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Outline

e What is Turbulence?

e What is Intermittency?

e What is the Lagrangian-Averaged Alpha Model?
e EXxperiments - Does it reproduce intermittency?
e Results - If so, how well?

e Summary, Conclusions, & What Next?
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What is Turbulence?
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Leonardo da Vinci's illustration of the swirling flow of turbulence
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Cascade to Small Scales
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Kolmogorov and the Inertial Range

A - homogeneity
c - Isotropy
- self-similarity
- universality
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Intermittency - Examples
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Structure Function Scaling - Some Math

SF(T) = f(t+ 1) — f(t) (1)
SI(r) = (|6 f(m) ) 2)
SFNT) = N6 f(T) (3)

self-similarity

™= \T

f

SI(r) = (NS F(T)PY = NP8 fF(T)P) ~ 75
G ="h-p @)

If the statistical features of the system are independent of spatial scale, it is described
as self-similar and it's scaling will be linear, ¢/ ~ p.

L Angle brackets, (-), denote integration over the entire domain.
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Structure Function Scaling for Intermittency
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Structure Function Scaling - Examples
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Lagrangian-Averaged Alpha Model

e this is the closure
e Lagrangian-averaging = averaging along fluid trajectory
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lllustration of Lagrangian Averaging
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Lagrangian-Averaged Alpha Model

e this is the closure

e Lagrangian-averaging = averaging along fluid trajectory
e Taylor’s frozen-in turbulence hypothesis

e Hamilton’s Principle

e conservation of energy etc. (under a new norm)

e add dissipation V?f
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Navier-Stokes vs. Lagrangian Averaging

(incompressible) Navier-Stokes equations,

LANS-«

O+ uy - Vi + Vil -@=-VP+F+ vV

V- -u,=0
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Time Savings of Lagrangian Averaging

o At~ —= (CFL)

e total cost ~ N?+!

e a =5 = 8(2D), 16 (3D)

e a= £ = 64(2D), 256 (3D) - 12 years!
e Upto % gives accurate results
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Example - Barotropic Double-Gyre Circulation — °

W oW w w1
H - . . / N
physical higher viscosity a,N =%

’Holm, D. D. and Nadiga, B., Modeling Mesoscale Turbulence in the Barotropic Double Gyre
Circulation, J. Phys. Oceanogr., 2355 (2003).
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e What turbulence is

e Why it’s hard to do

e how the alpha model can help

e intermittency versus self-similarity

o ~ N1 . 2D vastly cheaper

e for non-conductive fluids energy — large scales (hurricanes)

e In 2D - little transfer of energy to small scales — no strong, localized
events — no intermittency
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e Are 2D conductive fluids intermittent?

e add Lorenz force j x b

e NO magnetic monopoles V-b=0

e add an induction equation for time evolution of 5(in Alfvénic units)

Ob =V x (T x b) +nV2b+ Fu (8)

Oiby = V x (0% X by) + nV3(1 — a®V3)b, + Fur (9)

e A= (a®) — large scales,® F = 1(u® + b?) — small scales

3=V x az
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e Pseudospectral

e exponentially convergent derivatives

e fast Poisson Eqs solution

e non-dissipative and non-dispersive

e 2-3rds rule for dealiasing

e sguare box with periodic boundary conditions

¢ Initial conditions/forcing specified in Fourier space
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Table 1: Resolution, N, model parameter, «, viscosity, v = 7, forcing,
Fu, Fr, initial conditions, u, = by, Taylor Reynolds number, R, !

Run N o N vV=rn f]\/[ .;EK UOZbO R)\

a 2048 | 0 (DNS) 10—4 0 0 1 1500
b 1024 6 10—4 0 0 1 1700
C 512 6 104 0 0 1 1700
d 1024 | O(DNS) | 1.6-10"* | 0.2 | 0.45 0 1600
e 512 6 1.6-10"% | 0.2 | 0.45 0 1300
f 256 6 1.6-10"% | 0.2 | 0.45 0 1100

TR, = 2ums computed at peak of the dissipation, ¢ ~ 6.5, for freely
decaying runs (a-c) and averaged over t = [50, 150] for forced runs
(d-f).
ot = Eknmaz/2 (10)
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Results - Freely Decaying
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DNS
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DNS
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Results - Forced
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Answers - Scaling Exponents - Forced
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Results - Velocity vs. Magnetic
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¢ |Is the alpha model a good closure?

— YES - it reproduces the large-wavelength component behavior
— for velocity even better - spectra down to scale ~ « instead of ~ 2«

e Does the alpha model exhibit intermittency?
— YES

e How well?

— up to the level of the 4th- or 5th-order statistics
— velocity results are better - 7th-order statistics < 3% error

(compared to < 7% for best LES)
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e Will modifying the magnetic dissipation make a better model?
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Extended Self-Similarity - Example
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von K arman-Howarth & Extended Self-Similarity

Kolmogorov 4-5ths law:

4

(L 1)) = el (11)

for the third-order longitudinal structure function of the velocity

Sur(l) = (ﬁ(f ) - U(a?)) Wi (12)
dr=d40b (13)
L(1) = (|02 1027 %) oc L, (14)
we determine the relative scaling exponents gg from
S5 ~ (L) (15)
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b _d (1(u2 +0%) = —v{w?) —n(j*)

dt  dt'2
dA d 1 4, N4
0t %Sa;) = —v(b%)
A — large scales, £ — small scales
E d B
i+ B-5) = —vlw - wl) — (i)
dA d 1 , S
= (= — —u({b- b,
at = gl = v by

*The total cross helicity, Ho = (%ﬁ : 5) ~ 0, is zero by choice.
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