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Constraint Satisfaction Problem (CSP)

O Constraint Satisfaction Problem P:
Input: a set V of variables
a set of corresponding domains of variable values [discrete, finite]
a set of constraints on V [constraint = set of allowed value tuples]
Output: a solution, valuation of variables that satisfies all constraints

Well Known CSPs:

O k-SAT: Boolean satisfiability
= Domains: {0,1} or {true, false} F= (X v Y) AV Z)

o

= Constraints: disjunctions of variables or a B
their negations (“clauses”) with exactly k variables each

O k-COL: Graph coloring
» Variables: nodes of a given graph
» Domains: colors 1...k
= Constraints: no two adjacent nodes get the same color.
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Encoding CSPs

O One can visualize the connections between variables and constraints in

so called factor graph:

= A bipartite undirected graph with two types of nodes:

« Variables: one node per variable Factors: one node per constraint
SAT Problem: Factor Graph:
(xvy)a(=xvz) |:>
T T

o (B

O Each factor node o has an associated factor function f (x,), weighting
the variable setting. For CSP, f(x,)=1 iff constraint is satisfied, else =0

= Weight of the full configuration x: F(x) =[], fa(Xa)
= Summing weights of all configurations defines partition function:

Z = Zx Ha fa(Xa)

» For CSPs the partition function computes the number of solutions

Can we count “clusters” of solutions similarly?
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Talking about Clusters

1. High 2. Enclosing 3. Filling
density regions hypercubes hypercubes

BP for BP BP for “covers” BP for Z
The original SP First rigorous More direct
derivation from derivation of SP approach to
stat. mechanics for SAT clusters.

[Mezard et al. '02] [Braunstein et al. '04] [Kroc, Sabharwal,
[Mezard et al. ’09] [Maneva et al. '05] Selman 08 ‘09]
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Clusters as Combinatorial Objects

O Definition: A solution graph is an undirected graph where nodes
correspond to solutions and are neighbors if they differ in value of only
one variable.

O Definition: A solution cluster is a connected
component of a solution graph. 010

111

Non-solution
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Thinking about Clusters

O Clusters are subsets of solutions, possibly exponential in size
» not practical to work with
O To compactly represent clusters, we trade off expressive power for
shorter representation
» |oose some details, but gain representability

O Approximate by hypercubes “from outside” & “from inside”
= Hypercube: Cartesian product of non-empty subsets of variable domains
« E.g. with % ={0,1},
y=(1**)is a
2-dimensional hypercube
in 3-dim space

= From outside: The (unique) minimal hypercube enclosing the whole cluster.
= From inside: A (non-unique) maximal hypercube fitting inside the cluster.

CORNELL Counting Solution Clusters Using Belief Propagation 6



Talking about Clusters

1. High 2. Enclosing 3. Filling
density regions hypercubes hypercubes

BP for BP BP for “covers” BP for Z
The original SP First rigorous More direct
derivation from derivation of SP approach to
stat. mechanics for SAT clusters.

[Mezard et al. ’02] [Braunstein et al. '04] [Kroc, Sabharwal,
[Mezard et al. ’09] [Maneva et al. '05] Selman 08 ‘09]

CORNELL Counting Solution Clusters Using Belief Propagation 7



Factor Graph for Clusters

O To reason about clusters, we seek a factor graph representation
= Because we can do approximate inference on factor graphs
= Need to count clusters with an expression similar to Z for solutions:

Z = Z Hfa(xa)

xc{0,1}" «
N’

=F(x) =1 iff xis a solution
O Indeed, we derive the following for approximating number of clusters:

Z(_l) — Z fa(ya) = H fa(Xa)

yve{0,1,x}" Xa €Yo
Checks whether all
= Syntactically very similar to standard Z, which points in y_ are good

computes exactly number of solutions
= Exactly counts clusters under certain conditions, as discussed later
= Analogous expression can be derived for any discrete variable domain
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Counting Solution Clusters

Divide-and-Conquer Recursively: x=0 /O O
= Arbitrarily pick a variable, say x, of formula F O . x=1
= Count how many clusters contain solutions with x=0 O

(ok if the cluster has solutions with both x=0 and x=1)
= Add number of clusters that contain solutions with x=1

= Subtract number of clusters that contain both solutions with x=0 and
solutions with x=1

[#clusters = #clusters(F)|,_, + #clusters(F)|,.; — #clusters(F)lx=0&x=1]

(Inclusion - exclusion formula)

Key issues:

= how can we compute #clusters(F)|,_o?
(#clusters|,_, would be similar)

= how do we compute #clusters(F)|,_o s x=1 ¢ (NOt a problem for SAT)
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Computing #clusters(F)|,_o: Fragmentation

O Algorithmically, easiest way is to
= “fix” x to 0 in the formula F, compute #clusters in new formula (F|,_,)

1
7

O Risk? a cluster in F could fragment to
) . . 2 clusters in F|,_g
= Potential over-counting: a cluster of F may x=0 | x=1 |

break/fragment into several smaller, 3 G

disconnected clusters when x is fixed to O G

O Interestingly: Clusters often do not fragment!

O In particular, provably no fragmentation in 2-SAT and 3-COL*
instances! (any instance, i.e., worst-case).

O Also, empirically holds for almost all clusters in random 3-SAT,
logistics, circuits, ...
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Theoretical Results: Exactness of Z

On what kind of solution spaces does Z ;, count clusters exactly?

O Theorem: Z ;) is exact for any 2-SAT problem.

O Theorem: Z , is exact for a 3-COL problem on G, if every connected
component of G has at least one triangle.

Any connected
graph

O Theorem: Z , is exact if the solution space decomposes into
“recursively-monotone subspaces”.
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Empirical Results: Z,;, for SAT

Random 3-SAT, n=90, a=4.0

One point per instance
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Empirical Results: Z,;, for SAT

O Z., is remarkably accurate even for many structured formulas (formulas
encoding some real-world problem):

Instance Name # solutions  # clusters Z(_1)
v32r250pl 52081218 6 6
v32r500p5 1543304664 6 6
driverlogl_ks991 856152 338100 338100
roversl_ks99i 17850294 15 15
roversl_v0la 83200608 46 46
roversl_v011 266000 15 15
rovers2_ks991 531360 8 &
rovers2_v0la 52107696 316 308
rovers2_v011 21504 8 &
rovers4_ks99i 13794198600 11 11
rovers4d_v0la 2592794880 22 22
rovers4_v011 28447200 11 11
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BP for Estimating Z

O Recall that the number of clusters is very well approximated by

Z(~1) = Z (—U#*(y)Hfé(ya)

ye{0,1,x}"

O This expression is in a form that is very similar to the standard partition
function of the original problem, which we can approximate with BP.

O Z.4 can also be approximated with “BP”: the factor graph remains
the same, only the semantics is generalized:

= Variables: y € {0,1,*}"

« Factors: [l (ya) = H fa(xa)
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BP Adaptation for (-1)

O Standard BP equations can be derived as stationary point conditions
for continuous constrained optimization problem [Yedidia et al. ‘05]

» Let p(x) be the uniform distribution over solutions of a problem

= Let b(x) be a unknown parameterized distribution from a certain family
= The goal is to minimize D, (b||p) over parameters of b(.)

= Use b(.) to approximate answers about p(.)

O The BP adaptation for Z ,, follows exactly the same path, and
generalizes where necessary.

One can derive a message passing algorithm for
inference in factor graphs with (-1)

O We call this adaptation BP
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The Resulting BP

0| The BP,,, iterative equations: The black part is BP
ni—al(yi) H ma—i(yi)
B3\ a
???&—J(Ul) X Z ff_ilf(yﬁ) H {'_l)rjftj}— 171'}—*&(1:’})
}ra"x.i'E{U'l'*}lﬁl_l jE&\i

Relation to SP:

O For SAT: BP,, is equivalent to SP

= The instantiation of the BP ,, equations can be rewritten as SP equations
0 For COL: BP,, is different from SP

= BP , estimates the total number of clusters

= SP estimates the number of clusters with most frequent size
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BP ): Results for COL

Experiment: rescaling number of clusters and £,

1. for 3-colorable graphs with various average degrees (x-axis)
2. count log(Z))/N and log(Zgp4))/N (y-axis)
Q
© | The rescaling assumes that
o #clusters=exp(N X(c))
s
N . :
> ¥(c) is so called complexity
P and is instrumental in various
g physics-inspired approaches
= : .
2 8 | o Zan,,, IVI=100K ;tgtglrl;ster counting (will see
o +  Zpp_,y IV[=100
Z_1), |V|=100
S X 40 VI \- ' Sketch of SP results:
o .
o —1— | | Nonzero between
1 ) 3 4 4.42 and 4.69

Average vertex degree
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Summary

O Truly combinatorial framework for cluster counting: Z
= Applicable to structured problems (contrast with original SP clusters)
= With theoretical exactness results

O Algorithm for approximate inference over clusters: BP
= Direct derivation of SP for SAT
= Allows derivation of new algorithms for other combinatorial problems
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