Table shows experiment label, resolution,
N , model parameter, α, viscosity, ν = η, forcing, FM ,FK , initial conditions, uo =
b0, Taylor length scale, λ, Taylor Reynolds number, Rλ,† and figures depicted for all
experiments.

Run N α · N∗
DNS ν = η FM FK uo = b0 λ Rλ Figs.

a 2048 0 (DNS) 10−4 0 0 1 .23 1500 4.4-8; 5.1-3,7-8

b 1024 12 10−4 0 0 1 .26 1700 4.4-8; 5.1-2,7-8

c 512 24 10−4 0 0 1 .26 1700 4.4-8; 5.1-2,7-8

d 1024 0 (DNS) 1.6 · 10−4 0.2 0.45 0 .63 1600 4.3,9-11; 5.4-6,9-12

e 512 12 1.6 · 10−4 0.2 0.45 0 .60 1300 4.3,9-11; 5.4-5,9-12

f 256 24 1.6 · 10−4 0.2 0.45 0 .54 1100 4.3,9-11; 5.4-5,9-12

†Computed at peak of the dissipation, t ≈ 6.5, for freely decaying runs (a-c) and
averaged over t = [50, 150] for forced runs (d-f).

∗α−1 = kmax/2.

4.4.3.1 Freely Decaying Turbulence

As described in §4.3, both the MHD equations, (4.2), and the LAMHD−α equa-

tions, (4.4), were solved on a square box of edge size 2π with periodic boundary con-

ditions. The evolution of magnetic, EM , and kinetic, EK , energy versus time is shown

in Fig 4.4. The upper grouping of the lines are for magnetic energy, the green dotted

line is for 20482 DNS, the blue dashed line and the red dash-triple-dotted line are for
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10242 and 5122 LAMHD−α , respectively. The lower grouping of lines are the kinetic

energies, solid green for DNS, blue dash-dotted for 10242 alpha, and red long-dashed

for 5122 alpha. We see that the system is near equipartition and that the alpha model

runs closely reproduce the time evolution of the energy. This was previously shown in

[55] as was the lack of agreement between DNS and an under-resolved MHD simulation.

Figure 4.4: Magnetic, EM (t), and kinetic, EK(t), energies for freely decaying runs (a-c).
EM (t) for 20482 MHD is the green dotted line, for 10242 LAMHD−α is the blue dashed
line, and for 5122 LAMHD−α is the red dash-triple-dotted line. EK(t) for 20482 MHD
is the green solid line, for 10242 α is the blue dash-dot line, and for 5122 α is the red
long-dashes line. Note that the different solutions depart after the enstrophies have
reached their peak (see Figure 4.5).

In Figure 4.5, the time evolution of the total square current, 〈j2〉 ∼ ΩM , and total

square-vorticity, 〈w2〉 ∼ Ω, are shown. It is seen that the alpha model reproduces both

the time of maximum dissipation and the order of magnitude of the dissipation. Next,

we compare averaged spectra from t = 3 up to t = 6, the time for which the energies

are oscillating and prior to maximum dissipation (see Figure 4.5). We note that for

large wavelength component behavior, up to ≈ kα, both resolutions of the alpha model

accurately reproduce the omni-directional spectra for the magnetic and kinetic energies

as expected [55]6 (see Figure 4.6). An inertial range can be identified for all simulations

6 Reference [55] also finds that under-resolved MHD simulations have inaccurate spectra.
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with an extent of approximately one decade in Fourier space, from k ≈ 3 up to k ≈ 30.

As [55] we also find that the spectral details at small scales are not accurate. Note that

kα ≡ 1
α ≈ 171 for the 10242 run and kα ≈ 85 for the 5122 run. These wavenumbers are

indicated with vertical lines in the figures. Hereafter we use the following conventions for

line plots. The solid green line represents the DNS (MHD) run, the dotted blue and the

dashed red lines represent the LAMHD−α runs at 1/2 and 1/4 resolution, respectively.

As previously mentioned, for k > kα a steeper energy spectrum is predicted [22] and it

is this very aspect of the alpha model that makes lower resolution simulations possible.

Note, however, a marked better agreement with the MHD run for the kinetic energy

spectrum.

Figure 4.5: Average square-current, 〈j2〉, and average square-vorticity, 〈w2〉, for freely
decaying runs (a-c). 〈j2〉 for 20482 MHD is the green dotted line, for 10242 LAMHD−α
is the blue dashed line, and for 5122 LAMHD−α is the red dash-triple-dotted line. 〈w2〉
for 20482 MHD is the green solid line, for 10242 α is the blue dash-dot line, and for
5122 α is the red long-dashes line.

In the induction equation for the smoothed magnetic field (3.44b) the Ohmic

dissipation term is η∇2b = η∇2bs − ηα2∇4bs and thus is hyper-viscosity-like. This

explains the faster drop in the magnetic energy spectrum. For this spectrum we note

that for the 5122 run, the spectrum is indistinguishable from DNS up to kα ≈ 0.7 and
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for 10242 up to ≈ 0.6. As the smoothing is proportional to the square of kα, neither

of these values is surprising. For the kinetic spectrum on the other hand, the 5122

remains indistinguishable beyond kα = 1 and the 10242 run only begins to deviate at

kα ≈ 0.8. Both LAMHD−α spectra for kinetic and magnetic energy behave as expected

and reproduce the large-scale spectra accurately.

Figure 4.6: Spectra averaged from t = 3 up to t = 6 for freely decaying turbulence (runs
a-c). 20482 MHD is the solid green line, 10242 LAMHD−α is the dotted blue line, 5122

LAMHD−α is the dashed red line, k− 5

3 (K41) is the dash-dot-dashed line, and k− 3

2 (IK)
is the dash-triple-dotted line. The K41 and IK slopes are shown as a reference. Vertical
lines indicate the wavenumbers corresponding to the lenghts α for the 10242 and 5122

simulations. Panel (a) is magnetic energy, Em, versus k and panel (b) is kinetic energy,
Ek, versus k.

Similarly, plots of the stream function, ψ, and vector potential, az, for t = 4.5

(shown in Figure 4.7), illustrate that the over-all structure of the MHD flow is pre-

served by LAMHD−α. In these plots bright yellow represents positive vector potential

(or stream function) and counter-clockwise rotation of the magnetic field (velocity)

while light pink represents negative values and clockwise rotations. Upon close enough

inspection, you might convince yourself that there are some small-scale differences in the

alpha model simulations. The current (and hence the Ohmic dissipation) as well as the

vorticity are shown in Figure 4.8. Here pink and white pixels indicate current (vorticity)

coming out of the page while black and green pixels indicate current (vorticity) going

into the page. The main feature of these plots are the (mostly pink) current sheets. The
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color scale masks all but the most strong negative current sheets. Small-scale differences

are more easily observed in these plots as they more emphasize the small-scale features

of the flow.

4.4.3.2 Forced Turbulence

As previously described, we consider forced turbulence with ν = η = 1.6 · 10−4 in

three simulations: DNS (MHD) with 10242 grid points and two LAMHD−α simulations

with 5122 grid points and αK = αM = 6/512 and 2562 grid points and αK = αM =

6/256. Both the momentum and the vector potential equations were forced. The

expression of the external forces were loaded in the Fourier region between k = 1 and

k = 2 and the phases were changed randomly with a correlation time ∆τ = 5 · 10−2.

Averaged over space, the amplitudes of the external forces were held constant to FM =

0.2 in the vector potential equation and FK = 0.45 in the momentum equation. The

time evolution of the fields is shown in Figure 4.9. Here the solid green line is for

the 10242 DNS and the dotted blue and dashed green lines are for the 5122 and 2562

LAMHD-α, respectively. The alpha models track well the DNS energies up to t ≈ 70. It

is not surprising both because of sensitive dependence on initial conditions (a property

of chaotic dynamics) and because of the alpha model’s loss of the location of specific

features that under the influence of external forcing the LAMHD−α simulations do not

continue to track the DNS solution for all times. It is rather the statistical features of

the flow that we wish to compare. The turbulent quasi-steady-state Ω ≈ ε considered

from t = [50, 150] endures for 20 turnover times, τ ∼ 5. See Figure 4.10 where dE
dt =

ε−ν〈w2〉−η〈j2〉 has the average 〈|〈dE
dt 〉∆t=5|〉 ≈ 0.004 for the MHD and 5122 alpha run

and an average of about 0.003 for the 2562 LAMHD−α run in the range t = [50, 150].

This imbalance is nearly twice as much before t = 50 and after t = 150. Over this

approximate steady state, 20 snap shots of the field were taken. Average omni-

directional spectra for magnetic and kinetic energies over these snapshots are shown
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Figure 4.7: Stream function, ψ, and vector potential, az for freely decaying turbulence
(runs a-c). Stream function is shown in the left column (super-imposed arrows show
some velocity vectors). Vector potential is shown in the right column (super-imposed
arrows show some magnetic field vectors). Snapshot is for t = 4.5. Yellow indicates
positive vector potential (stream function) and counter-clockwise magnetic field (veloc-
ity) while light pink indicates negative values and clockwise flow. Top row is the 20482

DNS (MHD) run while the second and third rows are 10242 and 5122 LAMHD−α,
respectively.
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Figure 4.8: Electric current, j, and voriticity, w, for freely decaying turbulence (runs
a-c). Vorticity is shown in the left column and current is shown in the right column.
Snapshot is for t = 4.5. Pink/white indicates current/vorticity coming out of the page
and green/black, into the page. Top row is the 20482 DNS (MHD) run while the second
and third rows are 10242 and 5122 LAMHD−α, respectively.
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Figure 4.9: Left: Magnetic energy, EM (t), and Right: kinetic energy, EK(t), for forced
turbulence (runs d-f). 10242 DNS is the solid green line, for 5122 LAMHD−α is the
dotted blue line, and for 2562 LAMHD−α is the dashed red line. Eddy turnover time,
τ ∼ 5.

Figure 4.10: Energy rate of change for forced turbulence (runs d-f), dE
dt = ε − ν〈w2〉 −

η〈j2〉. As the correlation time for the forcing, ∆τ = 5 · 10−2, is very short, ε is highly
varying, and averages over time increments of ∆t = 5 are taken before plotting. Labels
are as in Figure 4.9.
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in Fig. 4.11. Spectra for the kinetic energies are normalized to the average kinetic

energy of the DNS run. The alpha model reproduces the feature of MHD turbulence

that the magnetic excitations become concentrated at the largest scale allowed by the

boundary conditions (kmin = 1),7 but there is a small disagreement in the values at

k = 1.[55] This, unfortunately, makes normalization of the magnetic energy spectrum

problematic. Instead, the magnetic spectra are presented “as is.” For the kinetic energy

spectra, we have excellent agreement up to kα ≈ 1 and for the magnetic energy spectra

up to perhaps kα ≈ 1
2 . These results, then, differ little from the freely decaying case

and confirm that LAMHD−α reproduces the large-wavelength component behavior of

turbulent MHD.

Figure 4.11: Averaged spectra from t = 50 up to t = 150 for forced turbulence (runs

d-f). Energy labels are as in Figure 4.9. k− 5

3 (K41) is the dash-dot-dashed line, and

k− 3

2 (IK) is the dash-dot-dot-dot-dashed line. The K41 and IK slopes are shown as
reference. The vertical lines indicate the wavenumber corresponding to the lengths α
for the LAMHD−α simulations. Panel (a) is magnetic energy, Em, versus k and panel
(b) is kinetic energy, Ek, normalized to average kinetic energy of the MHD run versus
k.

7 Because of the inverse cascade of vector potential, we observe a sharp maximum in the magnetic
energy spectrum at k = 1.



Chapter 5

Analysis of Intermittency

The alpha model has been studied extensively for the Navier-Stokes case (see §3.4

for an introduction and references) but very little for MHD in the non-dissipative case

[36] and in the turbulent case [55, 54, 69]. While the results of [55] suggest intermittency

for 2D LAMHD-α, until now there has been no direct study of intermittency in high

order statistical moments of the velocity and magnetic fields, such as the structure

functions. Intermittency is associated with strong events occurring more often than

for Gaussian statistics (see §3.3). From a theoretical standpoint, intermittency can be

considered the essential element of turbulence [56]. It is a phenomenon that is highly

localized both in space and time. It therefore requires that any numerical simulation

used to study it to possess high resolution. It is for this reason, as shown in §4, we have

chosen 2D MHD simulations as our test-bed for the alpha model’s ability to capture the

intermittent aspect of turbulence.

The intermittency of large eddy simulation (LES) methods has been studied for

3D non-conductive fluids [13] with a Taylor Reynolds number, Rλ = 150. They find

the intermittency of the unresolved subgrid scale dissipation to be slightly more than

the intermittency measured by the longitudinal velocity structure functions. They also

determine that their Reynolds number is insufficient for a determination of third-order

scaling and so resolve to measure relative exponents for the subgrid scale dissipation.

For these, they find that the Smagorinsky model, the volume-averaged dynamic model,
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and the similarity model perform fairly well (e.g. the error in the exponent for p =

7 is less than 7%). The constant eddy-viscosity and spectral eddy-viscosity models

underestimate intermittency beyond p = 4 (compared to DNS) while the local and

clipped dynamic Smagorinsky models strongly overestimate the intermittency beyond

p = 4. Reference [52] also studies 3D Navier-Stokes turbulence (for Rλ = 130) with

an eddy-viscosity LES designed to enforce the same k−3 energy spectrum as the alpha

model [18, 22] but beyond the inflection point, kc of the energy flux. They also find

that the scaling is well reproduced.

Our 2D MHD tests are able to exhibit a substantially larger Reynolds number

(Rλ ∼ 1500). We utilize a freely decaying turbulent direct numerical simulation (DNS)

of the MHD equations (linear resolution, N=2048, ν = η = 10−4) as well as LAMHD−α

runs at 1/2 (N=1024, αK = αM = 6/1024) and 1/4 (N=512, αK = αM = 6/512)

resolutions. Note that due to dealiasing in the simulations, the maximum resolved

wavenumber is kmax = N/3. Identical initial conditions, dissipation, and time stepping

are used in all three runs. We also study a forced turbulent DNS (MHD) simulation

(N=1024, ν = η = 1.6 · 10−4) and LAMHD−α runs at 1/2 (N=512, αK = αM =

6/512) and 1/4 (N=256, αK = αM = 6/256) resolutions. Here also, identical forcing,

dissipation, and time stepping are employed for all three runs. In §4.4.3 we presented

the energy evolution of all six experiments, average spectra, and a few snapshots of

the fields. As [55], we concluded that LAMHD−α reproduces the large-wavelength

component behavior of turbulent MHD. In §3.3, we introduced the structure functions

over the inertial range as a measure of intermittency. In this chapter we present our final

results of intermittency in the alpha model studied through the structure functions.

5.1 Finding the Inertial Range

We must start by determining the inertial range as discussed in §3.2. It is there

that the scaling of the structure functions will give a measure of intermittency.
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5.1.1 Freely Decaying

There are two energy spectra considered for 2D MHD. One is based on the phe-

nomenology developed by Kolmogorov [46, 47, 48], E(k) ∼ k−5/3, (hereafter K41) and

the other by Iroshnikov [45] and Kraichnan [50], E(k) ∼ k−3/2, (hereafter IK).1 The

principle difference being that IK takes into account the non-local (in Fourier space)

interactions due to Alfvén waves. This work does not aim to be part of the ongoing

debate concerning what is the actual inertial range spectrum for 2D MHD. Rather, we

compensate our spectra by multiplication both with k5/3 and k3/2 in Figure 5.1 and

note that for the correct compensation, we expect a flat spectrum in the inertial range.

A power law of E(k) ∼ k−5/3 is then observed for k ≈ [5, 30]. One can also identify an

inertial range assuming the IK spectrum, albeit for a shorter interval.

Figure 5.1: Compensated spectra averaged from t=3 up to t=6 for freely decaying
turbulence (runs a-c). Upper set of lines are compensated by k5/3 for 20482 MHD
(green solid), 10242 LAMHD−α (blue dotted), and 5122 LAMHD−α (red dashed). A
power law is observed for k ≈ [5, 30]. Lower set of lines are compensated by k3/2 for
20482 MHD (green dash-dotted), 10242 LAMHD−α (blue dash-triple-dotted), and 5122

LAMHD−α (red long-dashed). A power law is observed for k ≈ [5, 20). Horizontal
dashed lines are shown for reference.

Following the extended self-similarity hypothesis of [4, 5], references [66, 68] sug-

1 Recall from §3.2, that k is the wavenumber and E(k) is the spectral energy density.
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Figure 5.2: Extended self similarity range for freely decaying turbulence at t = 4 (runs
a-c). Upper left plot is for the 20482 MHD (run a). L+(l) ≡ 〈|δz−L ||δz+|2〉 is shown with
green pluses, L−(l) with blue diamonds, and 〈|δbL|

3〉 with red triangles. The upper right
and lower plots are for the 10242 and the 5122 LAMHD−α (runs b and c), respectively.
Here, L±

s (l) ≡ 〈|δz∓sL
|||δz±||2α〉 and 〈|δb2

sL
δbL|〉 are used instead, corresponding to the

von Kármán-Howarth theorem for LAMHD-α. In all cases for the better behaved of
L±, we observe linear scaling for l = 2πlN/N ≈ [0.1, 0.3] or k ≈ [20, 70].
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gest that the third-order structure functions may provide a better independent variable

(opposed to length) against which to determine the scaling exponents of high-order

structure functions for MHD. This extended power-law-range analysis instead of using

the wave-number range where E(k) ∝ kα is valid, utilizes the longer range where the

third-order structure function is proportional to length. In [66],

〈
(

δz±L (l)
)2

δz∓L (l)〉 − 2〈z±L (x)z±L (x)z∓L (x
′

)〉 = −Cdε
±l (5.1)

is derived similar to the von Kármán-Howarth theorem but for an incompressible, non-

helical MHD flow under the assumptions of full isotropy, homogeneity, and incompress-

ibility. Here z± = u±b are the Elsässer fields for which the MHD equations (2.27) take

the symmetric form

∂tz
± + z∓ · ∇z± = −∇p∗ + ν+∇

2z± + ν−∇
2z∓

∇ · z± = 0, (5.2)

where p∗ = p + b2/2 is the total pressure, ν± = (ν ± η)/2, ν is the viscosity, and η is

the magnetic diffusivity. As introduced in §3.3, the increment of a field f is defined as

δf(l) = f(x + l) − f(x), x
′
≡ x + l, and the longitudinal component of the increment

is δfL(l) = δf(l) · l/l. Likewise z+
L (x) would be the longitudinal component of z+ eval-

uated at x, z+
L (x) = z+(x) · l/l. The energy dissipation rates are ε+ and ε− for 1

2(z+)2

and 1
2(z−)2, respectively. Finally, Cd is a constant and angle brackets indicate spatial

averages. Under the assumption of equipartition, the two-point third-order correlation

tensor disappears simplifying (5.1) to

〈
(

δz±L (l)
)2

δz∓L (l)〉 = −Cdε
±l, (5.3)

or, for a magnetically dominated flow,

〈δbL
3(l)〉 =

4

5
εC l, (5.4)
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where εC is the dissipation rate of the cross-helicity. In the hydrodynamic limit (b → 0)

the Kolmogorov four-fifths law (3.20) is recovered. Simpler scaling laws than for the

third-order longitudinal structure functions can be derived under the assumption of a

unit magnetic Prandtl number, ν = η,2 instead of assuming equipartition [68]

〈δz∓L |δz±|2〉 = −
4

d
ε±l, (5.5)

where |δz±|2 = (δz±L )2 + (δz±T )2, δz±T is the transverse increment, and d is the space

dimension. Or, for a magnetically dominated flow,

〈δbL|δb|
2〉 ∝ l. (5.6)

Here we have removed the implicit l dependence from our notation for simplicity. These

results for the third-order structure functions are exact and can be used to compute more

accurate anomalous scaling exponents of structure functions of higher order. Due to the

cancellation problems with having limited statistics, we employ instead absolute values

L±(l) ≡ 〈|δz∓L ||δz±|2〉 ∝ l, (5.7)

which in practice is also found to hold true. A longer scaling range is observed for

these quantities as seen in Figure 5.2. Here L+(l) is shown with green pluses, L−(l)

with blue diamonds, and 〈|δbL|
3〉 with red triangles. For the LAMHD−α runs, L±

s (l) ≡

〈|δz∓sL
|||δz±||2α〉, where ||δz+||2α ≡ |δzL

+δz+
sL
|+|δzT

+δz+
sT
|, and 〈|δb2

sL
δbL|〉 are plotted in-

stead. This corresponds to the von Kármán-Howarth theorem for LAMHD−α as derived

in [56] which contains two smoothed and one unsmoothed field. In general, second-order

quantities in LAMHD−α involve one smoothed and one unsmoothed field and third-

order quantities involve two smoothed and one unsmoothed. The longest range of linear-

in-length scaling is found for L+(l) (L+
s (l)) corresponding to l = 2πlN/N ≈ [0.1, 0.3] or

k ≈ [20, 70]. The scaling versus L+ in this range will give much better statistics than for

the scaling versus l in the inertial range as demonstrated in computing the fourth-order

2 This is the case for our experiments.
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scaling exponent for z− from S−
4 ≡ 〈|δz−(l)|4〉 (see Figure 5.3). Here we plot S−

4 versus

l and versus L+ for all length scales for the freely-decaying 20482 DNS run at t = 4.

Just outside the inertial range S−
4 (l) has pronounced “wiggles” away from the power-

law. These increase the error in the computation of the scaling exponent, S−
4 ∼ lζ

−
4 ,

ζ−4 = 0.69 ± 0.11, a feature that will be also observed for higher order moments. Devi-

ation from the power-law, S−
4 ∼ (L+)ξ−

4 just outside the extended self-similarity range

is more gradual allowing for a more accurate estimation, ξ−4 = 1.24 ± 0.07. Both esti-

mates, however, are made for a single snapshot of the field (only 4 · 106 data values).

For LAMHD−α the statistics are even more limited (≈ 3 · 105 data values for 5122).

This situation can be improved by analyzing instead a forced turbulent run where we

can average over several snapshots during a quasi steady-state.

(a) (b)

Figure 5.3: Determination of scaling exponent of S−
4 in the inertial range and in the

extended self-similarity hypothesis for run a at t = 4 (both ranges indicated by arrows).

Left, for inertial range k = [5, 30], S−
4 ≡ 〈|δz−(l)|4〉 ∼ lζ

−
4 . ζ−4 is 0.69 ± 0.11. Right,

for extended self-similarity hypothesis k = [20, 70] S−
4 ≡ 〈|δz−(l)|4〉 ∼ L+ξ−

4 . ξ−4 is
1.24±0.07. Solid lines indicate least-squares fits in the selected intervals and the dotted
lines indicate uncertainties in the slopes. The two exponents should be the same, but
it is obvious from (a) that no scaling is apparent.
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5.1.2 Forced

Compensated spectra for the forced runs averaged over t = [50, 150] are shown in

Figure 5.4. A power law is observed for k ≈ [4, 20] for the DNS and both LAMHD−α

runs. An extended self-similarity analysis (Figure 5.5) indicates a range k ≈ [3, 20].

Due to the inverse cascade of square vector potential in 2D MHD, however, magnetic

energy piles up at the longest wavelengths, k = 1, 2, 3 . . .. This can be seen clearly

by comparison of Figures 5.1 and 5.4. The proximity (in Fourier space) of both this

affect and the forcing band can adversely affect the estimation of the scaling exponents.

Therefore, a more conservative range, k = [10, 20], is employed. As we concluded in

§4.4.3.2, both because of sensitive dependence on initial conditions and because of the

alpha model’s loss of the location of specific features, LAMHD−α forced simulations

do not track the time evolution of the energy (see Figure 4.9). For this reason, each

experiment might have the onset of large-scale self organization of the magnetic field by

the inverse cascade of square vector potential (and, hence, the end of the quasi steady-

state) or an event at a different times. To take this into account, we take apart the time

domain for all three experiments and choose for each a time range as quasi-steady-state.

The scaling exponents, ξ+
p where S+

p ≡ 〈|δz+(l)|p〉 ∼ L+ξ+
p , versus p for various

time intervals are plotted in Figure 5.6. The analysis of such plots is postponed until

the next section. At early times, the system is still dominated by the injection of energy

and is not turbulent. Later, due to the inverse cascade of vector potential, the time

histories of total and magnetic energy show bursts where the magnetic energy at k = 1

(and as a result the total energy) suddenly increases. The growth of the k = 1 mode is

only limited by the large scale diffusion time (τ ∼ l2/η ∼ π2/η ∼ 15, 000). During these

events the scaling is changed (as also the spectrum is transiently changed), and it takes

a lot of statistics to compensate. Ideally, we should wait for a time of the order τ to

reach a steady state at all scales. Since we are interested, however, in the statistics in
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Figure 5.4: Compensated averaged spectra from t = 50 up to t = 150 for forced tur-
bulence(runs d-f). Upper set of lines are compensated by k5/3 for 10242 MHD (green
solid), 5122 LAMHD−α (blue dotted), and 2562 LAMHD−α (red dashed). A power law
is observed for k ≈ [4, 20]. Lower set of lines are compensated by k3/2 for 10242 MHD
(green dash-dotted), 5122 LAMHD−α (blue dash-triple-dotted), and 2562 LAMHD−α
(red long-dashed). A power law is observed for k ≈ [5, 20). A horizontal dashed line is
shown for reference.
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Figure 5.5: Extended self similarity range for forced turbulence for t = [50, 150] (runs
d-f). Upper left plot is for the 10242 MHD (run d). L+(l) is shown with green pluses,
L−(l) with blue diamonds, and 〈|δbL|

3〉 with red triangles. The upper right and lower
plots are for the 5122 and the 2562 LAMHD−α (runs e and f), respectively. Here,
L±

s (l) ≡ 〈|δz∓sL
|||δz±||2α〉 and 〈|δb2

sL
δbL|〉 are used instead corresponding to the von

Kármán-Howarth theorem for LAMHD-α. In all cases 5 we observe linear scaling for
l = 2πlN/N ≈ [0.3, 2] or k ≈ [3, 20].
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the inertial range, we will carry our analysis in one of the intermediate pseudo-steady

states where the energy is approximately constant. When an interval of time where the

energy at k = 1 grows is included, the system is evolving and not in a steady state, and

the scaling is changed. This can be observed in the figure for the earliest and latest times

plotted. For this reason, we choose to analyze the 10242 DNS run for t = [50, 150] in

the following section. A similar analysis indicates t = [50, 180] for the 5122 LAMHD−α

and t = [50, 150] for the 2562 run.

5.2 Anomalous Scaling

One way of viewing self-similarity is that the eddy cascade is space-filling as it

transfers energy from larger to smaller scales [24]. If this is not so, there are gaps between

the eddies, some parts of the flow at a given time are extremely active while others are

relatively motionless, and the flow is intermittent. Turbulent scales are not self-similar

but become increasingly intermittent as the scale size decreases. As motivated in §3.3,

from the increment of a vector field f we define the structure function of order p as

Sf
p (l) ≡ 〈|δf |p〉. If the field is self-similar, δf(l ·x) = lhδf(x) (in one dimension) for some

scaling exponent h. As previously shown, we find Sf
p ∼ lζ

f
p where ζf

p = h · p. It is this

linear behavior of the scaling exponent that is the hallmark of self-similarity. Conversely,

nonlinear dependence on p of the scaling exponents is the signature of intermittency.

The more intermittent the turbulence, the greater the deviation from a straight line.

From the von Kármán-Howarth theorem for Navier-Stokes, Kolmogorov [46] derives his

semi-famous four-fifths law,

〈(δuL(l))3〉 = −
4

5
εl, (5.8)

for the third-order longitudinal structure function of the velocity, the energy dissipa-

tion rate ε, and length l in the inertial range. This sets the value of h at 1/3 and

hence, assuming self-similarity, we arrive at ζu
p = p

3 (hereafter K41). The Elsässer fields,
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Figure 5.6: Scaling exponents for forced turbulence (run d). Scaling exponents, ξ+
p where

S+
p ≡ 〈|δz+(l)|p〉 ∼ L+ξ+

p , versus p for t = [20, 60] (solid line), t = [50, 90] (pluses/dotted
line), t = [65, 120] (dash-dotted line), t = [95, 150] (diamonds/dash-triple-dotted line),
and t = [125, 180] (triangles/long-dashed line). All plots are for the 10242 DNS run.
The ξv

p = p/3 K41 line is shown for reference only. See Figure 4.3 for plots of temporal
data.
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z±, are the basic dynamical quantities of incompressible MHD. Taking into account

that Elsässer field eddies travel in opposite directions along a quasi-background mag-

netic field, there is a reduced transfer of energy to small scales and Iroshnikov [45] and

Kraichnan [50] conclude ζ±p = p
4 (hereafter IK).

As follows from the von-Kármán-Howarth equation for LAMHD−α [56] and the

invariants for both MHD and LAMHD−α (see §4.2), when making comparisons we

substitute the H1
α norm, 〈||u||2α〉 = 〈|u·us|〉 [38, 39], for the regular L2 norm, 〈|u|2〉 = 〈|u·

u|〉, whenever we consider quantities for the alpha model. Accordingly we determine the

scaling exponents by using the exact relation (5.7) for the mixed, third-order structure

function, L+(l) = 〈|δz−L ||δz+|2〉 for MHD and L+
s (l) = 〈|δz−sL

|||δz+||2α〉 for LAMHD-α.

As previously mentioned, from the extended self-similarity hypothesis [4, 5, 66, 68] we

expect a better determination of the scaling exponents of the structure functions in this

way. Therefore, we determine the relative scaling exponents ξf
p from

Sf
p (l) ∼ [L+(l)]ξ

f
p . (5.9)

In Figure 5.7 L+ and L+
s are plotted versus l in log-log. We find distinct from [7] that

(5.7) has a range of validity as can be seen in the figure by comparison with the solid

line denoting a slope of one. The large scale behavior is accurately preserved. For

the LAMHD−α 5122 solution, α ≈ 7 · 10−2 and for the LAMHD−α 10242 solution,

α ≈ 4 · 10−2. It is only below this length scale that the alpha model departs in behavior

from the MHD solution. The 5122 LAMHD−α results are also linear down to length α.

Note that the different multiplicative constant is only due to differing energies between

the runs.

For 3D non-conductive flows the Kolmogorov revised similarity hypothesis [49]

predicts ζv
p = p

3 + τp/3 where τp/3 is the so-called anomalous scaling exponent. She and

Lévêque [72] have developed a successful turbulence model predicting the values of the

anomalous scaling exponents. This model has been extended by IK theory to the MHD
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Figure 5.7: Mixed, third-order structure function, L+(l), versus l, t = 4 (runs a-c). 20482

DNS are the green pluses, 10242 LAMHD−α are the blue diamonds, 5122 LAMHD−α
are red triangles, and a slope of one is the solid line. Vertical lines indicate the lengths
α for the 10242 and 5122 simulations.
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case by [65, 29] who predict

ξp

ξ4
=

p

8
+ 1 −

(

1

2

)p/4

(5.10)

as the “standard” model from their two-parameter model (hereafter SL). The anomalous

scaling results for z−, ξ−p , for the freely-decaying runs are shown in Figure 5.8 along

with the K41 prediction, ξp = p/3, the IK prediction, ξp = p/4, and the SL prediction

(5.10). Both alpha model runs preserve the scaling of the MHD simulation up to p = 6.

For higher orders, the alpha model is observed to be more intermittent than direct

solutions, in the sense that they depart more from a self-similar straight line than the

DNS. Note that in the LAMHD−α simulations, the amount of statistics is inherently

smaller since the spatial resolution is lower (we have ∼ 3 · 105 data values for 5122 as

opposed to ∼ 4 · 106 for 20482). In the forced runs, we will find a better fit to (5.10)

due to the increased statistics.

Figure 5.8: Structure function scaling exponents for z−: ξ−p versus p at t = 4 (runs a-c).
Labels are as in Figure 5.7. The K41 prediction is the dashed line, the IK prediction is
the dotted line, and SL is the solid line.

For the forced runs, Figure 5.9 shows the mixed, third-order structure functions
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L+ and L+
s as functions of l. The solid line indicates the relation L+(l) ∼ l. Note

that, although the resolution of the forced simulations is smaller than in the previous

subsection, the scaling is better due to the larger amount of statistics considered in the

forced runs (∼ 2 · 107 data values for DNS down to ∼ 106 data values for 2562). The

LAMHD−α runs display the same scaling as the MHD simulation, and a departure can

be only observed for scales smaller than α (for 2562, α ≈ .15 and for 5122, α ≈ .07).

Note that the results have been scaled by 〈u2b2〉3/4. As the average energies of the runs

are disparate, this improves the ease of comparison.

The scaling of the fourth-order structure function S−
4 versus L+ for the Elsässer

variable z− is shown in Figure 5.10. The three simulations show a similar scaling. A line

indicates the best fit to the DNS data, ξ−4 = 0.98± 0.12. The anomalous scaling results

for the forced run for z+ are shown in Figure 5.11. A good agreement between (5.10)

and the results from the DNS can be observed. This differs from the results of [67],

whose results for ξ±p do not correspond to the “standard” She and Lévêque model. We

note that our results for ξ+
p are less intermittent than theirs and that there appears to

be a 7% discrepancy between the SL of [67] and (5.10). Furthermore, we find ξ−4 ∼ 1 but

ξ+
3 ∼ 1. This latter result is in opposition to the findings of [67]. Finally, we note their

forcing was tailored to maintain at a constant level all Fourier modes with k = 1 while

our forcing is random with a constant amplitude between k = 1 and k = 2. The alpha

model runs are again observed to be more intermittent for higher orders (above p = 4).

However, as will be shown in the next figures, the highest order properly captured by

the alpha model depends slightly on the quantity studied. It should also be emphasized

that at lower resolutions, the statistics of the highest-order structure functions can be

insufficient. This can be seen in Figure 5.12 where we down-sampled the resolution of

the DNS run to 2562 and employed the H1
α norm.3 Here we see both a reduction in

3 Comparing scaling exponents by down-sampling and filtering the DNS results is common practice
in LES comparisons.
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Figure 5.9: Third-order structure function, L+(l), versus l, for forced turbulence from
t = 50 up to t = 150 (runs d-f). Results are scaled by 〈u2b2〉3/4 for easier comparison.
10242 MHD solution are the green pluses, 5122 LAMHD−α are the blue diamonds, 2562

LAMHD−α are red triangles, and a slope of one is indicated by the solid line. Vertical
lines indicate the lengths α for the 5122 and 2562 simulations.

Figure 5.10: Fourth-order structure functions for z−: S−
4 versus L+, computed from

t = 50 up to t = 150 (runs d-f). Labels are as in Fig. 5.9. The solid line corresponds to

the best fit S−
4 = (L+)ξ−

4 , with ξ−4 = 0.98 ± 0.12.
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Figure 5.11: Structure function scaling exponent: ξ+
p versus p, computed from t = 50

up to t = 150 for z+ (runs d-f). 10242 DNS are the green X’s, 5122 LAMHD−α are the
blue diamonds, 2562 LAMHD−α are the red triangles, and the prediction line labels
are as in Figure 5.8.

Figure 5.12: Down-sampled-structure-function scaling exponent: ξ+
p versus p, computed

from t = 50 up to t = 150 for z+ (runs d and f). Labels are as in Figure 5.11. Here the
DNS results were calculated after being down-sampled to a resolution of 2562 and the
H1

α norm was employed.
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the estimates of the highest-order scaling exponents of almost 5% as well as an increase

in the uncertainty of the estimate. This suggests that LAMHD−α reproduces MHD

intermittency to within the accuracy of the statistics we have gathered. Figure 5.13

shows the scaling exponents for the velocity and magnetic fields. For the DNS the

velocity field is more intermittent than the magnetic field. Note that the forcing for the

velocity field is greater by design (see §4.4.3.2). The anomalous scaling for the velocity

field is matched by LAMHD−α up to and including eighth-order. For the magnetic

field, however, the LAMHD−α results are more intermittent above p = 5. This result is

reminiscent of the results of §4.4.3 where we observed the kinetic energy spectra to be

better reproduced than the magnetic. It was suggested that this may be a byproduct

of the hyper-viscosity in the LAMHD−α induction equation for the smoothed magnetic

field (3.44b). One approach might be to not employ the alpha model for the magnetic

field (αM = 0) and another might be to employ another alpha model with a different

dissipation term. It must still agree, however, with the more rigorous non-dissipative

derivation of [36]. If we remove from the derivation, as shown in §3.4.1, the substitution

of a current term for a magnetic term (3.42) prior to our approximations u ≈ us and

b ≈ bs in the induction equation,

∂t(bs + δb) = ∇ × ((us + δu) × (bs + δb)) + η∇2(bs + δb). (5.11)

This will provide for the LAMHD−α induction equation

∂tbs + us · ∇bs = bs · ∇us + η∇2bs (5.12)

which does not include a hyper-viscosity and agrees with [36]. This approach would

seem plausible as the dissipative term is added to the alpha model ad hoc and we

should have some freedom in its choice. However, this derivation is a modification of

a simplified rederivation which was valid only because it obtained the same result as

the full derivation of the alpha model. As such, this new dissipation should first be

considered in that framework.
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Figure 5.13: Structure function scaling exponents: ξp versus p, computed from t = 50
up to t = 150 (runs d-f). Labels are as in Figure 5.11. Upper panel is for b, and lower
panel is for u.



Chapter 6

Summary, Conclusion, and Outlook

Due to the excitation of small scale fluctuations in fluids by large scale variations,

sufficient resolution for high Reynolds number flows can be beyond technological limits.

A closure like the Lagrangian-averaged alpha model (a.k.a. the alpha model) can reduce

the computational burden by reducing the resolution requirements. A review was made

of the tests already applied to this model for non-conductive fluids and the evaluation

of its intermittency (an essential element of turbulence that signifies a departure from

self-similarity) was notably missing. Relying on the fact that, contrary to fluids, the

two-dimensional (2D) case in magnetohydrodynamics (MHD) leads to a direct cascade

of energy to small scales, the case for studying intermittency of the alpha model with 2D

MHD was presented. Finally, numerical simulations were made both for freely decaying

and for forced MHD turbulence both at a resolution sufficient to model the dissipation

and employing the alpha model at 1/2 and 1/4 resolution.

Any closure should accurately model the effects on the resolved scales of the

smaller, unresolved scales. The alpha model does accurately reproduce the large scale-

spectra even at 1/4 the resolution of a fully-resolved MHD simulation. For freely decay-

ing MHD turbulence, it also reproduces the time evolution of the total energies and the

large-wavelength components of the fields. These results were previously known [55].

We found, however, the magnetic energy spectra to be accurate only for scales larger

than ∼ 2α while the kinetic energy spectra were accurate for scales larger than ∼ α.
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Comparisons between the alpha model and LES methods for non-conductive flows were

reviewed in §3.4. In all cases, the alpha model results were comparable with the best of

standard LES models.

We have averaged statistics over 20 turn-over times (and up to ∼ 2 · 107 data val-

ues) of a quasi-steady-state to test if the alpha model reproduces intermittent turbulent

behavior. The scaling of the third-order structure function is tested and linear scaling

with length (down to length α) is observed as predicted by an exact law [66, 68]. We

also capture the high-order statistics (up to order 5 or 6)1 with a gain in speed close

to a factor of 16. For non-conductive flows, higher-order statistics for LES models have

been tested [13]. Therein, all models tested were highly accurate up to order 4 while

the best models had less than 7% error at order 7.2 For the velocity field, compared to

an appropriately down-sampled DNS data set, the alpha model has less than 1.3% error

at order 7, but for the magnetic field the error at order 7 can be greater than 20%.

This suggests that, for non-conductive flows at least, the alpha model is com-

parable to the best of standard LES models for reproducing intermittency as well.

For conductive flows, results are quite good if not as encouraging. Large-scale spec-

tra (wavenumbers less than 1
2α), large-wavelength components of the field, and (in the

absence of forcing) time evolution of the energies are well reproduced. Intermittency

is reproduced as represented by the high-order statistics (up to order 5 or 6). Two

suggestions for further improvements are: (1) not to employ the alpha model for the

magnetic field and (2) to alter the derivation of the induction equation for the alpha

model. The first suggestion is only useful if the magnetic Prandtl number, PM = ν
η , is

much less than one and the magnetic Reynolds number, RM = uolo
η , is small as is the

case in the laboratory using liquid metals (mercury, sodium, gallium), in the liquid core

of the earth, or in the solar convection zone.

1 Improved statistics (more data) are required to more accurately determine the higher-order statis-
tics.

2 Note that these tests utilized the statistics from up to ∼ 2 · 108 data values.



Bibliography

[1] D. G. Andrews and M. E. McIntyre. An exact theory of nonlinear waves on a
Lagrangian-mean flow. J. Fluid Mech., 89:609–646, 1978.

[2] Gregory L. Baker and Jerry P. Gollub. Chaotic Dynamics: an introduction. Cam-
bridge University Press, Cambridge, 1990.

[3] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press,
Cambridge, 1967.

[4] R. Benzi, S. Ciliberto, C. Baudet, G. Ruiz Chavarria, and R. Tripiccione. Extended
self-similarity in the dissipation range of fully developed turbulence. Europhysics
Letters, 24:275–+, November 1993.

[5] R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, and S. Succi. Ex-
tended self-similarity in turbulent flows. ”Phys. Rev. E”, 48:29–+, July 1993.

[6] H. S. Bhat, R. C. Fetecau, J. E. Marsden, and K. Mohseni. Lagrangian Averaging
for Compressible Fluids. 2003. arXiv:physics/0311086.

[7] D. Biskamp and E. Schwarz. On two-dimensional magnetohydrodynamic turbu-
lence. Physics of Plasmas, 8(7):3282–3292, 2001.

[8] Mary L. Boas. Mathematical Methods in the Physical Sciences. John Wiley &
Sons, New York, 2nd edition, 1983.

[9] J. W. Brault and O. R. White. The Analysis and Restoration of Astronomical Data
via the Fast Fourier Transform. Astron. & Astrophys., 13:169–+, July 1971.

[10] J. M. Burgers. A mathematical model illustrating the theory of turbulence.
Advances in Applied Mechanics, 1:171–199, 1948.

[11] Roberto Camassa and Darryl D. Holm. An Integrable Shallow Water Equation
with Peaked Solutions. Physical Review Letters, 71(11):1661–1664, 1993.

[12] Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, and Thomas A. Zang.
Spectral Methods in Fluid Dynamics. Springer-Verlag, New York, 1988.

[13] S. Cerutti and C. Meneveau. Intermittency and relative scaling of subgrid-scale
energy dissipation in isotropic turbulence. Physics of Fluids, 10:928–937, April
1998.



88

[14] S. Chandrasekhar. The Theory of Axisymmetric Turbulence. Philosophical
Transactions of the Royal Society of London. Series A, Mathematical and Physical
Sciences, 242(855):557–577, 1950.

[15] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, and S. Wynne. Camassa-Holm
Equations as a Closure Model for Turbulent Channel and Pipe Flow. Physical
Review Letters, 81:5338–5341, December 1998.

[16] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, and S. Wynne. A connection
between the Camassa-Holm equations and turbulent flows in channels and pipes.
Physics of Fluids, 11:2343–2353, August 1999.

[17] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, and S. Wynne. The Camassa-
Holm equations and turbulence. Physica D Nonlinear Phenomena, 133:49–65, 1999.

[18] S. Chen, D. D. Holm, L. G. Margolin, and R. Zhang. Direct numerical simulations
of the Navier-Stokes alpha model. Physica D Nonlinear Phenomena, 133:66–83,
1999.

[19] A. Cheskidov. Turbulent Boundary Layer Equations. C.R. Acad. Ser. I, 334:423,
2002.

[20] Robert Ecke. The Turbulence Problem: An Experimentalist’s Perspective. Los
Alamos Science, (29):124–141, 2005.

[21] B. R. Fabijonas and D. D. Holm. Mean Effects of Turbulence on Elliptic Instability
in Fluids. Physical Review Letters, 90(12):124501–+, March 2003.

[22] C. Foias, D. D. Holm, and E. S. Titi. The Navier-Stokes-alpha model of fluid
turbulence. Physica D Nonlinear Phenomena, 152:505–519, May 2001.

[23] Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software architecture for
the FFT. In Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal Processing,
volume 3, pages 1381–1384. IEEE, 1998.

[24] Uriel Frisch. Turbulence, The Legacy of A. N. Kolmogorov. Cambridge University
Press, Cambridge, UK, 1995.
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Appendix A

Derivations

A.1 Navier-Stokes

A.1.1 Derivation of the Vorticity Equation

The Navier-Stokes equations are given by:

∂tu + u · ∇u = −∇p + F + ν∇2u (A.1)

∇ · u = 0. (A.2)

Now, defining the vorticity with

w ≡ ∇ × u (A.3)

and taking the curl of (A.1) will give us the vorticity equation. The curl is a linear

operator:

∇ × ∂tu + ∇ × (u · ∇u) = −∇ × ∇p + ∇ ×F + ∇ × ν∇2u (A.4)

For sufficiently continuous velocity fields,

∇ × ∂tu = ∂t∇ × u = ∂tw (A.5)

and

∇ ×∇2u = ∇2
∇ × u = ∇2w. (A.6)

And, the curl of a gradient is zero,

∇ × ∇p = 0, (A.7)
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which, through a familiar identity, can be intuitively understood as the statement that

the up-hill direction of a scalar field cannot circle around any point. Start at any point

close by and circle the first point back to where you started. If there was a positive

(or negative) curl, after going full circle the scalar field should have a higher (or lower)

value than you began with. This violates the assumption of single-valuedness.

This leaves us with the curl of the nonlinear term. Using the velocity cross

vorticity identity, u × (∇ × u) = 1
2∇u2 − u · ∇u:

∇×(u·∇u) = ∇×(
1

2
∇u2−u×w) = −∇×u×w = −(w·∇)u+w∇·u−u∇·w+(u·∇)w.

(A.8)

Here we used again that the curl of a gradient is zero and a familiar vector identity for

the curl of a cross product. Now using that the flow is incompressible (A.2) and that

the divergence of a curl is zero, which holds for sufficiently continuous functions,1 we

find

∇ × (u · ∇u) = −(w · ∇)u + (u · ∇)w. (A.9)

Finally, we obtain the vorticity equation by combining (A.4 - A.7) and (A.9):

∂tw + u · ∇w = w · ∇u + ∇ ×F + ν∇2w. (A.10)

A.1.2 Elimination of the Pressure Term

This derivation is from [24]. Only explanations between the steps have been

added.

Rewriting the Navier-Stokes equations (A.1) and (A.2) in summation notation:

∂tui + uj∂jui = −∂ip + ν∂jjui (A.11)

∂iui = 0. (A.12)

1 For an infinitesimal cube, the rotation of the vector field at the top and the bottom (or from
opposite sides) must be the same, but the normal vectors are anti-parallel and the contributions to the
divergence cancel.
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Now, taking the divergence of (A.11);

∂i∂tui + ∂i(uj∂jui) = −∂iip + ν∂i∂jjui. (A.13)

For sufficiently continuous velocity fields,

∂i∂tui = ∂t∂iui = ∂t0 = 0, (A.14)

ν∂i∂jjui = ν∂jj∂iui = ν∂jj0 = 0, (A.15)

and

∂ij(uiuj) = ∂i(ui∂juj + uj∂jui) = ∂i(ui · 0 + uj∂jui) = ∂i(uj∂jui) (A.16)

where we have made repeated use of the incompressibility condition (A.12). Combining

(A.13 - A.16) we find that

∇2p = σ ≡ −∂ij(uiuj). (A.17)

This is a Poisson equation and its solution is physically non-local which we express with

the non-local operator ∇−2:

p = ∇−2σ. (A.18)

Substituting (A.18) back into Navier-Stokes (A.11), we find

∂tui + uj∂jui − ∂i∇
−2∂lj(ujul) = ν∇2ui (A.19)

and, as ∇−2 and ∂l commute (at least in Fourier space), we find:

∂tui + ∂j(ujui) − ∂il∇
−2∂j(ujul) = ν∇2ui (A.20)

where we used a portion of (A.16). Finally, with a judicious use of the δ-function, we

arrive at the result of [24]:

∂tui + (δil − ∂il∇
−2)∂j(ujul) = ν∇2ui. (A.21)
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A.2 Burgers Equation

A.2.1 Calculation of Dissipation Rate

Burgers equation is given by

∂tu + u∂yu = ν∂2
yyu. (A.22)

After multiplying by u and integrating with respect to y we have

∫

u∂tudy +

∫

u2∂yudy = ν

∫

u∂2
yyudy. (A.23)

Realizing that 1
2∂t(u

2) = u∂tu, we find the time rate of change of the total energy in

the system,
∫

u∂tudy =

∫

1

2
∂t(u

2)dy =
d

dt

∫

1

2
u2dy. (A.24)

Using integration by parts, a.k.a the product rule,

∂x(uv) = u∂xv + v∂xu → u∂xv = ∂x(uv) − v∂xu, (A.25)

we find

u2∂yu = ∂y(u
3) − u∂y(u

2) = ∂y(u
3) − 2u2∂yu, (A.26)

or

u2∂yu =
1

3
∂y(u

3). (A.27)

Therefore,
∫ b

a
u2∂yudy =

∫ b

a

1

3
∂y(u

3)dy =
1

3
u3|ba. (A.28)

For three circumstances of interest, this term will go to zero:

(1) periodic boundary conditions (u3(b) = u3(a))

(2) for an infinite domain with limx→±∞u = 0

(3) for u = 0 on the boundaries.
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Using integration by parts again we have

u∂2
yyu = u∂y(∂yu) = ∂y(u∂yu) − (∂yu)(∂yu). (A.29)

Then,

ν

∫

u∂2
yyudy = ν

∫

∂y(u∂yu)dy − ν

∫

(∂yu)2dy = νu∂yu|
b
a − ν

∫

(∂yu)2dy. (A.30)

For the same three circumstances as u3|ba, u∂yu|
b
a will go to zero. Finally, we calculate

the dissipation rate of kinetic energy by substituting (A.24), (A.28), and (A.30) into

(A.23) to find

d

dt

∫

1

2
u2dy = −ν

∫

(∂yu)2dy. (A.31)

A.2.2 Uniqueness Proof

Let v(y, t) and w(y, t) each be twice-differentiable-in-y solutions of

• Burgers equation: (A.22)

• with periodic boundary conditions: u(0, t) = u(L, t)

• u(y, 0) = U(y) ∀ 0 ≤ y ≤ L.

Then, v(y, t) ≡ w(y, t) ∀ 0 ≤ y ≤ L, t > 0.

Proof.

Define σ(y, t) ≡ v(y, t) − w(y, t). Then,

• ∂tσ + σ∂yσ = ν∂2
yyσ

• σ(0, t) = σ(L, t)

• σ(y, 0) = 0 ∀ 0 ≤ y ≤ L.

Define E(t) =
∫ L
0

1
2σ2dy and note that

• E(t) ≥ 0
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• E(0) = 0.

From the dissipation rate (A.31) we have

dE

dt
= −ν

∫ L

0
(∂yu)2dy ≤ 0. (A.32)

Therefore, E(t) is a non-negative decreasing function of time that started at zero and

E(t) = 0 ∀ t ≥ 0 is the only solution.

∫ L

0

1

2
u2dy = 0 ∀ t ≥ 0 (A.33)

Now prove σ(y, t) ≡ 0.

Proof.

(1) Assume not: ∃ (y∗, t∗) Ä σ(y∗, t∗) > 0

• negative would work similarly

(2) since σ is twice differentiable in y, σ is continuous:

∃ ε Ä σ(y, t∗) > σ(y∗,t∗)
2 ∀ |y − y∗| < ε

(3) E(t∗) = 0 =
∫ L
0

1
2σ2dy

=
∫ y∗−ε
0

1
2σ2dy +

∫ y∗+ε
y∗−ε

1
2σ2dy +

∫ L
y∗+ε

1
2σ2dy ≥

∫ y∗+ε
y∗−ε

1
2σ2dy

≥ (2ε)
(

σ(y∗,t∗)
2

)2
> 0

(4) Contradiction. Therefore, σ ≡ 0 ∀ 0 ≤ y ≤ L, t > 0.

Finally, v(y, t) ≡ w(y, t) ∀ 0 ≤ y ≤ L, t > 0.
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A.3 Parseval’s Theorem

We take the Fourier transform to be2

F [f(x)] ≡ f̂(k) =

∫ ∞

−∞
f(x)e−ikxdx

and the inverse Fourier transform to be

F−1[f̂(k)] =
1

2π

∫ ∞

−∞
f̂(k)eikxdk.

Then, Parseval’s theorem states that if f(x) and g(x) are continuous, real-valued

functions satisfying either the conditions of the Riemann-Lebesque lemma or of the

Dirichlet theorem, then

∫ ∞

−∞
f(x)g(x)dx =

1

2π

∫ ∞

−∞
f̂(k)ĝ∗(k)dk. (A.34)

Proof.

f(x)g(x) =
1

2π

∫ ∞

−∞
f̂(k)eikxdk ·

1

2π

∫ ∞

−∞
ĝ(k

′
)eik

′
xdk

′

∫ ∞

−∞
f(x)g(x)dx =

∫ ∞

−∞

1

2π

∫ ∞

−∞
f̂(k)eikxdk ·

1

2π

∫ ∞

−∞
ĝ(k

′
)eik

′
xdk

′
dx

But,

1

2π

∫ ∞

−∞
ei(k+k

′
)xdx = δ(k + k

′
)

and

∫ ∞

−∞
f(x)g(x)dx =

1

2π

∫ ∞

−∞
dk

∫ ∞

−∞
dk

′
f̂(k)ĝ(k

′
)δ(k + k

′
)

=
1

2π

∫ ∞

−∞
f̂(k)ĝ(−k)dk.

Since, g(x) is a real-valued function, ĝ(−k) = ĝ∗(k). (A.34) follows.

If, in addition to the above conditions, we have f(x) = g(x), we find that

∫ ∞

−∞
f2dx =

1

2π

∫ ∞

0
f̂ f̂∗dk +

1

2π

∫ ∞

0
f̂∗f̂dk

∫ ∞

−∞
f2dx =

1

π

∫ ∞

0
f̂∗f̂dk. (A.35)

2 Other normalizations are possible.
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Appendix B

Summary of Notations

In tensor notation, repeated subscript denotes summation and a single subscript

represents a vector. So, the dot product can be represented by

a · b = a1b1 + a2b2 + a3b3 =
3

∑

i=1

aibi = aibi, (B.1)

and the gradient by

∇φ = ∂iφ. (B.2)

The Kronecker delta is defined as usual;

δij ≡











0, i 6= j

1, i = j.

(B.3)

A useful function is:

εijl ≡



























1, (i, j, l) cyclic

−1, not cyclic

0, if any two indices are equal.

(B.4)

We can use this to represent the cross product and the curl,

(a × b)i = εijlajbl, (B.5)

(∇ × u)i = εijl∂jul. (B.6)

One last useful identity is

εijlεimn = δjmδln − δjnδlm. (B.7)


