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Glasses



Glass transition
“Almost any liquid when quenched fast enough undergoes a glass transition.”
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Mean Field Theory of Glass transition

models of glasses = common optimization problems
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Mean Field Theory of Glass transition

H =
∑
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Si ∈ {1, . . . , q}
Potts glass: graph coloring
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The phase diagram
Ideal Glasses & Hard Optimization Problems 
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Glassy Energy Landscape
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Cavity Method 

Computational method giving properties of the 
energy landscape:

Total energy, entropy, temperature

Properties of states - their number  

Overlaps between and within states etc.  

T ≡ ∂E

∂S

Nstates = eNΣ

(Mezard, Parisi’01)
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Following states
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New Computational Method

Generalization of the cavity method

Following states

How does that work?
(1) “Take” a random configuration in the state of 

interest. 

(2) Initialize belief propagation in that configuration 
and change the temperature parameter. 



How does that work?
In some problems this can be done via 

planting
See the next talk by Florent Krzakala



How does that work?
In some problems this can be done via 

planting
See the next talk by Florent Krzakala

In general only on the level of cavity equations

P a→i(ψa→i) =
1

Za→i(β)

∫ ∏

j∈∂a\i

∏

b∈∂j\a

dP b→j(ψb→j)
[
Za→i({ψb→j},β)

]m
δ[ψa→i − F({ψb→j},β)]

P̃ a→i(ψ̃a→i) =
1

Z̃a→i(β̃)

∫ ∏

j∈∂a\i

∏

b∈∂j\a

dP̃ b→j(ψ̃b→j)
[
Za→i({ψb→j},β)

]m
δ[ψ̃a→i − F({ψ̃b→j}, β̃)]



Following states: Results
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Blue line: The statics

∂s

∂e
= β

The set of configurations 
of energy e is split into 
exponentially many 
Gibbs states (clusters)

Nstates = eNΣ

Z(β) =
∑

{si}

e−βH({si}) =
∫

de eNs(e)−Nβe = eN [s(e)−βe]



Following states: Results
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What can be done with that?



Result n. 1
Analysis of 

Simulated annealing
(What energy does it achieve?)



Central question: How good is certain algorithm?

Simulated annealing

Finds ground state if temperature is 
decreased exponentially slowly 
(Geman, Geman’84)

But physics seeks

with first            and then          

T =
cN

log t

N →∞ c→ 0
(we call this: Infinitely slow annealing)

Result n. 1

T = T0 −
ct

N



SA in non-glassy systems
(energy landscape with one state)

Infinitely slow annealing finds the ground state



SA in glassy models

Infinitely slow annealing equilibrates down to the glass 
transition (Montanari, Semerjian’06), then it is stacked in one 
of the Gibbs states and goes to the bottom of that state. 

Assumption based on the 
knowledge of the system: 

The method of following states 
computes the bottoms of states     
(more precisely lower bounds - 1RSB versus FRSB)



Example for fully connected p-spin
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Result n. 2
Canyons versus Valleys



Where the really hard 
problems are? 

Random K-satisfiability

Random graph coloring



Where the really hard 
problems are? 

Random K-satisfiability

Random graph coloring

Answer 1: Around the satisfiability threshold
( Cheeseman, Kanefsky, Taylor’91; Mitchell, Selman, Levesque’92)



Answer 2: Glassiness makes problems hard
(Mezard, Parisi, Zecchina’02) 
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Answer 2: Glassiness makes problems hard

Zero energy states

Positive energy states

Zero energy states

Positive energy states

Canyon dominated Valley dominated vs.

BUT!
(Mezard, Parisi, Zecchina’02) 

Stochastic Local Search “unreasonably” good



viewing the
landscapes
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Valleys

Canyons
4-coloring of 9-regular random graphs

solvable by reinforced belief propagation
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Quiz



Quiz
Does Survey Propagation work in the valley 
dominated energy landscape?
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No: As far as we know no valley dominated 
case where SP works is known (but see recent 
work by Higuchi, Mezard).
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Quiz

Do frozen variables in clusters have some 
connection to valleys or canyon?

Yes: Frozen variables imply valleys. 

Does Survey Propagation work in the valley 
dominated energy landscape?

No: As far as we know no valley dominated 
case where SP works is known (but see recent 
work by Higuchi, Mezard).



Conclusions
New Method for describing evolution of 
glassy states

Results:

Analysis of infinitely slow simulated annealing

Canyons versus Valleys picture - implications 
for algorithmic hardness 

Some more in next talk by Florent Krzakala
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